New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites
Abstract
:1. Introduction
2. Methodology
3. Amperometric Gas Sensors (AGSs)
3.1. Working Principle
3.2. AGS with Various Electrolytes
3.3. AGSs with Room Temperature Ionic Liquids (RTILs)
3.4. AGSs with Various Catalysts
4. Atomic Metal Catalysts
4.1. Polyaniline (PANI)
4.2. Basic Theory of Atomic Gold Clusters
4.3. Atomic Gold Decorating PANI
5. Atomic Gold-Decorated Amperometric Sensor
6. Atomic Gold Decorating a Bulky Amperometric Gas Sensor (AGS)
6.1. Atomic Gold Deposition System for a Bulky AGS
6.2. Sensor Fabrication and Validation
6.3. Response to Propanol Isomers in Gaseous Phase
7. Atomic Gold Decorated Miniaturized Amperometric Gas Sensor (AGS)
7.1. A Miniaturized Amperometric Gas Sensor (AGS)
7.2. RTILs as Electrolytes
7.3. Atomic Gold Deposition System for the Miniaturized AGS System
7.4. Sensor Fabrication and Validation
7.5. Sensors Using RTIL to Develop a Miniaturized AGS
7.6. Response to Butanol Isomers in Gaseous Phase
8. Performance Enhancement of Miniaturized AGSs in the Future
- 1.
- A slow diffusion transport.
- 2.
- The electrode.The miniaturized AGS electrode must be redesigned to use a thin layer of RTIL. According to C.A. Gunawan et.al. and R. Gondosiswanto et.al. [25,26], a micro-electrode array type offered a higher sensitivity than the macro-electrode because it could form a thinner RTIL although it had a smaller area. There are several ways to make a micro-electrode array, for example by using partial printing in which a hydrophobic layer of 1-hexadecanethiol (HDT) was used to set a boundary between fingers. The boundary is important to keep a thin RTIL since the aggregation of RTILs between neighbours often occurs, forming a thick RTIL;
- 3.
- The density of atomic gold.As the WE area gets shrinkage in a miniaturized AGS, a high density of atomic gold is preferrable to achieve a high catalytic activity. To increase the density of atomic gold, a porous host matrix is preferrable. It is widely reported that using a porous PANI the atomic metal can be doped not only on the surface but also inside the PANI, and thus it can boost the catalytic activity [56,57]. In addition, a study regarding optimization of the atomic gold deposition process must be conducted, such as the flow rate and the concentration of the solution.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gas Sensor Market—By Product (Oxygen (O2)/Lambda Sensors, Carbon Dioxide (CO2) Sensors, Carbon Monoxide (CO) Sensors, NOx Sensors), By Technology (Electrochemical, Semiconductor, Solid State, PID, Catalytic, Infrared), By Connectivity, By Application & Forecast, 2023–2032. Available online: https://www.gminsights.com/industry-analysis/gas-sensors-market-size (accessed on 20 February 2023).
- Gas Sensors Market. Available online: https://www.marketsandmarkets.com/Market-Reports/gas-sensor-market-245141093.html (accessed on 20 February 2023).
- Gas Sensor Market, Global Industry Analysis, Size, Share, Growth, Trends, Regional Outlook, and Forecast 2023–2030. Available online: https://www.precedenceresearch.com/gas-sensor-market (accessed on 20 February 2023).
- Gas Sensor Market Size, Share & Trends Analysis Report by Product (Oxygen/Lambda Sensors, Carbon Dioxide Sensors), by Type (Wired, Wireless), by Technology, by End-Use, by Region, and Segment Forecasts, 2023–2030. Available online: https://www.grandviewresearch.com/industry-analysis/gas-sensors-market (accessed on 20 February 2023).
