Electrochemical Sensing of Vitamin D3: A Comparative Use of Glassy Carbon and Unmodified Screen-Printed Carbon Electrodes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Samples
2.2. Equipment
2.3. Measurement Procedure
2.4. Sample Preparation
3. Results
3.1. Electrooxidation of Vitamin D3 in Different Organic Solvents
3.2. Optimization of the Supporting Electrolyte Composition
3.3. Optimization of the Electrochemical Conditions
3.4. Method Performance
3.5. Determination of Vitamin D3 in Real Samples
3.6. Comparison between GCE and SPCEs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Webster, R.D. Voltammetry of the liposoluble vitamins (A, D, e and K) in organic solvents. Chem. Rec. 2012, 12, 188–200. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.T.; Cerquinho, R.G.; Perez, M.M.; Alves, B.D.C.A.; Pereira, E.C.; Azzalis, L.A.; Junqueira, V.B.C.; Soares, L.R.; Fonseca, F.L.A. Determination of vitamin D in tears of healthy individuals by the electrochemiluminescence method. J. Clin. Lab. Anal. 2019, 33, e22830. [Google Scholar] [CrossRef] [PubMed]
- Tsiaras, W.G.; Weinstock, M.A. Factors influencing vitamin D status. Acta Derm.-Venereol. 2011, 91, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Zittermann, A.; Börgermann, J.; Gummert, J.F.; Pilz, S. Future directions in vitamin D and cardiovascular research. Nutr. Metab. Cardiovasc. Dis. 2012, 22, 541–546. [Google Scholar] [CrossRef] [PubMed]
- Avenell, A.; Mak, J.C.S.; O’Connell, D. Vitamin D and vitamin D analogues for preventing fractures in post-menopausal women and older men. Cochrane Database Syst. Rev. 2014, 4, CD000227. [Google Scholar] [CrossRef]
- Lappe, J.M.; Travers-Gustafson, D.; Davies, K.M.; Recker, R.R.; Heaney, R.P. Vitamin D and calcium supplementation reduces cancer risk: Results of a randomized trial. Am. J. Clin. Nutr. 2007, 85, 1586–1591. [Google Scholar] [CrossRef] [PubMed]
- Yildirim, P.; Garip, Y.; Karci, A.A.; Guler, T. Dry eye in vitamin D deficiency: More than an incidental association. Int. J. Rheum. Dis. 2016, 19, 49–54. [Google Scholar] [CrossRef]
- Bilodeau, L.; Dufresne, G.; Deeks, J.; Clément, G.; Bertrand, J.; Turcotte, S.; Robichaud, A.; Beraldin, F.; Fouquet, A. Determination of vitamin D3 and 25-hydroxyvitamin D3 in foodstuffs by HPLC UV-DAD and LC-MS/MS. J. Food Compos. Anal. 2011, 24, 441–448. [Google Scholar] [CrossRef]
- Kaur, A.; Rana, S.; Bharti, A.; Chaudhary, G.R.; Prabhakar, N. Voltammetric detection of vitamin D employing Au-MoS2 hybrid as immunosensing platform. Microchim. Acta 2021, 188, 222. [Google Scholar] [CrossRef]
- Carlucci, L.; Favero, G.; Tortolini, C.; Di Fusco, M.; Romagnoli, E.; Minisola, S.; Mazzei, F. Several approaches for vitamin D determination by surface plasmon resonance and electrochemical affinity biosensors. Biosens. Bioelectron. 2013, 40, 350–355. [Google Scholar] [CrossRef]
- Perales, S.; Delgado, M.M.; Alegría, A.; Barberá, R.; Farré, R. Liquid chromatographic determination of Vitamin D3 in infant formulas and fortified milk. Anal. Chim. Acta 2005, 543, 58–63. [Google Scholar] [CrossRef]
- Tripkovic, L.; Lambert, H.; Hart, K.; Smith, C.P.; Bucca, G.; Penson, S.; Chope, G.; Hypponen, E.; Berry, J.; Vieth, R.; et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012, 95, 1357–1364. [Google Scholar] [CrossRef]
- Brunetto, M.R.; Obando, M.A.; Gallignani, M.; Alarcón, O.M.; Nieto, E.; Salinas, R.; Burguera, J.L.; Burguera, M. HPLC determination of Vitamin D3 and its metabolite in human plasma with on-line sample cleanup. Talanta 2004, 64, 1364–1370. [Google Scholar] [CrossRef]
