SIFT-MS: Quantifying the Volatiles You Smell…and the Toxics You Don’t
Abstract
:1. Introduction
2. The SIFT-MS Technique—An Overview
2.1. Instrument Overview
2.2. Breadth of Analysis
2.3. Specificity of Analysis
2.4. Quantitation in SIFT-MS
- TFT is the temperature in the flow tube in Kelvin (K)
- PFT is the pressure in the flow tube in torr
- kj is the rate coefficient for reaction of reagent ion Rj+ with the analyte (in cm3 molecule−1 s−1)
- tr is the reaction time (in seconds)
- φcarr is the carrier gas flow in torr L s−1
- φsamp is the sample flow in torr L s−1
- Pi+ is the primary product ion signal (in counts per second, cps) for primary product ion i counted by the particle multiplier detector
- TFProd(i) is the transmission factor for the primary product ion Pi+ (dimensionless)
- Pki+ is the secondary product ion signal (in cps) for secondary product ion k derived from primary product ion i
- TFProd(ki) is the transmission factor for the secondary product ion Pki+ (dimensionless)
- Rj+ is the reagent ion signal (in cps) for the injected reagent ion (j = 0) and its water cluster ions (if appropriate; j = 1, 2, 3)
- TFReag(j) is the transmission factor for the reagent ion Rj+ (dimensionless)
- bri is the branching ratio for primary product ion i (0 < i ≤ 1 for calculation purposes, but ordinarily tabulated as a percentage; see, e.g., Table 3).
- Instrument operating parameters: TFT, PFT, φcarr, and φsamp
- The instrument’s automated performance check on a certified gas standard: tr, TFProd(i), TFProd(ki), and TFReag(j)
- Software library: kj and bri (clearly, together with the m/z at which the relevant reagent and product ions will be located)
- Measurement of sample: Pi+, Pki+, and Rj+.
3. Quantification of the Volatiles You Smell
3.1. Breath Analysis
3.2. Food: Flavor and Fragrance
3.3. Materials and Packaging
3.4. Environment
4. Protection from the Toxic Volatiles You Do Not Smell
4.1. Occupational Safety and Health, and Indoor Air Quality
4.2. Environment
4.2.1. Air Quality Monitoring
4.2.2. Water
4.2.3. Soil
4.2.4. Microplastics
4.3. Pharmaceuticals, Personal Care Products, and Packaging
4.3.1. Pharmaceutical Products (Including Active Pharmaceutical Ingredients (APIs) and Excipients)
4.3.2. Personal Care Products
4.3.3. Packaging
5. Untargeted SIFT-MS Analysis: Parallels with Sensor Arrays
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dettmer-Wilde, K.; Engewald, W. Practical Gas Chromatography; Springer: Heidelberg, Germany, 2014; 902p. [Google Scholar]
- Fanali, S.; Haddad, P.R.; Poole, C.F.; Riekkola, M.-L. Liquid Chromatography: Fundamentals and Instrumentation, 2nd ed.; Elsevier: Oxford, UK, 2017; 784p. [Google Scholar]
- Taylor, A.J.; Beauchamp, J.D.; Langford, V.S. Non-destructive and high-throughput–APCI-MS, PTR-MS and SIFT-MS as methods of choice for exploring flavor release. In Dynamic Flavor: Capturing Aroma Release using Real-Time Mass Spectrometry; Beauchamp, J.D., Ed.; American Chemical Society: Washington, DC, USA, 2021; pp. 1–16. [Google Scholar] [CrossRef]
- McEwan, M.J. Direct analysis mass spectrometry. In Ion Molecule Attachment Reactions: Mass Spectrometry; Fujii, T., Ed.; Springer: New York, NY, USA, 2015; pp. 263–317. [Google Scholar]
- Perkins, M.J.; Langford, V.S. Application of routine analysis procedures to a direct mass spectrometry technique: Selected ion flow tube mass spectrometry (SIFT-MS). Rev. Sep. Sci. 2021, 3, e21003. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Selected ion flow tube mass spectrometry (SIFT-MS) for on-line trace gas analysis. Mass Spectrom. Rev. 2005, 24, 661–700. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; McEwan, M.J.; Španěl, P. Understanding gas phase ion chemistry is the key to reliable selected ion flow tube-mass spectrometry analyses. Anal. Chem. 2020, 92, 12750–12762. [Google Scholar] [CrossRef] [PubMed]
- Guthrie, B. Machine olfaction. In Springer Handbook of Odor; Buettner, A., Ed.; Springer: Cham, Switzerland, 2017; pp. 459–504. [Google Scholar]
- Španěl, P.; Smith, D. Progress in SIFT-MS: Breath analysis and other applications. Mass Spectrom. Rev. 2011, 30, 236–267. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Španěl, P.; Demarais, N.; Langford, V.S.; McEwan, M.J. Recent developments and applications of selected ion flow tube mass spectrometry, SIFT-MS. Mass Spec. Rev. 2023, e21835. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with several amines and some other nitrogen-containing molecules. Int. J. Mass Spectrom. 1998, 176, 203–211. [Google Scholar] [CrossRef]
- Smith, D.; Bloor, R.; George, C.; Pysanenko, A.; Španěl, P. Release of toxic ammonia and volatile organic compounds by heated cannabis and their relation to tetrahydrocannabinol content. Anal. Methods 2015, 7, 4104–4110. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. SIFT studies of the reactions of H3O+, NO+ and O2+ with several aromatic and aliphatic hydrocarbons. Int. J. Mass Spectrom. 1998, 181, 1–10. [Google Scholar] [CrossRef]
- Španěl, P.; Ji, Y.; Smith, D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of aldehydes and ketones. Int. J. Mass Spectrom. Ion Process. 1997, 165, 25–37. [Google Scholar] [CrossRef]
- Williams, T.L.; Adams, N.G.; Babcock, L.M. Selected ion flow tube studies of H3O+(H2O)0.1 reactions with sulfides and thiols. Int. J. Mass Spectrom. 1998, 172, 149–159. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with some organosulphur molecules. Int. J. Mass Spectrom. 1998, 176, 167–176. [Google Scholar] [CrossRef]
- LabSyft Software: Compound Library; Syft Technologies Limited: Christchurch, New Zealand, 2017.
