Formaldehyde Gas Sensors Fabricated with Polymer-Based Materials: A Review
Abstract
:1. Introduction
2. The Sensing Techniques for Formaldehyde Detection
3. Formaldehyde Sensors Based on Polymers and Polymer Nanocomposites
3.1. Formaldehyde Sensors Based on a Single Polymer
3.1.1. The Resistance Formaldehyde Sensor Based on a Single Polymer
3.1.2. QCM Formaldehyde Sensors Based on a Single Polymer
3.1.3. MEMS Resonator Formaldehyde Sensor Based on a Single Polymer
3.2. Formaldehyde Sensors Based on MIP
3.2.1. The Resistance Formaldehyde Sensor Based on MIP
3.2.2. QCM Formaldehyde Sensors Based on MIP
3.3. Formaldehyde Sensors Based on Polymer/Metal-Oxide Composites
3.3.1. The Resistance Formaldehyde Sensors Based on Polymer/Metal-Oxide Composites
3.3.2. QCM Formaldehyde Sensors Based on Polymer/Metal-Oxide Composites
3.3.3. Organic Thin-Film Transistor (OTFT) Formaldehyde Sensors Based on Polymer/Metal-Oxide Composites
3.3.4. Other Types of Formaldehyde Sensors Based on Polymer/Metal-Oxide Composites
3.4. Formaldehyde Sensors Based on Composites of Different Polymers
3.4.1. The Resistance Formaldehyde Sensor Based on Composites of Different Polymers
3.4.2. QCM Formaldehyde Sensors Based on Different Polymers
3.4.3. Other Types of Formaldehyde Sensors Based on Composites of Different Polymers
3.5. Formaldehyde Sensors Based on Polymer/Biomass Material Composites
3.5.1. Formaldehyde Sensors Based on Polymer/Bacterial Cellulose (BC)
3.5.2. Formaldehyde Sensors Based on Polymer/Chitosan
3.5.3. Formaldehyde Sensors Based on Polymer/Lignin Composite
3.5.4. Formaldehyde Sensors Based on Polymer/Β-Cyclodextrin (Β-Cd) Composites
3.6. Formaldehyde Sensors Based on Polymer/Carbon Material Composites
3.6.1. Formaldehyde Sensors Based on Polymer/Graphene
3.6.2. Formaldehyde Sensors Based on Polymer/Carbon Nanotubes (CNT) Composites
3.7. Formaldehyde Sensors Based on Polymer Composites with Other Materials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, Y.; Zhang, Y.; Zhang, H.; Chen, C. Design and evaluation of Cu-modified ZnO microspheres as a high performance formaldehyde sensor based on density functional theory. Appl. Surf. Sci. 2020, 532, 147446. [Google Scholar] [CrossRef]
- Castro-Hurtado, I.; Mandayo, G.G.; Castaño, E. Conductometric formaldehyde gas sensors. A review: From conventional films to nanostructured materials. Thin Solid Film. 2013, 548, 665–676. [Google Scholar] [CrossRef]
- Chung, P.R.; Tzeng, C.T.; Ke, M.T.; Lee, C.Y. Formaldehyde gas sensors: A review. Sensors 2013, 13, 4468–4484. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Zhou, Q.; Peng, S.; Liao, Y. Recent Advances of SnO2-Based Sensors for Detecting Volatile Organic Compounds. Front. Chem. 2020, 8, 321. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Zhang, D.; Zhang, Q.; Chen, X.; Xu, G.; Lu, Y.; Liu, Q. Smartphone-based sensing system using ZnO and graphene modified electrodes for VOCs detection. Biosens. Bioelectron. 2017, 93, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zhao, J.; Du, T.; Zhu, Z.; Zhang, J.; Liu, Q. A gas sensor array for the simultaneous detection of multiple VOCs. Sci. Rep. 2017, 7, 1960. [Google Scholar] [CrossRef]