- Temova, Z.; Roškar, R. Stability-Indicating HPLC-UV Method for Vitamin D3 Determination in Solutions, Nutritional Supplements and Pharmaceuticals. J. Chromatogr. Sci. 2016, 54, 1180–1186. [Google Scholar] [CrossRef]
- Kamankesh, M.; Shahdoostkhany, M.; Mohammadi, A.; Mollahosseini, A. Fast and sensitive low density solvent-based dispersive liquid-liquid microextraction method combined with high-performance liquid chromatography for determining cholecalciferol (vitamin D3) in milk and yogurt drink samples. Anal. Methods 2018, 10, 975–982. [Google Scholar] [CrossRef]
- Trenerry, V.C.; Plozza, T.; Caridi, D.; Murphy, S. The determination of vitamin D3 in bovine milk by liquid chromatography mass spectrometry. Food Chem. 2011, 125, 1314–1319. [Google Scholar] [CrossRef]
- Donnarumma, D.; Arena, A.; Trovato, E.; Rigano, F.; Zoccali, M.; Mondello, L. A miniaturized comprehensive approach for total lipidome analysis and vitamin D metabolite quantification in human serum. Anal. Bioanal. Chem. 2023, 415, 4579–4590. [Google Scholar] [CrossRef] [PubMed]
- Yin, S.; Yang, Y.; Wu, L.; Li, Y.; Sun, C. Recent advances in sample preparation and analysis methods for vitamin D and its analogues in different matrices. TrAC Trends Anal. Chem. 2019, 110, 204–220. [Google Scholar] [CrossRef]
- Jafri, L.; Khan, A.H.; Siddiqui, A.A.; Mushtaq, S.; Iqbal, R.; Ghani, F.; Siddiqui, I. Comparison of high performance liquid chromatography, radio immunoassay and electrochemiluminescence immunoassay for quantification of serum 25 hydroxy vitamin D. Clin. Biochem. 2011, 44, 864–868. [Google Scholar] [CrossRef]
- Le Goff, C.; Cavalier, E.; Souberbielle, J.C.; González-Antuña, A.; Delvin, E. Measurement of circulating 25-hydroxyvitamin D: A historical review. Pract. Lab. Med. 2015, 2, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Van Helden, J.; Weiskirchen, R. Experience with the first fully automated chemiluminescence immunoassay for the quantification of 1α, 25-dihydroxy-vitamin D. Clin. Chem. Lab. Med. 2015, 53, 761–770. [Google Scholar] [CrossRef] [PubMed]
- Dvořák, P.; Ramos, R.M.; Vyskočil, V.; Rodrigues, J.A. A new electroanalytical methodology for the determination of formaldehyde in wood-based products. Talanta 2020, 217, 121068. [Google Scholar] [CrossRef] [PubMed]
- Ramos, R.M.; Brandão, P.F.; Gonçalves, L.M.; Vyskočil, V.; Rodrigues, J.A. Electrochemical sensing of total sulphites in beer using non-modified screen-printed carbon electrodes. J. Inst. Brew. 2017, 123, 45–48. [Google Scholar] [CrossRef]
- Pereira, D.F.; Santana, E.R.; Spinelli, A. Electrochemical paper-based analytical devices containing magnetite nanoparticles for the determination of vitamins B2 and B6. Microchem. J. 2022, 179, 107588. [Google Scholar] [CrossRef]
- Nallbani, A.; Holubová, J.; Sýs, M.; Arbneshi, T.; Vytřas, K. Voltammetric determination of cholecalciferol at glassy carbon electrode performed in water-ethanol mixture. Potravin. Slovak J. Food Sci. 2018, 12, 166–172. [Google Scholar] [CrossRef]
- Hart, J.P.; Norman, M.D.; Lacey, C.J. Voltammetric behaviour of vitamins D2 and D3 at a glassy carbon electrode and their determination in pharmaceutical products by using liquid chromatography with amperometric detection. Analyst 1992, 117, 1441–1445. [Google Scholar] [CrossRef]