- Španěl, P.; Smith, D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of alcohols. Int. J. Mass Spectrom. Ion Process. 1997, 167, 375–388. [Google Scholar] [CrossRef]
- Guo, Y.; Grabowski, J.J. Mechanistic insight into the reactions of O− with aromatic compounds and the synthesis of didehydroaromatic anions in the gas phase. Int. J. Mass Spectrom. Ion Process. 1992, 117, 299–326. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Selected ion flow tube studies of the reactions of H3O+, NO+, and O2+ with several aromatic and aliphatic monosubstituted halocarbons. Int. J. Mass Spectrom. 1999, 189, 213–223. [Google Scholar] [CrossRef]
- Thomas, R.; Liu, Y.; Mayhew, C.A.; Peverall, R. Selected ion flow tube studies of the gas phase reactions of O−, O2− and OH− with a variety of brominated compounds. Int. J. Mass Spectrom. Ion Process. 1996, 155, 163–183. [Google Scholar] [CrossRef]
- Fehsenfeld, F.C.; Ferguson, E.E. Laboratory studies of negative ion reactions with atmospheric trace constituents. J. Chem. Phys. 1974, 61, 3181–3193. [Google Scholar] [CrossRef]
- Fahey, D.W.; Böhringer, H.; Fehsenfeld, F.C.; Ferguson, E.E. Reaction rate constants for O2−(H2O)n ions n = 0–4 with O3, NO, SO2 and CO2. J. Chem. Phys. 1982, 76, 1799–1805. [Google Scholar] [CrossRef]
- Smith, D.; Pysanenko, A.; Španěl, P. The quantification of carbon dioxide in humid air and exhaled breath by selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2009, 23, 1419–1425. [Google Scholar] [CrossRef]
- Hera, D.; Langford, V.S.; McEwan, M.J.; McKellar, T.I.; Milligan, D.B. Negative reagent ions for real time detection using SIFT-MS. Environments 2017, 4, 16. [Google Scholar] [CrossRef]
- Böhringer, H.; Fahey, D.W.; Fehsenfeld, F.C.; Ferguson, E.E. Temperature dependence of the three-body association of Cl−, NO2−, and NO3− with SO2. J. Chem. Phys. 1984, 81, 2696–2698. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Understanding Global Warming Potentials. Available online: https://www.epa.gov/ghgemissions/understanding-global-warming-potentials (accessed on 17 January 2023).
- Wilson, P.F.; Freeman, C.G.; McEwan, M.J. Reactions of small hydrocarbons with H3O+, O2+ and NO+ ions. Int. J. Mass Spectrom. 2003, 229, 143–149. [Google Scholar] [CrossRef]
- Dryahina, K.; Smith, D.; Španěl, P. Quantification of methane in humid air and exhaled breath using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2010, 24, 1296–1304. [Google Scholar] [CrossRef]
- Ikezoe, Y.; Matsuoka, S.; Takebe, M.; Viggiano, A.A. Gas Phase Reaction Rate Constants through 1986; Maruzen: Tokyo, Japan, 1987. [Google Scholar]
- Kao, L.W.; Kristine, A.; Nañagas, K.A. Toxicity associated with carbon monoxide. Clin. Lab. Med. 2006, 26, 99–125. [Google Scholar] [CrossRef] [PubMed]
- Reineccius, G. Flavor Chemistry and Technology; CRC Press: Boca Raton, FL, USA, 2006; p. 63. [Google Scholar]
- Langford, V.S.; Padayachee, D.; McEwan, M.J.; Barringer, S.A. Comprehensive odorant analysis for on-line applications using selected ion flow tube mass spectrometry (SIFT-MS). Flavour Fragr. J. 2019, 34, 393–410. [Google Scholar] [CrossRef]
- Lehnert, A.-S.; Perreca, E.; Gershenzon, J.; Pohnert, G.; Trumbore, S.E. Simultaneous real-time measurement of isoprene and 2-methyl-3-buten-2-ol emissions from trees using SIFT-MS. Front. Plant Sci. 2020, 11, 578204. [Google Scholar] [CrossRef]
- Allpress, C.; Crittenden, D.; Ma, J.; McEwan, M.; Robinson, S.; Wilson, P.; Wu, M. Real-time differentiation of ethylbenzene and the xylenes using selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2019, 33, 1844–1849. [Google Scholar] [CrossRef]
- Perkins, M.J.; Langford, V.S. Application of headspace-SIFT-MS to direct analysis of hazardous volatiles in drinking water. Environments 2022, 9, 124. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Influence of water vapour on SIFT-MS analyses of trace gases in humid air and breath. Rapid Commun. Mass Spectrom. 2000, 14, 1898–1906. [Google Scholar] [CrossRef]
- Španěl, P.; Dryahina, K.; Smith, D. A general method for the calculation of absolute trace gas concentrations in air and breath from selected ion flow tube mass spectrometry data. Int. J. Mass Spectrom. 2006, 249, 230–239. [Google Scholar] [CrossRef]
- LabSyft Software, Version 1.0 and Above; Syft Technologies Limited: Christchurch, New Zealand. Available online: www.syft.com (accessed on 15 January 2023).
- Langford, V.S.; Graves, I.; McEwan, M.J. Rapid monitoring of volatile organic compounds: A comparison between gas chromatography/mass spectrometry and selected ion flow tube mass spectrometry. Rapid Commun. Mass Spectrom. 2014, 28, 10–18. [Google Scholar] [CrossRef]
- Hastie, C.; Thompson, A.; Perkins, M.J.; Langford, V.S.; Eddleston, M.; Homer, N. Selected ion flow tube-mass spectrometry (SIFT-MS) as an alternative to gas chromatography/mass spectrometry (GC/MS) for the analysis of cyclohexanone and cyclohexanol in plasma. ACS Omega 2021, 6, 32818–32822. [Google Scholar] [CrossRef] [PubMed]
- Kaus, C. Method Development for Continuous Monitoring of Selected VOC Test Gases by GC and SIFT-MS and Its Use for Verifying a New Dosing System for Test Gas Generation. Ph.D. Dissertation, University of Wuppertal, Wuppertal, Germany, 2021. [Google Scholar] [CrossRef]
- Perkins, M.J.; Langford, V.S. Standard validation protocol for selected ion flow tube mass spectrometry methods applied to direct headspace analysis of aqueous volatile organic compounds. Anal. Chem. 2021, 93, 8386–8392. [Google Scholar] [CrossRef] [PubMed]
- Biba, E.; Perkins, M.J.; Langford, V.S. Stimuli to the Revision Process: High-throughput residual solvent analysis using selected ion flow tube mass spectrometry (SIFT-MS). United States Pharmacopeia. Pharm. Forum 2021, 47, 1. Available online: https://online.usppf.com/usppf/document/GUID-2EE1BF6B-C82B-4F11-8E0B-C5520A4E8C3D_10101_en-US (accessed on 15 January 2023).
- Prince, B.J.; Milligan, D.B.; McEwan, M.J. Application of selected ion flow tube mass spectrometry to real-time atmospheric monitoring. Rapid Commun. Mass Spectrom. 2010, 24, 1763–1769. [Google Scholar] [CrossRef]
- Braithwaite, S.K. Sensory Analysis and Health Risk Assessment of Environmental Odors. Ph.D. Thesis, University of California-Los Angeles, Los Angeles, CA, USA, 2019. Available online: https://escholarship.org/uc/item/21g660d3 (accessed on 10 January 2023).