- Rezaee, A.; Rangkooy, H.; Jonidi-Jafari, A.; Khavanin, A. Surface modification of bone char for removal of formaldehyde from air. Appl. Surf. Sci. 2013, 286, 235–239. [Google Scholar] [CrossRef]
- de Falco, G.; Barczak, M.; Montagnaro, F.; Bandosz, T.J. A New Generation of Surface Active Carbon Textiles as Reactive Adsorbents of Indoor Formaldehyde. ACS Appl. Mater. Interfaces 2018, 10, 8066–8076. [Google Scholar] [CrossRef]
- de Falco, G.; Li, W.; Cimino, S.; Bandosz, T.J. Role of sulfur and nitrogen surface groups in adsorption of formaldehyde on nanoporous carbons. Carbon 2018, 138, 283–291. [Google Scholar] [CrossRef]
- Wu, K.; Kong, X.Y.; Xiao, K.; Wei, Y.; Zhu, C.; Zhou, R.; Si, M.; Wang, J.; Zhang, Y.; Wen, L. Engineered Smart Gating Nanochannels for High Performance in Formaldehyde Detection and Removal. Adv. Funct. Mater. 2019, 29, 1807953. [Google Scholar] [CrossRef]
- Shen, X.; Du, X.; Yang, D.; Ran, J.; Yang, Z.; Chen, Y. Influence of physical structures and chemical modification on VOCs adsorption characteristics of molecular sieves. J. Environ. Chem. Eng. 2021, 9, 106729. [Google Scholar] [CrossRef]
- Hosono, K.; Matsubara, I.; Murayama, N.; Shin, W.; Izu, N. The sensitivity of 4-ethylbenzenesulfonic acid-doped plasma polymerized polypyrrole films to volatile organic compounds. Thin Solid Film. 2005, 484, 396–399. [Google Scholar] [CrossRef]
- Chen, Z.-L.; Wang, D.; Wang, X.-Y.; Yang, J.-H. Enhanced formaldehyde sensitivity of two-dimensional mesoporous SnO2 by nitrogen-doped graphene quantum dots. Rare Met. 2021, 40, 1561–1570. [Google Scholar] [CrossRef]
- Liu, X.; Ma, R.; Wang, X.; Ma, Y.; Yang, Y.; Zhuang, L.; Zhang, S.; Jehan, R.; Chen, J.; Wang, X. Graphene oxide-based materials for efficient removal of heavy metal ions from aqueous solution: A review. Environ. Pollut. 2019, 252, 62–73. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Wang, Y.; Zhao, R.; Chen, J.; Zhang, F.; Linhardt, R.J.; Zhong, W. Biotechnology progress for removal of indoor gaseous formaldehyde. Appl. Microbiol. Biotechnol. 2020, 104, 3715–3727. [Google Scholar] [CrossRef]
- Kamal, M.S.; Razzak, S.A.; Hossain, M.M. Catalytic oxidation of volatile organic compounds (VOCs)—A review. Atmos. Environ. 2016, 140, 117–134. [Google Scholar] [CrossRef]
- Wang, S.; Sun, H.; Ang, H.M.; Tadé, M.O. Adsorptive remediation of environmental pollutants using novel graphene-based nanomaterials. Chem. Eng. J. 2013, 226, 336–347. [Google Scholar] [CrossRef]
- Bo, Z.; Yuan, M.; Mao, S.; Chen, X.; Yan, J.; Cen, K. Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B Chem. 2018, 256, 1011–1020. [Google Scholar] [CrossRef]
- Suzuki, Y.; Nakano, N.; Suzuki, K. Portable sick house syndrome gas monitoring system based on novel colorimetric reagents for the highly selective and sensitive detection of formaldehyde. Environ. Sci. Technol. 2003, 37, 5695–5700. [Google Scholar] [CrossRef]
- Alizadeh, T.; Soltani, L.H. Graphene/poly(methyl methacrylate) chemiresistor sensor for formaldehyde odor sensing. J. Hazard. Mater. 2013, 248–249, 401–406. [Google Scholar] [CrossRef]