- Viciano-Tudela, S.; Sendra, S.; Parra, L.; Jimenez, J.M.; Lloret, J. Proposal of a Gas Sensor-Based Device for Detecting Adulteration in Essential Oil of Cistus Ladanifer. Sustainability 2023, 15, 3357. [Google Scholar] [CrossRef]
- Faricha, A. Miniaturized Amperometric Gas Sensor with Atomic Gold Decorated Polyaniline/Platinum Composites in Room Temperature Ionic Liquid Film. Ph.D. Thesis, Department of Information and Communications Engineering, Tokyo Institute of Technology, Tokyo, Japan, 2023. [Google Scholar]
- Kuretake, T.; Kawahara, S.; Motooka, M.; Uno, S. An Electrochemical Gas Biosensor Based on Enzymes Immobilized on Chromatography Paper for Ethanol Vapor Detection. Sensors 2017, 17, 281. [Google Scholar] [CrossRef]
- Wei-Hao Li, M.; Ghosh, A.; Venkatasubramanian, A.; Sharma, R.; Huang, X.; Fan, X. High-Sensitivity Micro-Gas Chromatograph-Photoionization Detector for Trace Vapor Detection. ACS Sens. 2021, 6, 2348–2355. [Google Scholar] [CrossRef]
- Zimmer, C.M.; Kallis, K.T.; Giebel, F.J. Micro-Structured Electron Accelerator for the Mobile Gas Ionization Sensor Technology. J. Sens. Sens. Syst. 2015, 4, 151–157. [Google Scholar] [CrossRef]
- Stetter, J.R.; Li, J. Amperometric Gas Sensors—A Review. Chem. Rev. 2008, 108, 352–366. [Google Scholar] [CrossRef]
- Saheb, A.H. Sensing Materials Based on Ionic Liquids. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, USA, 30 June 2008. [Google Scholar]
- Jonke, A.P.; Josowicz, M.; Janata, J. Polyaniline Doped with Atomic Gold. J. Electrochem. Soc. 2011, 158, E147. [Google Scholar] [CrossRef]
- Jonke, A.P.; Josowicz, M.; Janata, J. Polyaniline Electrodes Containing Tri-Atomic Au/Pd Clusters: Effect of Ordering. Catal. Letters 2013, 143, 1261–1265. [Google Scholar] [CrossRef]
- Jonke, A.P.; Josowicz, M.; Janata, J. Odd-Even Pattern Observed in Polyaniline/(Au 0–Au 8) Composites. J. Electrochem. Soc. 2012, 159, P40–P43. [Google Scholar] [CrossRef]
- Tsukuda, T. Toward an Atomic-Level Understanding of Size-Specific Properties of Protected and Stabilized Gold Clusters. Bull. Chem. Soc. Jpn. 2012, 85, 151–168. [Google Scholar] [CrossRef]
- Bayatsarmadi, B.; Zheng, Y.; Vasileff, A.; Qiao, S.Z. Recent Advances in Atomic Metal Doping of Carbon-Based Nanomaterials for Energy Conversion. Small 2017, 13, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Korotcenkov, G.; Brinzari, V.; Cho, B.K. Conductometric Gas Sensors Based on Metal Oxides Modified with Gold Nanoparticles: A Review. Microchim. Acta 2016, 183, 1033–1054. [Google Scholar] [CrossRef]
- Sun, Y.F.; Liu, S.B.; Meng, F.L.; Liu, J.Y.; Jin, Z.; Kong, L.T.; Liu, J.H. Metal Oxide Nanostructures and Their Gas Sensing Properties: A Review. Sensors 2012, 12, 2610–2631. [Google Scholar] [CrossRef] [PubMed]
- Zhu, L.Y.; Ou, L.X.; Mao, L.W.; Wu, X.Y.; Liu, Y.P.; Lu, H.L. Advances in Noble Metal-Decorated Metal Oxide Nanomaterials for Chemiresistive Gas Sensors: Overview; Springer Nature: Singapore, 2023; Volume 15, ISBN 0123456789. [Google Scholar]