- Manolis, A. The diagnostic potential of breath analysis. Clin. Chem. 2003, 29, 5–15. [Google Scholar] [CrossRef]
- Teranish, R.; Robinson, A.B.; Cary, P.; Mon, T.R.; Pauling, L. Gas-chromatography of volatiles from breath and urine. Anal. Chem. 1972, 44, 18–20. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. Selected ion flow tube: A technique for quantitative trace gas analysis of air and breath. Med. Biol. Eng. Comput. 1996, 34, 409–419. [Google Scholar] [CrossRef] [PubMed]
- Smith, D.; Španěl, P. Application of ion chemistry and the SIFT technique to the quantitative analysis of trace gases in air and on breath. Int. Rev. Phys. Chem. 1996, 15, 231–271. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. On the features, successes and challenges of selected ion flow tube mass spectrometry. Eur. J. Mass Spectrom. 2013, 19, 225–246. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P. Status of selected ion flow tube MS: Accomplishments and challenges in breath analysis and other areas. Bioanalysis 2016, 8, 1183–1201. [Google Scholar] [CrossRef]
- Španěl, P.; Dryahina, K.; Smith, D. A quantitative study of the influence of inhaled compounds on their concentrations in exhaled breath. J. Breath Res. 2013, 7, 017106. [Google Scholar] [CrossRef] [PubMed]
- Storer, M.; Dummer, J.; Sturney, S.; Epton, M. Validating SIFT-MS analysis of volatiles in breath. Curr. Anal. Chem. 2013, 9, 576–583. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P.; Herbig, J.; Beauchamp, J. Mass spectrometry for real-time quantitative breath analysis. J. Breath Res. 2014, 8, 027101. [Google Scholar] [CrossRef]
- Belluomo, I.; Boshier, P.R.; Myridakis, A.; Vadhwana, B.; Markar, S.R.; Španěl, P.; Hanna, G.B. Selected ion flow tube mass spectrometry for targeted analysis of volatile organic compounds in human breath. Nat. Protoc. 2021, 16, 3419–3438. [Google Scholar] [CrossRef]
- Saad, S.; (University of the West of England, Bristol, UK). Personal communication, 2022.
- Saad, S.; Hewett, K.; Greenman, J. Effect of mouth-rinse formulations on oral malodour processes in tongue-derived perfusion biofilm model. J. Breath Res. 2012, 6, 016001. [Google Scholar] [CrossRef]
- Saad, S.; Fitzgerald, M.; Hewett, K.; Greenman, J.; Vandeven, M.; Trivedi, H.M.; Masters, J.G. Short- and long-term effects of a dentifrice containing dual zinc plus arginine on intra-oral halitosis: Improvements in breath quality. J. Clin. Dent. 2018, 29, A46–A54. [Google Scholar]
- Smith, D.; Wang, T.; Pysanenko, A.; Španěl, P. A selected ion flow tube mass spectrometry study of ammonia in mouth- and nose-exhaled breath and in the oral cavity. Rapid Commun. Mass Spectrom. 2008, 22, 783–789. [Google Scholar] [CrossRef]
- Pysanenko, A.; Španěl, P.; Smith, D. A study of sulfur-containing compounds in mouth- and nose-exhaled breath and in the oral cavity using selected ion flow tube mass spectrometry. J. Breath Res. 2008, 2, 046004. [Google Scholar] [CrossRef]
- Padayachee, D.; Langford, V.S. SIFTing through flavor—Exploring real-time, real-life processes using SIFT-MS. In Dynamic Flavor: Capturing Aroma Release using Real-Time Mass Spectrometry; Beauchamp, J.D., Ed.; American Chemical Society: Washington, DC, USA, 2021; pp. 51–65. [Google Scholar] [CrossRef]
- Barringer, S. From mold worms to fake honey: Using SIFT-MS to improve food quality. In Dynamic Flavor: Capturing Aroma Release using Real-Time Mass Spectrometry; Beauchamp, J.D., Ed.; American Chemical Society: Washington, DC, USA, 2021; pp. 99–105. [Google Scholar] [CrossRef]
- Wood, J.E.; Gill, B.D.; Longstaff, W.M.; Crawford, R.A.; Indyk, H.E.; Kissling, R.C.; Lin, Y.-H.; Bergonia, C.; Davis, L.M.; Matuszek, A. Dairy product quality using screening of aroma compounds by selected ion flow tube-mass spectrometry: A chemometric approach. Int. Dairy J. 2021, 121, 105107. [Google Scholar] [CrossRef]
- Langford, V.S.; Du Bruyn, C.; Padayachee, D. An evaluation of selected ion flow tube mass spectrometry for rapid instrumental determination of paper type, origin and sensory attributes. Packag. Technol. Sci. 2021, 34, 245–260. [Google Scholar] [CrossRef]
- Mannebeck, D. Olfactometers according to EN 13725. In Springer Handbook of Odor; Buettner, A., Ed.; Springer: Cham, Switzerland, 2017; pp. 545–551. [Google Scholar]
- Smith, D.; Van Doren, J.M.; Španěl, P. A selected ion flow tube study of the reactions of H3O+, NO+, and O2+ with saturated and unsaturated aldehydes and subsequent hydration of the product ions. Int. J. Mass Spectrom. 2002, 213, 163–176. [Google Scholar] [CrossRef]
- Michel, E.; Schoon, N.; Amelynck, C.; Guimbaud, C.; Catoire, V.; Arijs, E. A selected ion flow tube study of the reactions of H3O+, NO+ and O2+ with methyl vinyl ketone and some atmospherically important aldehydes. Int. J. Mass Spectrom. 2005, 244, 50–59. [Google Scholar] [CrossRef]
- Španěl, P.; Smith, D. SIFT studies of the reactions of H3O+, NO+ and O2+ with a series of volatile carboxylic acids and esters. Int. J. Mass Spectrom. Ion Process. 1998, 172, 137–147. [Google Scholar] [CrossRef]
- Smith, D.; Chippendale, T.W.E.; Španěl, P. Selected ion flow tube, SIFT, studies of the reactions of H3O+, NO+ and O2+ with some biologically active isobaric compounds in preparation for SIFT-MS analyses. Int. J. Mass Spectrom. 2011, 303, 81–89. [Google Scholar] [CrossRef]
- van Gemert, L.J. Odour Thresholds: Compilations of Odour Threshold Values in Air, Water and Other Media; Oliemans, Punter and Partners: Utrecht, The Netherlands, 2011. [Google Scholar]
- Langford, V.S.; Billiau, C.; McEwan, M.J. Evaluation of the efficacy of SIFT-MS for speciation of wastewater treatment plant odors in parallel with human sensory analysis. Environments 2020, 7, 90. [Google Scholar] [CrossRef]
- Van Huffel, K.; Heynderickx, P.M.; Dewulf, J.; Van Langenhove, H. Measurement of odorants in livestock buildings: SIFT-MS and TD-GC-MS. Chem. Eng. 2012, 30, 67–72. [Google Scholar] [CrossRef]
- Heynderickx, P.M.; Van Huffel, K.; Dewulf, J.; Van Langenhove, H. SIFT-MS for livestock emission characterization: Application of similarity coefficients. Chem. Eng. Trans. 2012, 30, 157–162. [Google Scholar] [CrossRef]
- Heynderickx, P.M.; Van Huffel, K.; Dewulf, J.; Van Langenhove, H. Application of similarity coefficients to SIFT-MS data for livestock emission characterization. Biosyst. Eng. 2013, 114, 44–54. [Google Scholar] [CrossRef]
- Volckaert, D.; Heynderickx, D.; Fathi, E.; Van Langenhove, H. SIFT-MS a logical tool for monitoring and evaluating a biofilter performance. In Proceedings of the Biotechniques for Air Pollution Control and Bioenergy (5th Conference), Nimes, France, 10−13 September 2013. [Google Scholar]