- Chan, Y.Y.; Yue, Y.; Webster, R.D. Voltammetric studies on vitamins D2 and D3 in organic solvents. Electrochim. Acta 2014, 138, 400–409. [Google Scholar] [CrossRef]
- Prakasam, S.; Anthonysamy, E.; Krishnan, G.; Chinnathambi, S. Impact of boron doping on microporous carbon for enhancing the electrochemical sensitivity of vitamin D3. Mater. Chem. Phys. 2023, 296, 127353. [Google Scholar] [CrossRef]
- Đurović, A.; Stojanović, Z.; Kravić, S.; Kos, J.; Richtera, L. Electrochemical Determination of Vitamin D3 in Pharmaceutical Products by Using Boron Doped Diamond Electrode. Electroanalysis 2020, 32, 741–748. [Google Scholar] [CrossRef]
- Avan, A.A.; Filik, H. Simultaneous Determination of Fat-Soluble Vitamins by Using Modified Glassy Carbon Electrode. Russ. J. Electrochem. 2021, 57, 858–871. [Google Scholar] [CrossRef]
- Polli, F.; D’Agostino, C.; Zumpano, R.; De Martino, V.; Favero, G.; Colangelo, L.; Minisola, S.; Mazzei, F. ASu@MNPs-based electrochemical immunosensor for vitamin D3 serum samples analysis. Talanta 2023, 251, 123755. [Google Scholar] [CrossRef] [PubMed]
- Kia, S.; Bohlooli, S.; Bahar, S. A Novel Electrochemical Sensor Based on Plastic Antibodies for Vitamin D3 Detection in Real Samples. IEEE Sens. J. 2019, 19, 4752–4757. [Google Scholar] [CrossRef]
- Sarkar, T.; Bohidar, H.B.; Solanki, P.R. Carbon dots-modified chitosan based electrochemical biosensing platform for detection of vitamin D. Int. J. Biol. Macromol. 2018, 109, 687–697. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Gupta, P.K.; Solanki, P.R. Electrochemical immunosensor based on magnetite nanoparticles incorporated electrospun polyacrylonitrile nanofibers for Vitamin-D3 detection. Mater. Sci. Eng. C 2018, 93, 145–156. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, D.; Kumar, R.; Panda, A.K.; Solanki, P.R. An efficient electrochemical biosensor for Vitamin-D3 detection based on aspartic acid functionalized gadolinium oxide nanorods. J. Mater. Res. Technol. 2019, 8, 5490–5503. [Google Scholar] [CrossRef]
- Canevari, T.C.; Cincotto, F.H.; Landers, R.; Machado, S.A.S. Synthesis and characterization of α-nickel (II) hydroxide particles on organic-inorganic matrix and its application in a sensitive electrochemical sensor for vitamin D determination. Electrochim. Acta 2014, 147, 688–695. [Google Scholar] [CrossRef]
- Raymundo-Pereira, P.A.; Lima, A.R.F.; Machado, S.A.S. A nanostructured label-free platform based on an ultrathin film for ultrasensitive detection of a secosteroid hormone. RSC Adv. 2016, 6, 34458–34467. [Google Scholar] [CrossRef]
- Suarez, L.N.; Thein, S.; Kallinich, C.; Rohn, S. Electrochemical oxidation as a tool for generating vitamin D metabolites. Molecules 2019, 24, 2369. [Google Scholar] [CrossRef]
- Cincotto, F.H.; Canevari, T.C.; Machado, S.A.S. Highly sensitive electrochemical sensor for determination of vitamin D in mixtures of water-ethanol. Electroanalysis 2014, 26, 2783–2788. [Google Scholar] [CrossRef]
- Gonçalves, L.M.; Moreira, M.M.; Azevedo, C.F.; Valente, I.M.; Sousa, J.C.; Scanlan, T.S.; Compton, R.G.; Rodrigues, J.A. Proof of Concept of the Electrochemical Sensing of 3-Iodothyronamine (T1AM) and Thyronamine (T0AM). ChemElectroChem 2014, 1, 1623–1626. [Google Scholar] [CrossRef]
- Gonçalves, L.M.; Batchelor-Mcauley, C.; Barros, A.A.; Compton, R.G. Electrochemical oxidation of adenine: A mixed adsorption and diffusion response on an edge-plane pyrolytic graphite electrode. J. Phys. Chem. C 2010, 114, 14213–14219. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education Limited: London, England, 2010. [Google Scholar]