- Feng, Y.; Ling, L.; Nie, J.; Han, K.; Chen, X.; Bian, Z.; Li, H.; Wang, Z.L. Self-Powered Electrostatic Filter with Enhanced Photocatalytic Degradation of Formaldehyde Based on Built-in Triboelectric Nanogenerators. ACS Nano 2017, 11, 12411–12418. [Google Scholar] [CrossRef]
- Robert, B.; Nallathambi, G. Indoor formaldehyde removal by catalytic oxidation, adsorption and nanofibrous membranes: A review. Environ. Chem. Lett. 2021, 19, 2551–2579. [Google Scholar] [CrossRef]
- Yuan, C.; Pu, J.; Fu, D.; Min, Y.; Wang, L.; Liu, J. UV-vis spectroscopic detection of formaldehyde and its analogs: A convenient and sensitive methodology. J. Hazard. Mater. 2022, 438, 129457. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Yuan, Y.J. Thin-Film Sensors for Detection of Formaldehyde: A Review. IEEE Sens. J. 2015, 15, 6749–6760. [Google Scholar] [CrossRef]
- Zhang, L.; Shi, J.; Jiang, Z.; Jiang, Y.; Qiao, S.; Li, J.; Wang, R.; Meng, R.; Zhu, Y.; Zheng, Y. Bioinspired preparation of polydopamine microcapsule for multienzyme system construction. Green Chem. 2011, 13, 300–306. [Google Scholar] [CrossRef]
- Pei, J.; Zhang, J.S. On the performance and mechanisms of formaldehyde removal by chemi-sorbents. Chem. Eng. J. 2011, 167, 59–66. [Google Scholar] [CrossRef]
- Carquigny, S.; Redon, N.; Plaisance, H.; Reynaud, S. Development of a Polyaniline/Fluoral-P Chemical Sensor for Gaseous Formaldehyde Detection. IEEE Sens. J. 2012, 12, 1300–1306. [Google Scholar] [CrossRef]
- Feng, L.; Liu, Y.; Zhou, X.; Hu, J. The fabrication and characterization of a formaldehyde odor sensor using molecularly imprinted polymers. J. Colloid Interface Sci. 2005, 284, 378–382. [Google Scholar] [CrossRef]
- Jha, S.K.; Hayashi, K. A quick responding quartz crystal microbalance sensor array based on molecular imprinted polyacrylic acids coating for selective identification of aldehydes in body odor. Talanta 2015, 134, 105–119. [Google Scholar] [CrossRef]
- Burini, G.; Coli, R. Determination of formaldehyde in spirits by high-performance liquid chromatography with diode-array detection after derivatization. Anal. Chim. Acta 2004, 511, 155–158. [Google Scholar] [CrossRef]
- Gil-Gonzalez, N.; Benito-Lopez, F.; Castano, E.; Morant-Minana, M.C. Imidazole-based ionogel as room temperature benzene and formaldehyde sensor. Mikrochim. Acta 2020, 187, 638. [Google Scholar] [CrossRef] [PubMed]
- Aksornneam, L.; Kanatharana, P.; Thavarungkul, P.; Thammakhet, C. 5-Aminofluorescein doped polyvinyl alcohol film for the detection of formaldehyde in vegetables and seafood. Anal. Methods 2016, 8, 1249–1256. [Google Scholar] [CrossRef]
- Liu, J.; Zhao, W.; Liu, J.; Cai, X.; Liang, D.; Tang, S.; Xu, B. Preparation of a quartz microbalance sensor based on molecularly imprinted polymers and its application in formaldehyde detection. RSC Adv. 2022, 12, 13235–13241. [Google Scholar] [CrossRef]
- Tang, Y.; Kong, X.; Xu, A.; Dong, B.; Lin, W. Development of a Two-Photon Fluorescent Probe for Imaging of Endogenous Formaldehyde in Living Tissues. Angew. Chem. Int. Ed. Engl. 2016, 55, 3356–3359. [Google Scholar] [CrossRef] [PubMed]