- Heynderickx, P.M.; Spanel, P.; Van Langenhove, H. Quantification of octanol–water partition coefficients of several aldehydes in a bubble column using selected ion flow tube mass spectrometry. Fluid Phase Equilibria 2014, 367, 22–28. [Google Scholar] [CrossRef]
- Bruneel, J.; Walgraeve, C.; Van Huffel, K.; Van Langenhove, H. Determination of the gas-to-liquid partitioning coefficients using a new dynamic absorption method (DynAb Method). Chem. Eng. J. 2016, 283, 544–552. [Google Scholar] [CrossRef]
- Walgraeve, C.; Bruneel, J.; Van Huffel, K.; Demeestere, K.; Vincze, L.; De Meulenaer, B.; Van Langenhove, H. Sorption behaviour of targeted volatile organic compounds on airborne particulate matter using selected ion flow tube mass spectrometry. Biosyst. Eng. 2015, 131, 84–94. [Google Scholar] [CrossRef]
- Volckaert, D.; Ebude, D.E.L.; Van Langenhove, H. SIFT-MS analysis of the removal of dimethyl sulphide, n-hexane and toluene from waste air by a two phase partitioning bioreactor. Chem. Eng. J. 2016, 290, 346–352. [Google Scholar] [CrossRef]
- Volckaert, D.; Heynderickx, P.M.; Fathi, E.; Van Langenhove, H. SIFT-MS a novel tool for monitoring and evaluating a biofilter performance. Chem. Eng. J. 2016, 304, 98–105. [Google Scholar] [CrossRef]
- Bruneel, J.; Walgraeve, C.; Dumortier, S.; Stockman, J.; Demeyer, P.; Van Langenhove, H. Increasing mass transfer of volatile organic compounds in air scrubbers: A fundamental study for different gas–liquid systems. J. Chem. Technol. Biotechnol. 2018, 93, 1468–2180. [Google Scholar] [CrossRef]
- Bruneel, J.; Walgraeve, C.; Demeyer, P.; Van Langenhove, H. Increasing mass transfer of volatile organic compounds in air scrubbers: Relation between partition coefficient and mass transfer coefficient in a pilot-scale scrubber. J. Chem. Technol. Biotechnol. 2018, 93, 2170–2180. [Google Scholar] [CrossRef]
- Bruneel, J.; Walgraeve, C.; Mukurarinda, J.; Boon, N.; Van Langenhove, H. Biofiltration of hexane, acetone and dimethyl sulphide using wood, compost and silicone foam. J. Chem. Technol. Biotechnol. 2018, 93, 2234–2243. [Google Scholar] [CrossRef]
- Bruneel, J.; Follert, J.L.H.; Laforce, B.; Vincze, L.; Van Langenhove, H.; Walgraeve, C. Dynamic performance of a fungal biofilter packed with perlite for the abatement of hexane polluted gas streams using SIFT-MS and packing characterization with advanced X-ray spectroscopy. Chemosphere 2020, 253, 126684. [Google Scholar] [CrossRef]
- Atzeni, M.; Langford, V.; Prince, B.; Mayer, D. Rapid Continuous Chemical Analysis of Meat Chicken Shed Emissions by SIFT–MS; Publication no. 16/052; Rural Industries Research and Development Corporation (Australian Government): Canberra, Australia, 2016. Available online: https://agrifutures.com.au/wp-content/uploads/publications/16-052.pdf (accessed on 14 January 2023).
- Sharma, N.K.; Choct, M.; Dunlop, M.W.; Wu, S.-B.; Castada, H.Z.; Swick, R.A. Characterisation and quantification of changes in odorants from litter headspace of meat chickens fed diets varying in protein levels and additives. Poult. Sci. 2017, 96, 851–860. [Google Scholar] [CrossRef]
- Sharma, N.K.; Keerqin, C.; Wu, S.-B.; Choct, M.; Swick, R.A. Emissions of volatile odorous metabolites by Clostridium perfringens-in vitro study using two broth cultures. Poult. Sci. 2017, 96, 3291–3297. [Google Scholar] [CrossRef]
- Son, H.D.; An, J.G.; Ha, S.Y.; Kim, G.B.; Yim, U.H. Development of real-time and simultaneous quantification of volatile organic compounds in ambient with SIFT-MS (selected ion flow tube-mass spectrometry). J. Korean Soc. Atmos. Environ. 2018, 34, 393–405. [Google Scholar] [CrossRef]
- Langford, V.S.; McEwan, M.J.; Askey, M.; Barnes, H.A.; Olerenshaw, J.G. Comprehensive instrumental odor analysis using SIFT-MS: A case study. Environments 2018, 5, 43. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Initial List of Hazardous Air Pollutants with Modifications. Available online: https://www.epa.gov/haps/initial-list-hazardous-air-pollutants-modifications (accessed on 10 January 2023).
- ⟨467⟩ Residual Solvents; United States Pharmacopeia: Rockville, MD, USA, 2019.
- ICH Q3C (R8) International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use (2021). Guideline for Residual Solvents: Q3C (R8) Step 5 Version (and Annexes There to). Available online: https://www.ema.europa.eu/en/ich-q3c-r8-residual-solvents (accessed on 10 January 2023).
- Španěl, P.; Rolfe, P.; Rajan, B.; Smith, D. The selected ion flow tube (SIFT)—A novel technique for biological monitoring. Ann. Occup. Hyg. 1996, 40, 615–626. [Google Scholar] [CrossRef] [PubMed]
- Španěl, P.; Cocker, J.; Rajan, B.; Smith, D. Validation of the SIFT technique for trace gas analysis of breath using the syringe injection technique. Ann. Occup. Hyg. 1997, 41, 373–382. [Google Scholar] [CrossRef]
- Smith, D.; Španěl, P.; Thompson, J.M.; Rajan, B.; Cocker, J.; Rolfe, P. The selected ion flow tube method for workplace analyses of trace gases in air and breath: Its scope, validation, and applications. Appl. Occup. Environ. Hyg. 1998, 13, 817–823. [Google Scholar] [CrossRef]
- Wilson, P.F.; Freeman, C.G.; McEwan, M.J.; Milligan, D.B.; Allardyce, R.A.; Shaw, G.M. Alcohol in breath and blood: A selected ion flow tube mass spectrometric study. Rapid Commun. Mass Spectrom. 2001, 15, 413–417. [Google Scholar] [CrossRef]
- Wilson, P.F.; McEwan, M.J.; Milligan, D.B.; Allardyce, R.A.; Shaw, G.M. Real time in vivo measurement of VOCs by SIFT-MS. In Proceedings of the American Society for Mass Spectrometry (ASMS) Conference, Chicago, IL, USA, 27–31 May 2001. [Google Scholar]
- Wilson, P.F.; Freeman, C.G.; McEwan, M.J.; Allardyce, R.A.; Shaw, G.M. SIFT-MS measurement of VOC distribution coefficients in human blood constituents and urine. Appl. Occup. Environ. Hyg. 2003, 18, 759–763. [Google Scholar] [CrossRef]
- Milligan, D.B.; Francis, G.J.; Prince, B.J.; McEwan, M.J. Demonstration of selected ion flow tube MS detection in the parts per trillion range. Anal. Chem. 2007, 79, 2537–2540. [Google Scholar] [CrossRef]
- Mück, O.; Stock, A. Occupational safety in import containers containing fumigants, other gases and volatile substances: Practical experiences. In Proceedings of the 9th. Int. Conf. on Controlled Atmosphere and Fumigation in Stored Products, Antalya, Türkiye, 15–19 October 2012; Available online: http://ftic.co.il/2012AntalyaPDF/SESSION%2002%20PAPER%2010.pdf (accessed on 16 January 2023).