- Liu, L.; Wang, Y.; Liu, Y.; Wang, S.; Li, T.; Feng, S.; Qin, S.; Zhang, T. Heteronanostructural Metal Oxide-Based Gas Microsensors. Microsystems Nanoeng. 2022, 8, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Song, E.; Choi, J.W. Conducting Polyaniline Nanowire and Its Applications in Chemiresistive Sensing. Nanomaterials 2013, 3, 498–523. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, I.T.; Jonke, A.P.; Josowicz, M.; Janata, J. Effect of Structured Atomic Gold on Electrooxidation of Alcohols in Alkaline Medium. Catal. Letters 2013, 143, 777–782. [Google Scholar] [CrossRef]
- Chakraborty, P.; Chien, Y.A.; Chiu, W.T.; Chang, T.F.M.; Sone, M.; Nakamoto, T.; Josowicz, M.; Janata, J. Design and Development of Amperometric Gas Sensor with Atomic Au-Polyaniline/Pt Composite. IEEE Sens. J. 2020, 20, 12479–12487. [Google Scholar] [CrossRef]
- Chakraborty, P. Amperometric Gas Sensor with Atomic Gold Decorated Polyaniline-Platinum Composite. Ph.D Thesis, Department of Information and Communications Engineering, Tokyo Institute of Technology, Tokyo, Japan, 2020. [Google Scholar]
- Chakraborty, P.; Faricha, A.; Okamoto, K.; Kawakami, H.; Chang, T.-F.M.; Sone, M.; Nakamoto, T. Towards Planar Atomic-Gold Decorated Polyaniline Gas Sensors for Enhanced Electrochemical Sensing. IEEE Sens. J. 2023, 23, 6481–6488. [Google Scholar] [CrossRef]
- Chakraborty, P.; Chien, Y.A.; Chang, T.F.M.; Sone, M.; Nakamoto, T. Indirect Sensing of Lower Aliphatic Ester Using Atomic Gold Decorated Polyaniline Electrode. Sensors 2020, 20, 3640. [Google Scholar] [CrossRef]
- Faricha, A.; Yoshida, S.; Chakraborty, P.; Okamoto, K.; Chang, T.F.M.; Sone, M.; Nakamoto, T. Array of Miniaturized Amperometric Gas Sensors Using Atomic Gold Decorated Pt/PANI Electrodes in Room Temperature Ionic Liquid Films. Sensors 2023, 23, 4132. [Google Scholar] [CrossRef]
- Paul, A.; Muthukumar, S.; Prasad, S. Review—Room-Temperature Ionic Liquids for Electrochemical Application with Special Focus on Gas Sensors. J. Electrochem. Soc. 2020, 167, 037511. [Google Scholar] [CrossRef]
- Gunawan, C.A.; Ge, M.; Zhao, C. Robust and Versatile Ionic Liquid Microarrays Achieved by Microcontact Printing. Nat. Commun. 2014, 5, 3744. [Google Scholar] [CrossRef] [PubMed]
- Gondosiswanto, R.; Hibbert, D.B.; Fang, Y.; Zhao, C. Redox Recycling Amplification Using an Interdigitated Microelectrode Array for Ionic Liquid-Based Oxygen Sensors. Anal. Chem. 2018, 90, 3950–3957. [Google Scholar] [CrossRef] [PubMed]
- Plechkova, N.V.; Seddon, K.R. Applications of Ionic Liquids in the Chemical Industry. Chem. Soc. Rev. 2008, 37, 123–150. [Google Scholar] [CrossRef] [PubMed]
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured Metal Oxide-Based Acetone Gas Sensors: A Review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef] [PubMed]
- Jia, Y.; He, L.; Guo, Z.; Chen, X.; Meng, F.; Luo, T.; Li, M.; Liu, J. Preparation of Porous Tin Oxide Nanotubes Using Carbon Nanotubes as Templates and Their Gas-Sensing Properties. J. Phys. Chem. C 2009, 113, 9581–9587. [Google Scholar] [CrossRef]