- Yuan, G.; Ding, H.; Peng, L.; Zhou, L.; Lin, Q. A novel fluorescent probe for ratiometric detection of formaldehyde in real food samples, living tissues and zebrafish. Food Chem. 2020, 331, 127221. [Google Scholar] [CrossRef]
- Liu, X.; Li, N.; Li, M.; Chen, H.; Zhang, N.; Wang, Y.; Zheng, K. Recent progress in fluorescent probes for detection of carbonyl species: Formaldehyde, carbon monoxide and phosgene. Coord. Chem. Rev. 2020, 404, 213109. [Google Scholar] [CrossRef]
- Song, M.G.; Choi, J.; Jeong, H.E.; Song, K.; Jeon, S.; Cha, J.; Baeck, S.-H.; Shim, S.E.; Qian, Y. A comprehensive study of various amine-functionalized graphene oxides for room temperature formaldehyde gas detection: Experimental and theoretical approaches. Appl. Surf. Sci. 2020, 529, 147189. [Google Scholar] [CrossRef]
- Zhang, Y.; Qi, J.; Li, M.; Gao, D.; Xing, C. Fluorescence Probe Based on Graphene Quantum Dots for Selective, Sensitive and Visualized Detection of Formaldehyde in Food. Sustainability 2021, 13, 5273. [Google Scholar] [CrossRef]
- Wang, D.; Lian, F.; Yao, S.; Ge, L.; Wang, Y.; Zhao, Y.; Zhao, J.; Song, X.; Zhao, C.; Xu, K. Detection of formaldehyde (HCHO) in solution based on the autocatalytic oxidation reaction of o-phenylenediamine (OPD) induced by silver ions (Ag+). J. Iran. Chem. Soc. 2021, 18, 3387–3397. [Google Scholar] [CrossRef]
- Wei, T.-B.; Dang, L.-R.; Hu, J.-P.; Jia, Y.; Lin, Q.; Yao, H.; Shi, B.; Zhang, Y.-M.; Qu, W.-J. A simple phenazine derivative fluorescence sensor for detecting formaldehyde. New J. Chem. 2022, 46, 20658–20663. [Google Scholar] [CrossRef]
- Yang, F.; Gu, C.; Liu, B.; Hou, C.; Zhou, K. Pt-activated Ce4La6O17 nanocomposites for formaldehyde and carbon monoxide sensor at low operating temperature. J. Alloy. Compd. 2019, 787, 173–179. [Google Scholar] [CrossRef]
- Ding, B.; Wang, M.; Yu, J.; Sun, G. Gas sensors based on electrospun nanofibers. Sensors 2009, 9, 1609. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.S.; Mardhiah, A.; Saidi, N.; Lelifajri, D. The effect of graphite composition on polyaniline film performance for formalin gas sensor. Bull. Chem. Soc. Ethiop. 2021, 34, 597–604. [Google Scholar] [CrossRef]
- Xu, D.; Ge, K.; Chen, Y.; Qi, S.; Qiu, J.; Liu, Q. Cable-Like Core-Shell Mesoporous SnO2 Nanofibers by Single-Nozzle Electrospinning Phase Separation for Formaldehyde Sensing. Chemistry 2020, 26, 9365–9370. [Google Scholar] [CrossRef] [PubMed]
- Willander, M.; Nur, O.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I. Zinc oxide nanorods/polymer hybrid heterojunctions for white light emitting diodes. J. Phys. D Appl. Phys. 2011, 44, 224017. [Google Scholar] [CrossRef]
- Li, Z.; Fan, Y.; Zhan, J. In2O3Nanofibers and Nanoribbons: Preparation by Electrospinning and Their Formaldehyde Gas-Sensing Properties. Eur. J. Inorg. Chem. 2010, 2010, 3348–3353. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, M.; Lu, Q.; Zhang, Y.; Zhang, J.; Li, B.; Wei, H.; Hu, J.; Wang, H.; Liu, Q. Ag Nanoparticles Sensitized In2O3 Nanograin for the Ultrasensitive HCHO Detection at Room Temperature. Nanoscale Res. Lett. 2019, 14, 365. [Google Scholar] [CrossRef]