- Hinz, R.; ‘t Mannetje, A.; Glass, B.; McLean, D.; Pearce, N.; Douwes, J. Exposures to fumigants and residual chemicals in workers handling cargo from shipping containers and export logs in New Zealand. Ann. Work. Expo. Health 2020, 64, 826–837. [Google Scholar] [CrossRef]
- Hinz, R.; ‘t Mannetje, A.; Glass, B.; McLean, D.; Douwes, J. Airborne fumigants and residual chemicals in shipping containers arriving in New Zealand. Ann. Work. Expo. Health 2022, 66, 481–494. [Google Scholar] [CrossRef]
- Anicich, V.G. Evaluated bimolecular ion-molecule gas phase kinetics of positive ions for use in modeling planetary atmospheres, cometary comae, and interstellar clouds. J. Phys. Chem. Ref. Data 1993, 22, 1469–1569. [Google Scholar] [CrossRef]
- Keer, S.; Taptiklis, P.; Glass, B.; McLean, D.; McGlothlin, J.D.; Douwes, J. Determinants of airborne solvent exposure in the collision repair industry. Ann. Work. Expo. Health 2018, 62, 871–883. [Google Scholar] [CrossRef]
- Doepke, A.; Streicher, R.P. Source apportionment and quantification of liquid and headspace leaks from closed system drug-transfer devices via selected ion flow tube mass spectrometry (SIFT-MS). PLoS ONE 2021, 16, e0258425. [Google Scholar] [CrossRef] [PubMed]
- Lehnert, A.S.; Behrendt, T.; Ruecker, A.; Pohnert, G.; Trumbore, S.E. SIFT-MS optimization for atmospheric trace gas measurements at varying humidity. Atmos. Meas. Tech. 2020, 13, 3507–3520. [Google Scholar] [CrossRef]
- Valisure, Inc. Citizen Petition on Benzene in Dry Shampoo Products (31 October 2022). Available online: https://assets-global.website-files.com/6215052733f8bb8fea016220/6360f7f49903987d8f4f4309_Valisure%20FDA%20Citizen%20Petition%20on%20Benzene%20in%20Dry%20Shampoo%20Products_103122.pdf (accessed on 14 January 2023).
- Yeoman, A.M.; Shaw, M.; Carslaw, N.; Murrells, T.; Passant, N.; Lewis, A.C. Simplified speciation and atmospheric volatile organic compounds emission rates from non-aerosol personal care products. Indoor Air 2020, 30, 459–472. [Google Scholar] [CrossRef]
- Yeoman, A.M.; Heeley-Hill, A.C.; Shaw, M.; Andrews, S.J.; Lewis, A.C. Inhalation of VOCs from facial moisturizers and the influence of dose proximity. Indoor Air 2022, 32, e12948. [Google Scholar] [CrossRef]
- Harding-Smith, E.; O’Leary, C.; Shaw, M.; Carslaw, N.; Davies, H.L.; Dillon, T.J.; Mehra, A.; Phillips, G.; Ye, L.; Jones, B. Impacts of cleaning on indoor air quality: Regular versus ‘green’ cleaning products. In Proceedings of the Indoor Air 2022, Kuopio, Finland, 12–16 June 2022; 2022. [Google Scholar]
- Harding-Smith, E.; O’Leary, C.; Davies, H.; Shaw, D.; Shaw, M.; Dillon, T.J.; Carslaw, N. Dynamic headspace SIFT-MS coupled with indoor air modelling for bottom-up estimations of indoor air pollution from cleaning. In Proceedings of the AGU Fall Meeting, Chicago, IL, USA, 12–16 December 2022. [Google Scholar]
- Winkless, R.; Thompson, M.; O’Leary, C.; Kumar, A.; Davies, H.; Shaw, M.; Carslaw, N.; Dillon, T.J. The kinetics of cooking–emission rates for Harmful VOC. In Proceedings of the 26th International Symposium on Gas Kinetics and Related Phenomena–GK2022, Rennes, France, 28 August–1 September 2022. [Google Scholar]
- O’Leary, C.; Davies, H.L.; Mehra, A.; Harding-Smith, E.; Ye, L.; Shaw, M.; Dillon, T.J.; Phillips, G.; Jones, B.; Carslaw, N. Investigating primary emissions and secondary chemistry following cooking. In Proceedings of the Indoor Air 2022, Kuopio, Finland, 12–16 June 2022. [Google Scholar]
- O’Leary, C.; Davies, H.L.; Mehra, A.; Harding-Smith, E.; Winkless, R.; Ye, L.; Shaw, M.; Dillon, T.J.; Phillips, G.; Jones, B.; et al. Investigating the impacts of cooking on indoor air quality. In Proceedings of the EnvChem2022: Chemistry of the Whole Environment Research, York, UK, 14–15 July 2022. [Google Scholar]
- Ghislain, M.; Reyrolle, M.; Sotiropoulos, J.-M.; Pigot, T.; Plaisance, H.; Le Bechec, M. Study of the chemical ionization of organophosphate esters in air using selected ion flow tube−mass spectrometry for direct analysis. J. Am. Soc. Mass Spectrom. 2022, 33, 865–874. [Google Scholar] [CrossRef]
- Pasetto, L.V.; Richard, R.; Pic, J.-S.; Manero, M.-H.; Violleau, F.; Simon, V. Ozone quantification by selected ion flow tube mass spectrometry: Influence of humidity and manufacturing gas of ozone generator. Anal. Chem. 2019, 91, 15518–15524. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.H.; Nones, C.; Li, Y.; Milligan, D.; Prince, B.; Polster, M.; Dearth, M. Ultra-trace real time VOC measurements by SIFT-MS for VIAQ. SAE Int. J. Engines 2017, 10, 1815–1819. [Google Scholar] [CrossRef] [Green Version]
- U.S. Environmental Protection Agency. Compendium of Methods for the Determination of Toxic Organic Compounds in Ambient Air: Method TO-15, 2nd ed.; U.S. Environmental Protection Agency: Research Triangle Park, NC, USA, 1997; EPA 600/625/R-96-010b.