- Imae, T.; Rahmawati, A.; Berhe, A.M.; Kebede, M.A. Au Quantum Clusters and Plasmonic Quantum Nanoparticles Synthesized under Femtosecond-Pulse Laser Irradiation in Aqueous Solution and in ZIF-8 for Catalytic Reduction of 4-Nitrophenol. ACS Appl. Nano Mater. 2022, 5, 16842–16852. [Google Scholar] [CrossRef]
- Liu, L.; Corma, A. Metal Catalysts for Heterogeneous Catalysis: From Single Atoms to Nanoclusters and Nanoparticles. Chem. Rev. 2018, 118, 4981–5079. [Google Scholar] [CrossRef]
- Zare, E.N.; Makvandi, P.; Ashtari, B.; Rossi, F.; Motahari, A.; Perale, G. Progress in Conductive Polyaniline-Based Nanocomposites for Biomedical Applications: A Review. J. Med. Chem. 2020, 63, 1–22. [Google Scholar] [CrossRef]
- Chani, M.T.S.; Karimov, K.S.; Khalid, F.A.; Moiz, S.A. Polyaniline Based Impedance Humidity Sensors. Solid State Sci. 2013, 18, 78–82. [Google Scholar] [CrossRef]
- Janata, J.; Nakamoto, T. Vision of New Olfactory Sensing Array. IEEJ Trans. Electr. Electron. Eng. 2016, 11, 261–267. [Google Scholar] [CrossRef]
- Chakraborty, P.; Kawakami, H.; Faricha, A.; Chang, T.-F.M.; Sone, M.; Nakamoto, T. Polyaniline-Atomic Au Modified Platinum Electrode with Ionic Liquid as Configuration for Enhanced Electrochemical Sensing. In Proceedings of the 2021 IEEE Sensors, Sydney, Australia, 31 October–3 November 2021; pp. 1–4. [Google Scholar]
- Faricha, A.; Chakraborty, P.; Okamoto, K.; Chang, T.F.M.; Sone, M.; Nakamoto, T. Microgravimetric and Amperometric Sensor Coated with Room Temperature Ionic Liquid to Enhance Butanol Isomers Gas Separation. IEEE Sens. J. 2022, 22, 24471–24478. [Google Scholar] [CrossRef]
- Figaro 5042. Available online: https://www.figarosensor.com/product/docs/tgs5042_productinfomation%28fusa%29_rev07.pdf (accessed on 20 June 2023).
- Alphasense. Available online: https://cdn.shopify.com/s/files/1/0406/7681/files/DataSheet-AlphaSense-O2-A3-Oxygen-Sensor.pdf?v=1621008788 (accessed on 20 June 2023).
- Alphasense O2. Available online: https://www.alphasense.com/leak-free-o2/ (accessed on 20 June 2023).
- Hayes, R.; Warr, G.G.; Atkin, R. Structure and Nanostructure in Ionic Liquids. Chem. Rev. 2015, 115, 6357–6426. [Google Scholar] [CrossRef]
- McFarlane, D.R.; Sun, J.; Golding, J.; Meakin, P.; Forsyth, M. High Conductivity Molten Salts Based on the Imide Ion. Electrochim. Acta 2000, 45, 1271–1278. [Google Scholar] [CrossRef]
- Manna, S.S.; Bhauriyal, P.; Pathak, B. Identifying Suitable Ionic Liquid Electrolytes for Al Dual-Ion Batteries: Role of Electrochemical Window, Conductivity and Voltage. Mater. Adv. 2020, 1, 1354–1363. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, C.; Brennecke, J.F.; Maginn, E.J. Refined Method for Predicting Electrochemical Windows of Ionic Liquids and Experimental Validation Studies. J. Phys. Chem. B 2014, 118, 6250–6255. [Google Scholar] [CrossRef] [PubMed]
- O’Mahony, A.M.; Silvester, D.S.; Aldous, L.; Hardacre, C.; Compton, R.G. Effect of Water on the Electrochemical Window and Potential Limits of Room-Temperature Ionic Liquids. J. Chem. Eng. Data 2008, 53, 2884–2891. [Google Scholar] [CrossRef]