- Zhang, M.; Tang, Y.; Tian, X.; Wang, H.; Wang, J.; Zhang, Q. Magnetron co-sputtering optimized aluminum-doped zinc oxide (AZO) film for high-response formaldehyde sensing. J. Alloy. Compd. 2021, 880, 160510. [Google Scholar] [CrossRef]
- Mostafapour, S.; Mohamadi Gharaghani, F.; Hemmateenejad, B. Converting electronic nose into opto-electronic nose by mixing MoS2 quantum dots with organic reagents: Application to recognition of aldehydes and ketones and determination of formaldehyde in milk. Anal. Chim. Acta 2021, 1170, 338654. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Li, J.; Zhang, Z.; Li, J.; Cao, X.; Tang, J.; Li, X.; Geng, Y.; Wang, J.; Du, Y.; et al. Bimetal Ag NP and Au NC modified In2O3 for ultra-sensitive detection of ppb-level HCHO. Sens. Actuators B Chem. 2022, 373, 132664. [Google Scholar] [CrossRef]
- Lou, C.; Huang, Q.; Li, Z.; Lei, G.; Liu, X.; Zhang, J. Fe2O3-sensitized SnO2 nanosheets via atomic layer deposition for sensitive formaldehyde detection. Sens. Actuators B Chem. 2021, 345, 130429. [Google Scholar] [CrossRef]
- Li, X.Y.; Sun, G.T.; Fan, F.; Li, Y.Y.; Liu, Q.C.; Yao, H.C.; Li, Z.J. Au(25) Nanoclusters Incorporating Three-Dimensionally Ordered Macroporous In2O3 for Highly Sensitive and Selective Formaldehyde Sensing. ACS Appl. Mater. Interfaces 2022, 14, 564–573. [Google Scholar] [CrossRef] [PubMed]
- Pan, S.; Roy, S.; Choudhury, N.; Behera, P.P.; Sivaprakasam, K.; Ramakrishnan, L.; De, P. From small molecules to polymeric probes: Recent advancements of formaldehyde sensors. Sci. Technol. Adv. Mater. 2022, 23, 49–63. [Google Scholar] [CrossRef]
- Temel, F. One novel calix [4]arene based QCM sensor for sensitive, selective and high performance-sensing of formaldehyde at room temperature. Talanta 2020, 211, 120725. [Google Scholar] [CrossRef]
- Hu, J.; Chen, X.; Zhang, Y. Batch fabrication of formaldehyde sensors based on LaFeO3 thin film with ppb-level detection limit. Sens. Actuators B Chem. 2021, 349, 130738. [Google Scholar] [CrossRef]
- Tai, H.; Li, X.; Jiang, Y.; Xie, G.; Du, X. The enhanced formaldehyde-sensing properties of P3HT-ZnO hybrid thin film OTFT sensor and further insight into its stability. Sensors 2015, 15, 2086–2103. [Google Scholar] [CrossRef]
- Chen, D.; Yang, L.; Yu, W.; Wu, M.; Wang, W.; Wang, H. Micro-Electromechanical Acoustic Resonator Coated with Polyethyleneimine Nanofibers for the Detection of Formaldehyde Vapor. Micromachines 2018, 9, 62. [Google Scholar] [CrossRef]
- Wang, L.; Gao, J.; Xu, J. QCM formaldehyde sensing materials: Design and sensing mechanism. Sens. Actuators B Chem. 2019, 293, 71–82. [Google Scholar] [CrossRef]
- Wang, L.; Yu, Y.; Xiang, Q.; Xu, J.; Cheng, Z.; Xu, J. PODS-covered PDA film based formaldehyde sensor for avoiding humidity false response. Sens. Actuators B Chem. 2018, 255, 2704–2712. [Google Scholar] [CrossRef]
- Ma, J.; Wang, S.; Chen, D.; Wang, W.; Zhang, Z.; Song, S.; Yu, W. ZnO piezoelectric film resonator modified with multi-walled carbon nanotubes/polyethyleneimine bilayer for the detection of trace formaldehyde. Appl. Phys. A 2017, 124, 56. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, Y.; Zhou, J.; Yue, J.; Xu, M.; An, B.; Ma, C.; Li, W.; Liu, S. Hydrothermal synthesis of nitrogen-doped carbon quantum dots from lignin for formaldehyde determination. RSC Adv. 2021, 11, 29178–29185. [Google Scholar] [CrossRef] [PubMed]