- Langford, V.S. Real-time monitoring of volatile organic compounds in ambient air using direct injection mass spectrometry. LCGC N. Am. 2022, 40, 174–179. Available online: https://www.chromatographyonline.com/view/real-time-monitoring-of-volatile-organic-compounds-in-ambient-air-using-direct-injection-mass-spectrometry (accessed on 14 January 2023). [CrossRef]
- Hwang, K.; An, J.G.; Lee, S.; Choi, W.; Yim, U.H. Study on the ozone formation potential of volatile organic compounds in Busan using SIFT-MS. J. Korean Soc. Atmos. Environ. 2020, 36, 645–668. [Google Scholar] [CrossRef]
- Shi, Z.; Vu, T.; Kotthaus, S.; Harrison, R.M.; Grimmond, S.; Yue, S.; Zhu, T.; Lee, J.; Han, Y.; Demuzere, M.; et al. Introduction to the special issue “In-depth study of air pollution sources and processes within Beijing and its surrounding region (APHH-Beijing)”. Atmos. Chem. Phys. 2019, 19, 7519–7546. [Google Scholar] [CrossRef]
- Shaw, M.; Acton, J.; Squires, F.; Carpenter, L.; Lewis, A.; Hopkins, J. Evaluation of Direct Mass spectrometry for VOC concentration and emission determination in Beijing. In Proceedings of the Atmospheric Science Conference (UK), York, UK, 3−4 July 2018. [Google Scholar]
- Crilley, L.R.; Kramer, L.J.; Ouyang, B.; Duan, J.; Zhang, W.; Tong, S.; Ge, M.; Tang, K.; Qin, M.; Xie, P.; et al. Intercomparison of nitrous acid (HONO) measurement techniques in a megacity (Beijing). Atmos. Meas. Tech. 2019, 12, 6449–6463. [Google Scholar] [CrossRef]
- Hien, T.T.; Huy, D.H.; Dominutti, P.A.; Chi, N.D.T.; Hopkins, J.R.; Shaw, M.; Forster, G.; Mills, G.; Le, H.A.; Oram, D. Comprehensive volatile organic compound measurements and their implications for ground-level ozone formation in the two main urban areas of Vietnam. Atmos. Environ. 2022, 269, 118872. [Google Scholar] [CrossRef]
- Dominutti, P.A.; Hopkins, J.R.; Shaw, M.; Mills, G.; Le, H.A.; Huy, D.H.; Forster, G.L.; Keita, S.; Hien, T.T.; Oram, D.E. Evaluating major anthropogenic VOC emission sources in densely populated Vietnamese cities. Environ. Pollut. 2023, 318, 120927. [Google Scholar] [CrossRef] [PubMed]
- Borrás, E.; Tortajada-Genaro, L.A.; Ródenas, M.; Vera, T.; Speak, T.; Seakins, P.; Shaw, M.D.; Lewis, A.C.; Muñoz, A. On-line solid phase microextraction derivatization for the sensitive determination of multi-oxygenated volatile compounds in air. Atmos. Meas. Tech. 2021, 14, 4989–4999. [Google Scholar] [CrossRef]
- Wagner, R.L.; Farren, N.J.; Davison, J.; Young, S.; Hopkins, J.R.; Lewis, A.C.; Carslaw, D.C.; Shaw, M.D. Application of a mobile laboratory using a selected-ion flow-tube mass spectrometer (SIFT-MS) for characterisation of volatile organic compounds and atmospheric trace gases. Atmos. Meas. Tech. 2021, 14, 6083–6100. [Google Scholar] [CrossRef]
- Perkins, M.J.; Langford, V.S.; McEwan, M.J. High-throughput analysis of volatile compounds in air, water and soil using SIFT-MS. Curr. Trends Mass Spectrom. 2018, 37, 24–29. Available online: https://www.chromatographyonline.com/view/high-throughput-analysis-volatile-compounds-air-water-and-soil-using-sift-ms (accessed on 14 January 2023).
- Lee, S.-H.; Shin, E.-J.; Zoh, K.-D.; Kang, Y.-S.; Choi, J.-W. Direct mass spectrometry with online headspace sample pretreatment for continuous water quality monitoring. Water 2020, 12, 1843. [Google Scholar] [CrossRef]
- Perkins, M.J. Methanolic Extraction of Soils by Automated Selected Ion Flow Tube Mass Spectrometry (SIFT-MS). Anatune Application Note. Available online: http://bit.ly/3XeCaSI (accessed on 14 January 2023).
- U.S. Environmental Protection Agency. Method 5021A-Volatile Organic Compounds in Various Sample Matrices Using Equilibrium Headspace Analysis, Revision 2. 2014. Available online: https://www.epa.gov/sites/production/files/2015-12/documents/5021a.pdf (accessed on 14 January 2023).
- La Nasa, J.; Lomonaco, T.; Manco, E.; Ceccarini, A.; Fuoco, R.; Corti, A.; Modugno, F.; Castelvetro, V.; Degano, I. Plastic breeze: Volatile organic compounds (VOCs) emitted by degrading macro- and microplastics analyzed by selected ion flow-tube mass spectrometry. Chemosphere 2021, 270, 128612. [Google Scholar] [CrossRef]
- Castelvetro, V.; Corti, A.; Biale, G.; Ceccarini, A.; Degano, I.; La Nasa, J.; Lomonaco, T.; Manariti, A.; Manco, E.; Modugno, F.; et al. New methodologies for the detection, identification, and quantification of microplastics and their environmental degradation by-products. Environ. Sci. Pollut. Res. 2021, 28, 46764–46780. [Google Scholar] [CrossRef]
- Perkins, M.J.; Padayachee, D.; Langford, V.S.; McEwan, M.J. High throughput residual solvent and residual monomer analysis using selected ion flow tube mass spectrometry. Chromatogr Today 2017, 10, 2–5. Available online: https://www.chromatographytoday.com/article/gc-ms/46/syft-technologies-ltd/phigh-throughput-residualnbspsolvent-and-residual-monomer-analysis-using-selected-ionnbspflow-tube-mass-spectrometryp/2242/download (accessed on 3 January 2023).
- Langford, V.S.; Perkins, M.J. Demystifying sample preparation for headspace analysis using direct injection mass spectrometry. The Column 2022, 18, 24–28. Available online: https://www.chromatographyonline.com/view/demystifying-sample-preparation-for-headspace-analysis-using-direct-injection-mass-spectrometry (accessed on 14 January 2023).
- Residual Solvents—Verification of Compendial Procedures and Validation of Alternative Procedures 〈1467〉; United States Pharmacopeia: Rockville, MD, USA, 2019.
- European Medicines Agency. Questions and Answers for Marketing Authorisation Holders/Applicants on the CHMP Opinion for the Article 5(3) of Regulation (EC) No 726/2004 Referral on Nitrosamine Impurities in Human Medicinal Products, EMA/409815/2020. Available online: https://www.ema.europa.eu/en/documents/referral/nitrosamines-emea-h-a53-1490-questions-answers-marketing-authorisation-holders/applicants-chmp-opinion-article-53-regulation-ec-no-726/2004-referral-nitrosamine-impurities-human-medicinal-products_en.pdf (accessed on 15 September 2022).
- United States Food and Drug Administration. Guidance for Industry. Control of Nitrosamine Impurities in Human Drugs. 2021. Available online: https://www.fda.gov/media/141720/download (accessed on 15 September 2022).
- Office of New Drugs, United States Food and Drug Administration. Nitrosamines as Impurities in Drugs−Health Risk Assessment and Mitigation Public Workshop, 29–30 March 2021. Available online: https://www.fda.gov/media/150932/download (accessed on 21 March 2022).
- Langford, V.S.; Gray, J.D.C.; Maclagan, R.G.A.R.; Milligan, D.B.; McEwan, M.J. Real-time measurements of nitrosamines in air. Int. J. Mass Spectrom. 2015, 377, 490–495. [Google Scholar] [CrossRef]
- Perkins, M.J.; Langford, V.S. Simple, Rapid Analysis of N-nitrosodimethylamine (NDMA) Impurity in Ranitidine Products Using SIFT-MS. Syft Technologies Application Note. 2022. Available online: http://bit.ly/3GB8wzW (accessed on 12 January 2023).