- Melián-Cabrera, I. Catalytic Materials: Concepts To Understand the Pathway to Implementation. Ind. Eng. Chem. Res. 2021, 60, 18545–18559. [Google Scholar] [CrossRef]
- Saheb, A.; Smith, J.A.; Josowicz, M.; Janata, J.; Baer, D.R.; Engelhard, M.H. Controlling Size of Gold Clusters in Polyaniline from Top-down and from Bottom-Up. J. Electroanal. Chem. 2008, 621, 238–244. [Google Scholar] [CrossRef]
- Fernández, E.M.; Soler, J.M.; Garzón, I.L.; Balbás, L.C. Trends in the Structure and Bonding of Noble Metal Clusters. Phys. Rev. B-Condens. Matter Mater. Phys. 2004, 70, 165403. [Google Scholar] [CrossRef]
- Häkkinen, H.; Landman, U. Gold Clusters and Their Anions. Phys. Rev. B-Condens. Matter Mater. Phys. 2000, 62, R2287–R2290. [Google Scholar] [CrossRef]
- Schwartz, I.; Jonke, A.P.; Josowicz, M.; Janata, J. Polyaniline-Supported Atomic Gold Electrodes: Comparison with Macro Electrodes. Catal. Lett. 2012, 142, 1344–1351. [Google Scholar] [CrossRef]
- Songkhla, S.N.; Nakamoto, T. Overview of Quartz Crystal Microbalance Behavior Analysis and Measurement. Chemosensors 2021, 9, 350. [Google Scholar] [CrossRef]
- Aleixandre, M.; Nakamoto, T. Study of Room Temperature Ionic Liquids as Gas Sensing Materials in Quartz Crystal Microbalances. Sensors 2020, 20, 4026. [Google Scholar] [CrossRef] [PubMed]
- He, L.; Jia, Y.; Meng, F.; Li, M.; Liu, J. Development of Sensors Based on CuO-Doped SnO2 Hollow Spheres for Ppb Level H2S Gas Sensing. J. Mater. Sci. 2009, 44, 4326–4333. [Google Scholar] [CrossRef]
- Oh, J.; Kim, Y.K.; Lee, J.S.; Jang, J. Highly Porous Structured Polyaniline Nanocomposites for Scalable and Flexible High-Performance Supercapacitors. Nanoscale 2019, 11, 6462–6470. [Google Scholar] [CrossRef] [PubMed]
- Nozaki, Y.; Nakamoto, T. An Olfactory Sensor Array for Predicting Chemical Odor Characteristics from Mass Spectra with Deep Learning. In Methods Molecular Biology; Humana: New York, NY, USA, 2019; Volume 2027, pp. 29–47. [Google Scholar] [CrossRef]
- Tan, J.; Xu, J. Applications of Electronic Nose (e-Nose) and Electronic Tongue (e-Tongue) in Food Quality-Related Properties Determination: A Review. Artif. Intell. Agric. 2020, 4, 104–115. [Google Scholar] [CrossRef]
- Nakamoto, T. Human Olfactory Displays and Interfaces: Odor Sensing and Presentation; IGI Global: Hershey, PA, USA, 2012. [Google Scholar]
No. | Year [Ref] | Keywords |
---|---|---|
1. | 2008 [10] | Amperometric Gas Sensor (AGS) |
2. | 2008 [10] | Electrolytes for AGS |
3. | 2020 [28], 2018 [30], 2014 [29], 2008 [11,31] | Room temperature ionic liquid in AGS |
4. | 2023 [19], 2022 [20], 2020 [32], 2017 [7], 2012 [18], 2010 [33] | Catalysts for AGS, i.e., biological elements, metal oxide nanostructures, metal nanoparticles, atomic metal |
5. | 2022 [34], 2018 [35], 2012 [15] | Atomic metal catalyst |
6. | 2020 [36], 2013 [21,37] | Polyaniline (PANI) |
7. | 2011 [12], 2012 [14], 2013 [22], 2016 [38], 2020 [23,26] | Atomic gold decorating PANI for amperometric sensors |