- Nag, S.; Pradhan, S.; Naskar, H.; Roy, R.B.; Tudu, B.; Pramanik, P.; Bandyopadhyay, R. A Simple Nano Cerium Oxide Modified Graphite Electrode for Electrochemical Detection of Formaldehyde in Mushroom. IEEE Sens. J. 2021, 21, 12019–12026. [Google Scholar] [CrossRef]
- Stewart, K.M.E.; Penlidis, A. Evaluation of polymeric nanocomposites for the detection of toxic gas analytes. J. Macromol. Sci. Part A 2016, 53, 610–618. [Google Scholar] [CrossRef]
- Tang, X.; Raskin, J.P.; Lahem, D.; Krumpmann, A.; Decroly, A.; Debliquy, M. A Formaldehyde Sensor Based on Molecularly-Imprinted Polymer on a TiO2 Nanotube Array. Sensors 2017, 17, 675. [Google Scholar] [CrossRef] [PubMed]
- Hu, W.; Chen, S.; Liu, L.; Ding, B.; Wang, H. Formaldehyde sensors based on nanofibrous polyethyleneimine/bacterial cellulose membranes coated quartz crystal microbalance. Sens. Actuators B Chem. 2011, 157, 554–559. [Google Scholar] [CrossRef]
- Tai, H.; Bao, X.; He, Y.; Du, X.; Xie, G.; Jiang, Y. Enhanced Formaldehyde-Sensing Performances of Mixed Polyethyleneimine-Multiwalled Carbon Nanotubes Composite Films on Quartz Crystal Microbalance. IEEE Sens. J. 2015, 15, 6904–6911. [Google Scholar] [CrossRef]
- Wang, X.; Ding, B.; Sun, M.; Yu, J.; Sun, G. Nanofibrous polyethyleneimine membranes as sensitive coatings for quartz crystal microbalance-based formaldehyde sensors. Sens. Actuators B Chem. 2010, 144, 11–17. [Google Scholar] [CrossRef]
- Ding, B.; Wang, X.; Yu, J.; Wang, M. Polyamide 6 composite nano-fiber/net functionalized by polyethyleneimine on quartz crystal microbalance for highly sensitive formaldehyde sensors. J. Mater. Chem. 2011, 21, 12784–12792. [Google Scholar] [CrossRef]
- Zhang, C.; Wang, X.; Lin, J.; Ding, B.; Yu, J.; Pan, N. Nanoporous polystyrene fibers functionalized by polyethyleneimine for enhanced formaldehyde sensing. Sens. Actuators B Chem. 2011, 152, 316–323. [Google Scholar] [CrossRef]
- Antwi-Boampong, S.; BelBruno, J.J. Detection of formaldehyde vapor using conductive polymer films. Sens. Actuators B Chem. 2013, 182, 300–306. [Google Scholar] [CrossRef]
- Wang, X.; Cui, F.; Lin, J.; Ding, B.; Yu, J.; Al-Deyab, S.S. Functionalized nanoporous TiO2 fibers on quartz crystal microbalance platform for formaldehyde sensor. Sens. Actuators B Chem. 2012, 171–172, 658–665. [Google Scholar] [CrossRef]
- Mirmohseni, A. Construction of a sensor for determination of ammonia and aliphatic amines using polyvinylpyrrolidone coated quartz crystal microbalance. Sens. Actuators B Chem. 2003, 89, 164–172. [Google Scholar] [CrossRef]
- Arabi, M.; Alghamdi, M.; Kabel, K.; Labena, A.; Gado, W.S.; Mavani, B.; Scott, A.J.; Penlidis, A.; Yavuz, M.; Abdel-Rahman, E. Detection of Volatile Organic Compounds by Using MEMS Sensors. Sensors 2022, 22, 4102. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhan, D.; Wang, K.; Hang, W. The detection of formaldehyde using microelectromechanical acoustic resonator with multiwalled carbon nanotubes-polyethyleneimine composite coating. J. Micromech. Microeng. 2018, 28, 015003. [Google Scholar] [CrossRef]