- Perkins, M.J.; Langford, V.S. Simple, Rapid Analysis of NDMA in a Recalled Valsartan Product Using SIFT-MS. Syft Technologies Application Note. 2022. Available online: https://bit.ly/3QFclbR (accessed on 12 January 2023).
- Wikipedia. Ethylene Oxide. Available online: https://en.wikipedia.org/wiki/Ethylene_oxide (accessed on 20 September 2022).
- United States Pharmacopeia. Polysorbate 80. Available online: https://www.usp.org/sites/default/files/usp/document/harmonization/excipients/polysorbate_80.pdf (accessed on 20 September 2022).
- ⟨228⟩ Ethylene Oxide and Dioxane; United States Pharmacopeia: Rockville, MD, USA, 2023.
- Silva, L.; Connor, A.; Bastian, C.; Williams, C.; Morseth, Z.; Franco, E. Simple, Rapid Analysis of Ethylene Oxide in a Polysorbate 80 Excipient Using SIFT-MS. Syft Technologies Application Note. 2022. Available online: https://bit.ly/3QLWRmC (accessed on 16 January 2023).
- National Toxicology Program, U.S. Department of Health and Human Services. 12th Report on Carcinogens; 10 June 2011. Available online: https://ntrl.ntis.gov/NTRL/dashboard/searchResults/titleDetail/PB2011111646.xhtml (accessed on 14 January 2023).
- European Commission. Proposal for a Directive of the European Parliament and of the Council Amending Directive 2004/37/EC on the Protection of Workers from the Risks Related to Exposure to Carcinogens or Mutagens at Work, COM/2018/0171 final-2018/081 (COD). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52018PC0171 (accessed on 14 January 2023).
- Panigrahi, K.C.; Patra, C.N.; Jena, G.K.; Ghose, D.; Jena, J.; Panda, S.K.; Sahu, M. Gelucire: A versatile polymer for modified release drug delivery system. Future J. Pharm. Sci. 2018, 4, 102–108. [Google Scholar] [CrossRef]
- Langford, V.S.; Perkins, M.J.; Milligan, D.B.; Prince, B.J.; McEwan, M.J. High-speed formaldehyde analysis for the process-line and laboratory: SIFT-MS. In Proceedings of the International Society of Automation (ISA) 62nd Analysis Division Symposium, Pasadena, CA, USA, 23−27 April 2017; Available online: http://bit.ly/3INcYyh (accessed on 16 January 2023).
- Perkins, M.J.; Langford, V.S. Simple, Rapid Analysis of Formaldehyde Impurities in Gelucire Excipient Using SIFT-MS. Syft Technologies Application Note. 2022. Available online: http://bit.ly/3Xca3nd (accessed on 16 January 2023).
- Bettenhausen, C.A. Finding benzene everywhere we look. Chem. Eng. News 2022, 100, 24–26. [Google Scholar] [CrossRef]
- Silva, L.; Langford, V. High-Throughput, Quantitative Analysis of Benzene in Personal Care Products Using Headspace-SIFT-MS. Syft Technologies Application Note. 2022. Available online: http://bit.ly/3Xv3Cew (accessed on 16 January 2023).
- Perkins, M.J.; Langford, V.S. Multiple headspace extraction-selected ion flow tube mass spectrometry (MHE-SIFT-MS). Part 1: A protocol for method development and transfer to routine analysis. Rev. Sep. Sci. 2022, 4, e22001. [Google Scholar] [CrossRef]
- Langford, V.S.; Perkins, M.J. Untargeted SIFT-MS headspace analysis: High-throughput differentiation of virgin and recycled polyethylene pellets. Rapid Commun. Mass Spectrom. 2022, 36, e9230. [Google Scholar] [CrossRef]
- Bell, K.J.M.; Ma, J.; Padayachee, D.; Langford, V.S.; Perkins, M.J. Time-Resolved Thermal Extraction of Residual Formaldehyde Using Thermal Desorption-SIFT-MS. Syft Technologies Application Note. 2019. Available online: http://bit.ly/3knBTOQ (accessed on 16 January 2023).
- European Food Safety Authority Panel on Contaminants in the Food Chain (CONTAM). Scientific Opinion on Mineral Oil Hydrocarbons in Food. EFSA J. 2012, 10, 2704. [Google Scholar] [CrossRef]
- Perkins, M.J.; Langford, V.S. Simple, Rapid Analysis of Packaging for Volatile MOAH and MOSH Contaminants. Syft Technologies Application Note. 2022. Available online: http://bit.ly/3iEIGD1 (accessed on 16 January 2023).
- Wicks, J.; Perkins, M.J.; Langford, V.S. Validation of a High-Throughput SIFT-MS Method for Analysis of Formaldehyde Leachate. Syft Technologies Application Note. 2019. Available online: http://bit.ly/3khxZ9Z (accessed on 16 January 2023).
- Kharbach, M.; Kamal, R.; Mansouri, A.M.; Marmouzi, I.; Viaene, J.; Cherrah, Y.; Alaoui, K.; Vercammen, J.; Bouklouze, A.; Vander Heyden, Y. Selected ion flow tube mass spectrometry (SIFT-MS) fingerprinting versus chemical profiling for geographic traceability of Moroccan Argan oils. Food Chem. 2018, 263, 8–17. [Google Scholar] [CrossRef]
- Bajoub, A.; Medina-Rodriguez, S.; Ajal, E.A.; Cuadros-Rodríguez, L.; Monasterio, R.P.; Vercammen, J.; Fernández-Gutiérreza, A.; Carrasco-Pancorbo, A. A metabolic fingerprinting approach based on selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics: A reliable tool for Mediterranean origin-labelled olive oils authentication. Food Res. Int. 2018, 106, 233–242. [Google Scholar] [CrossRef]
- Kharbach, M.; Yu, H.W.; Kamal, R.; Marmouzi, I.; Alaoui, K.; Vercammen, J.; Bouklouze, A.; Vander Heyden, Y. Authentication of extra virgin Argan oil by selected-ion flow-tube mass-spectrometry fingerprinting and chemometrics. Food Chem. 2022, 383, 132565. [Google Scholar] [CrossRef] [PubMed]
- Langford, V.S.; Bell, K.J.M. Rapid determination of strawberry flavour integrity using static headspace-selected ion flow tube mass spectrometry. Chromatogr. Today 2019, 12, 2–6. Available online: https://www.chromatographytoday.com/article/gc-ms/46/syft-technologies-ltd/rapid-determination-of-strawberry-flavour-integrity-using-static-headspace-selected-ion-flow-tube-mass-spectrometry/2558/download (accessed on 3 January 2023).