8. | 2008 [11], 2021 [39], 2023 [25] | Atomic gold with RTIL for AGS |
AGS System | Year [Ref.] | Summary |
---|---|---|
Bulky AGS system | 2020 [23] |
|
2020 [26] |
| |
Miniaturized AGS system | 2021–2023 [25,39] |
|
2022–2023 [6,27,40] |
|
Catalyst | Benefits | Drawbacks | Ref. |
---|---|---|---|
| high selectivity | short lifetime and slow response time | [7] |
| the sensitivity can be improved by modifying the morphology; a high surface-to-volume ratio can be achieved by making a porous structure | the catalytic activity is still considered low; hence, the metal NPs are frequently added | [18,19,21,28,29] |
| high catalytic activity and sensitivity | requires a proper host matrix; the selectivity is low for isomeric compounds | [19] |
| remarkable catalytic activity, a high selectivity and sensitivity, capable of distinguishing isomeric compounds | long process; image-based validation (like SEM and TEM) has not been conducted yet due to resolution limits, particularly for atomic gold doped in PANI | [12,13,14,34,50] |
Identifier | CAS Number | Full Name | Viscosity, η (P a s) | Density, (Kg/m3) | Conductivity, κ (S/m) | EC Window (V) |
---|---|---|---|---|---|---|
[EMIM] [Ac] | 143314-17-4 | 1-ethyl-3-methylimidazolium acetate | 0.143 | 1099.3 | 0.2 | −2.3 to +0.9 |
[EMIM] [Otf] | 145022-44-2 | 1-ethyl-3-methylimidazolium trifluoromethanesulfonate | 0.042 | 1385.9 | 0.9 | 4.3 |
[EMIM] [Cl] | 65039-09-0 | 1-ethyl-3-methylimidazolium chloride | 0.047 (a) | 1112 (a) | 0.108 | - |
Identifier | QCM Coating Information | |||||
---|---|---|---|---|---|---|
Solvent | Concentration (mg/mL) | Pull-Up Speed (µm/s) | ΔF (Hz) | ΔM (µg) | d (nm) | |
[EMIM][Ac] | Acetone | 10 | 1000 | 435 | 0.46 | 17.12 |
[EMIM][Otf] | Acetone | 9.09 | 1000 | 577 | 0.62 | 28.50 |
[EMIM][Cl] | Acetonitrile | 9.09 | 100 | 872 | 0.93 | 33.09 |
QCM’s Coating Information | ||||
---|---|---|---|---|
Identifier | ΔF (Hz) | ΔR (Ω) | ΔM (µg) | d (nm) |
[EMIM][Ac] | 5206.089 | 883.77 | 5.5 | 516.91 |
[EMIM][Otf] | 5921.939 | 945.09 | 6.3 | 467.36 |
[EMIM][Cl] | 2186.273 | 871.9 | 2.3 | 215.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Faricha, A.; Chakraborty, P.; Chang, T.-F.M.; Sone, M.; Nakamoto, T. New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites. Chemosensors 2024, 12, 27. https://doi.org/10.3390/chemosensors12020027
Faricha A, Chakraborty P, Chang T-FM, Sone M, Nakamoto T. New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites. Chemosensors. 2024; 12(2):27. https://doi.org/10.3390/chemosensors12020027
Chicago/Turabian StyleFaricha, Anifatul, Parthojit Chakraborty, Tso-Fu Mark Chang, Masato Sone, and Takamichi Nakamoto. 2024. "New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites" Chemosensors 12, no. 2: 27. https://doi.org/10.3390/chemosensors12020027
APA StyleFaricha, A., Chakraborty, P., Chang, T. -F. M., Sone, M., & Nakamoto, T. (2024). New Trend of Amperometric Gas Sensors Using Atomic Gold-Decorated Platinum/Polyaniline Composites. Chemosensors, 12(2), 27. https://doi.org/10.3390/chemosensors12020027