- Wang, W.; Chen, D.; Wang, H.; Yu, W.; Wu, M.; Yang, L. Film bulk acoustic formaldehyde sensor with layer-by-layer assembled carbon nanotubes/polyethyleneimine multilayers. J. Phys. D Appl. Phys. 2018, 51, 055104. [Google Scholar] [CrossRef]
- Song, S.; Chen, D.; Wang, H.; Guo, Q.; Wang, W.; Wu, M.; Yu, W. Film bulk acoustic formaldehyde sensor with polyethyleneimine-modified single-wall carbon nanotubes as sensitive layer. Sens. Actuators B Chem. 2018, 266, 204–212. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, H.; Ma, C.; Luo, S.; Xu, M.; Wu, Z.; Li, W.; Liu, S. Luminescent Transparent Wood Based on Lignin-Derived Carbon Dots as a Building Material for Dual-Channel, Real-Time, and Visual Detection of Formaldehyde Gas. ACS Appl. Mater. Interfaces 2020, 12, 36628–36638. [Google Scholar] [CrossRef]
- Li, X.; Jiang, Y.; Tai, H.; Xie, G.; Dan, W. The fabrication and optimization of OTFT formaldehyde sensors based on Poly(3-hexythiophene)/ZnO composite films. Sci. China Technol. Sci. 2013, 56, 1877–1882. [Google Scholar] [CrossRef]
- Wang, J.; Matsubara, I.; Murayama, N.; Woosuck, S.; Izu, N. The preparation of polyaniline intercalated MoO3 thin film and its sensitivity to volatile organic compounds. Thin Solid Film. 2006, 514, 329–333. [Google Scholar] [CrossRef]
- Itoh, T.; Matsubara, I.; Shin, W.; Izu, N.; Nishibori, M. Preparation of layered organic–inorganic nanohybrid thin films of molybdenum trioxide with polyaniline derivatives for aldehyde gases sensors of several tens ppb level. Sens. Actuators B Chem. 2008, 128, 512–520. [Google Scholar] [CrossRef]
- Noreña-Caro, D.; Álvarez-Láinez, M. Functionalization of polyacrylonitrile nanofibers with β-cyclodextrin for the capture of formaldehyde. Mater. Des. 2016, 95, 632–640. [Google Scholar] [CrossRef]
- Srinives, S.; Sarkar, T.; Mulchandani, A. Primary amine-functionalized polyaniline nanothin film sensor for detecting formaldehyde. Sens. Actuators B Chem. 2014, 194, 255–259. [Google Scholar] [CrossRef]
- Yan, D.; Xu, P.; Xiang, Q.; Mou, H.; Xu, J.; Wen, W.; Li, X.; Zhang, Y. Polydopamine nanotubes: Bio-inspired synthesis, formaldehyde sensing properties and thermodynamic investigation. J. Mater. Chem. A 2016, 4, 3487–3493. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, J.; Liu, Q. Gas Sensors Based on Molecular Imprinting Technology. Sensors 2017, 17, 1567. [Google Scholar] [CrossRef]
- Chul Yang, J.; Won Hong, S.; Jeon, S.; Ik Park, W.; Byun, M.; Park, J. Molecular imprinting of hemispherical pore-structured thin films via colloidal lithography for gaseous formaldehyde Gravimetric sensing. Appl. Surf. Sci. 2021, 570, 151161. [Google Scholar] [CrossRef]
- Iqbal, N.; Afzal, A.; Mujahid, A. Layer-by-layer assembly of low-temperature-imprinted poly(methacrylic acid)/gold nanoparticle hybrids for gaseous formaldehyde mass sensing. RSC Adv. 2014, 4, 43121–43130. [Google Scholar] [CrossRef]
- Ge, J.C.; Choi, N.J. Fabrication of Functional Polyurethane/Rare Earth Nanocomposite Membranes by Electrospinning and Its VOCs Absorption Capacity from Air. Nanomaterials 2017, 7, 60. [Google Scholar] [CrossRef]