- Baerenzung dit Baron, T.; Yobrégat, O.; Jacques, A.; Simon, V.; Geffroy, O. A novel approach to discriminate the volatilome of Vitis vinifera berries by [SIFT-MS] analysis and chemometrics. Food Res. Int. 2022, 157, 111434. [Google Scholar] [CrossRef] [PubMed]
- Geffroy, O.; Baerenzung dit Baron, T.; Yobrégat, O.; Denat, M.; Simon, V.; Jacques, A. The SIFT-MS fingerprint of Vitis vinifera L. cv. Syrah berries is stable over the second part of maturation under warm conditions of climate. OENO One 2022, 56, 139–146. [Google Scholar] [CrossRef]
- Stefanuto, P.H.; Zanella, D.; Vercammen, J.; Henket, M.; Schleich, F.; Louis, R.; Focant, J.F. Multimodal combination of GC x GC-HRTOFMS and SIFT-MS for asthma phenotyping using exhaled breath. Sci. Rep. 2020, 10, 16159. [Google Scholar] [CrossRef]
- Segers, K.; Slosse, A.; Viaene, J.; Bannier, M.A.G.E.; Van de Kant, K.D.G.; Dompeling, E.; Van Eeckhaut, A.; Vercammen, J.; Heyden, Y.V. Feasibility study on exhaled-breath analysis by untargeted selected-ion flow-tube mass spectrometry in children with cystic fibrosis, asthma, and healthy controls: Comparison of data pretreatment and classification techniques. Talanta 2021, 225, 122080. [Google Scholar] [CrossRef]
Mechanism Name | Reagent Ion(s) | General Equation | Shift Relative to Parent Ion |
---|---|---|---|
Proton transfer (PT) | H3O+ | AH+ + B → BH+ + A | +1 (simple PT) −17 (loss of OH moiety) |
Electron transfer (ET) | NO+, O2+•, O2−• | A+/− + B → B+/− + A | 0 |
Dissociative ET | NO+, O2+• | A+ + B → C+ + Products | Varies |
Hydride abstraction | NO+, O2+• | A+ + B-H → B+ + HA | −1 |
Association | NO+, O−•, O2−•, OH− | A+/− + B + M → {B.A}+/− + M | +Reagent m/z (e.g., +30 for NO+) |
Proton abstraction | O−•, O2−•, OH−, NO2−, NO3− | A− + BH → B− + AH | −1 |
Mechanism Name | Reagent Ion(s) | General Equation | Standard Product * m/z |
Hydrogen atom transfer | O−• | A− + BH → AH− + B− | Reagent ion m/z − 1 ** |
Displacement | O−•, OH− | A− + RB → RA + B− (R = alkyl) | −35 and −37 for B = Cl −79 and −81 for B = Br |
Elimination | O−•, OH− | A− + RB → R’ + R”A + B− (R’ = alkene; R” = alkyl) | −35 and −37 for B = Cl −79 and −81 for B = Br |
Associative detachment | O−•, O2−•, OH− | A− + B → AB + e− (e− = electron) | No product detected (e−) |
Compound | Reference(s) | H3O+ | NO+ | O2+• | O−• | O2−• | OH− | NO2− | NO3− |
---|---|---|---|---|---|---|---|---|---|
Ammonia | [11,12] | ✓ | ✓ | ✓ | |||||
Benzene | [13] | ✓ | ✓ | ✓ | |||||
Formaldehyde | [14] | ✓ | ✓ | ||||||
Hydrogen sulfide | [15,16,17] | ✓ | ✓ | ✓ | ✓ | ||||
Ethanol | [18] | ✓ | ✓ | ✓ | ✓ | ||||
Pyridine | [11,19] | ✓ | ✓ | ✓ | ✓ | ✓ | |||
Methyl bromide | [20,21] | ✓ | ✓ | ✓ | ✓ | ||||
Carbon dioxide | [22,23,24,25] | ✓ | ✓ | ✓ | |||||
Hydrogen chloride | [25] | ✓ | ✓ | ✓ | ✓ | ||||
Sulfur dioxide | [23,25,26] | ✓ | ✓ | ✓ | ✓ |
Reagent Ion | Acetone | Propanal | ||||
---|---|---|---|---|---|---|
Formula | m/z | br (%) | Formula | m/z | br (%) | |
H3O+ | (CH3)2CO.H+ | 59 | 100 | CH3CH2CHO.H+ | 59 | 100 |
NO+ | (CH3)2CO.NO+ | 88 | 100 | CH3CH2CO+ | 57 | 100 |
O2+• | (CH3)2CO+• CH3CO+• | 58 43 | 60 40 | CH3CH2CHO+• CH3CH2CO+ | 58 57 | 50 50 |
Application | SIFT-MS | Chemosensors | Comment(s) |
---|---|---|---|
Breath analysis | Breath research Validation of sensor technologies Medical laboratory testing (centralized) | Routine clinic use (distributed) | Breath research is usually conducted in parallel with GC/MS (biomarker discovery) Chemosensor instrumentation is likely more affordable for clinics |
Food, flavor, and fragrance | High-throughput sensory screening Product R&D/new product formulation | High-throughput sensory screening | Both technologies use pattern recognition for sensory analysis; SIFT-MS often adds ability to identify odorants |
Materials and packaging | High-throughput sensory screening | High-throughput sensory screening | See comment above |
Environment (outdoor) | Odor emissions and mitigation research Speciated odorant monitoring Sensory analysis Mobile laboratory | Distributed monitoring systems Sensory analysis Highly portable odor assessment |
Application | SIFT-MS | Chemosensors | Comment(s) |
---|---|---|---|
Occupational safety and health | On-site (fixed or mobile) or remote laboratory analysis of diverse toxic compounds Research | Devices for personal protection (limited capability per device) | Complex matrices, such as shipping container air, may reduce the usefulness of sensors due to false alarms |
Indoor air quality | Protection of high-value, highly susceptible products (semiconductors) Research | Distributed monitoring systems Highly portable analysis | High sensitivity and selectivity are essential for semiconductor manufacturing, but this is a very specialized use-case |
Environment (outdoor) | Speciated 24/7 continuous monitoring of volatiles Mobile monitoring (including while driving) Validation of sensor technologies | Distributed monitoring systems Sensory analysis Highly portable odor assessment | Specificity of SIFT-MS provides validation of chemosensor performance |
Pharmaceuticals | High-throughput quantitative product safety analysis (e.g., nitrosamines, ethylene oxide, residual solvents) | High-throughput product quality screening based on pattern recognition | Due to lower cost, chemosensors with appropriate performance may be a better fit for process monitoring |
Personal care products | High-throughput quantitative product safety analysis (e.g., benzene, ethylene oxide) Product R&D/new product formulation | High-throughput product quality screening based on pattern recognition | See comment for Pharmaceuticals |
Materials and packaging | High-throughput quantitative product safety analysis (e.g., benzene, styrene, formaldehyde) | High-throughput product quality screening based on pattern recognition | See comment for Pharmaceuticals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Langford, V.S. SIFT-MS: Quantifying the Volatiles You Smell…and the Toxics You Don’t. Chemosensors 2023, 11, 111. https://doi.org/10.3390/chemosensors11020111
Langford VS. SIFT-MS: Quantifying the Volatiles You Smell…and the Toxics You Don’t. Chemosensors. 2023; 11(2):111. https://doi.org/10.3390/chemosensors11020111
Chicago/Turabian StyleLangford, Vaughan S. 2023. "SIFT-MS: Quantifying the Volatiles You Smell…and the Toxics You Don’t" Chemosensors 11, no. 2: 111. https://doi.org/10.3390/chemosensors11020111
APA StyleLangford, V. S. (2023). SIFT-MS: Quantifying the Volatiles You Smell…and the Toxics You Don’t. Chemosensors, 11(2), 111. https://doi.org/10.3390/chemosensors11020111