- Méndez, J.H.; Pérez, A.S.; Zamarreño, M.D.; Garcia, M.L.H. Voltammetric determination of vitamin D3 with a rotating glassy carbon electrode. J. Pharm. Biomed. Anal. 1988, 6, 737–741. [Google Scholar] [CrossRef] [PubMed]
- Men, K.; Chen, Y.; Liu, J.; Wei, D. Electrochemical detection of vitamin D2 and D3 based on a AuPd modified glassy carbon electrode. Int. J. Electrochem. Sci. 2017, 12, 9555–9564. [Google Scholar] [CrossRef]
- Filik, H.; Avan, A.A. Simultaneous electrochemical determination of vitamin K1 and vitamin D3 by using poly (Alizarin red S)/multi-walled carbon nanotubes modified glassy electrode. Curr. Anal. Chem. 2017, 13, 350–360. [Google Scholar] [CrossRef]
- Anusha, T.; Bhavani, K.S.; Kumar, J.V.S.; Brahman, P.K. Designing and fabrication of electrochemical nanosensor employing fullerene-C60 and bimetallic nanoparticles composite film for the detection of vitamin D3 in blood samples. Diam. Relat. Mater. 2020, 104, 107761. [Google Scholar] [CrossRef]
Parameters | GCE | SPCE | |
---|---|---|---|
Linear concentration range (µmol L−1) | 0.47–123 | 59.4–1651 | |
r2 | 0.9981 | 0.9934 | |
LOD (µmol L−1) | 0.17 | 19.4 | |
LOQ (µmol L−1) | 0.56 | 64.7 | |
Repeatability (% RSD) | C1 | 4.9 | 5.2 |
C2 | 3.6 | 5.9 | |
C3 | 4.1 | 5.0 | |
Intermediate precision (% RSD) | C1 | 5.5 | 7.1 |
C2 | 4.5 | 6.8 | |
C3 | 4.9 | 6.2 |
Sample | Vitamin D3 Content (µg Tablet−1) a,b | Declared Amount (µg Tablet−1) | |
---|---|---|---|
SWV-GCE | SWV-SPCE | ||
1 | 17.19 ± 0.07 (15%) | <LOD | 15 |
2 | 25.22 ± 0.10 (0.9%) | <LOD | 25 |
3 | 97.8 ± 0.4 (2%) | 96.2 ± 12.3 (4%) | 100 |
Electrode | Technique | Linearity (µmol L−1) | LOD (µmol L−1) | Ref. |
---|---|---|---|---|
GCE | Direct current voltammetry | 2.0–400 | 1.49 | [43] |
GCE | DPV | 5.0–50 | 0.12 | [39] |
GCE | DPV | 2.4–350 | 0.8 | [25] |
BDDE | SWV | 2–200 | 0.17 | [29] |
GCE-poly(ARS)MWCNTs | SWV | 8.0–160 | 5.0 | [45] |
GCE-SiO2/GO/Ni(OH)2 | DPV | 0.25–2.5 | 0.003 | [36] |
GCE-AuPd | DPV | 5.0–50 | 0.18 | [44] |
GCE-LaNiO3 | SWV | 0–26 | 0.83 | [37] |
GCE-BMC | Amperometry | 0.5–42 | 1.45 | [28] |
GCE-CuNPs-NiNPs@reduced-fullerene-C60 | SWV | 1.25–475 | 0.0025 | [46] |
GCE | SWV | 0.47–123 | 0.17 | This work |
SPCE | SWV | 59.4–1651 | 19.4 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonçalves, F.D.; Rodrigues, J.A.; Ramos, R.M. Electrochemical Sensing of Vitamin D3: A Comparative Use of Glassy Carbon and Unmodified Screen-Printed Carbon Electrodes. Chemosensors 2023, 11, 575. https://doi.org/10.3390/chemosensors11120575
Gonçalves FD, Rodrigues JA, Ramos RM. Electrochemical Sensing of Vitamin D3: A Comparative Use of Glassy Carbon and Unmodified Screen-Printed Carbon Electrodes. Chemosensors. 2023; 11(12):575. https://doi.org/10.3390/chemosensors11120575
Chicago/Turabian StyleGonçalves, Fátima Daniela, José António Rodrigues, and Rui Miguel Ramos. 2023. "Electrochemical Sensing of Vitamin D3: A Comparative Use of Glassy Carbon and Unmodified Screen-Printed Carbon Electrodes" Chemosensors 11, no. 12: 575. https://doi.org/10.3390/chemosensors11120575
APA StyleGonçalves, F. D., Rodrigues, J. A., & Ramos, R. M. (2023). Electrochemical Sensing of Vitamin D3: A Comparative Use of Glassy Carbon and Unmodified Screen-Printed Carbon Electrodes. Chemosensors, 11(12), 575. https://doi.org/10.3390/chemosensors11120575