- Antwi-Boampong, S.; Peng, J.S.; Carlan, J.; BelBruno, J.J. A Molecularly Imprinted Fluoral-P/Polyaniline Double Layer Sensor System for Selective Sensing of Formaldehyde. IEEE Sens. J. 2014, 14, 1490–1498. [Google Scholar] [CrossRef]
- Hussain, M.; Kotova, K.; Lieberzeit, P.A. Molecularly Imprinted Polymer Nanoparticles for Formaldehyde Sensing with QCM. Sensors 2016, 16, 1011. [Google Scholar] [CrossRef]
- Jo, Y.K.; Jeong, S.Y.; Moon, Y.K.; Jo, Y.M.; Yoon, J.W.; Lee, J.H. Exclusive and ultrasensitive detection of formaldehyde at room temperature using a flexible and monolithic chemiresistive sensor. Nat. Commun. 2021, 12, 4955. [Google Scholar] [CrossRef]
- Liu, R.F.; Li, W.B.; Peng, A.Y. A facile preparation of TiO2/ACF with C Ti bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal. Appl. Surf. Sci. 2018, 427, 608–616. [Google Scholar] [CrossRef]
- Itoh, T.; Matsubara, I.; Shin, W.; Izu, N. Synthesis and characterization of layered organic/inorganic hybrid thin films based on molybdenum trioxide with poly(N-methylaniline) for VOC sensor. Mater. Lett. 2007, 61, 4031–4034. [Google Scholar] [CrossRef]
- Georgieva, V.; Stevchev, P.; Vitanov, P.; Spassov, L. Quartz resonator with thin TiO2 for NH3 detection. Vacuum 2004, 76, 203–206. [Google Scholar] [CrossRef]
- Jeong, J.W.; Lee, Y.D.; Kim, Y.M.; Park, Y.W.; Choi, J.H.; Park, T.H.; Soo, C.D.; Won, S.M.; Han, I.K.; Ju, B.K. The response characteristics of a gas sensor based on poly-3-hexylithiophene thin-film transistors. Sens. Actuators B Chem. 2010, 146, 40–45. [Google Scholar] [CrossRef]
- Berghmans, F.; Mignani, A.G.; De Moor, P.; Boersma, A.; van Ee, R.J.; Stevens, R.S.A.; Saalmink, M.; Charlton, M.D.B.; Pollard, M.E.; Chen, R.; et al. Detection of low concentration formaldehyde gas by photonic crystal sensor fabricated by nanoimprint process in polymer material. In Proceedings of the Optical Sensing and Detection III, Brussels, Belgium, 14–17 April 2014. [Google Scholar]
- Mazhar, S.I.; Shafi, H.Z.; Shah, A.; Asma, M.; Gul, S.; Raffi, M. Synthesis of surface modified hydrophobic PTFE-ZnO electrospun nanofibrous mats for removal of volatile organic compounds (VOCs) from air. J. Polym. Res. 2020, 27, 222. [Google Scholar] [CrossRef]
- Silva, A.F.S.; Gonçalves, I.C.; Rocha, F.R.P. Smartphone-based digital images as a novel approach to determine formaldehyde as a milk adulterant. Food Control 2021, 125, 107956. [Google Scholar] [CrossRef]
- Mavani, B.H.; Penlidis, A. Indium Oxide Doped Polyaniline for Detection of Formaldehyde. Macromol. React. Eng. 2022, 16, 2200012. [Google Scholar] [CrossRef]
- Devadhasan, J.P.; Kim, D.; Lee, D.Y.; Kim, S. Smartphone coupled handheld array reader for real-time toxic gas detection. Anal. Chim. Acta 2017, 984, 168–176. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, W.; Sun, G.; Yu, D. Designed Ionic Microchannels for Ultrasensitive Detection and Efficient Removal of Formaldehyde in an Aqueous Solution. ACS Appl. Mater. Interfaces 2020, 12, 1806–1816. [Google Scholar] [CrossRef]
- Huang, W.; Wang, X.; Jia, Y.; Li, X.; Zhu, Z.; Li, Y.; Si, Y.; Ding, B.; Wang, X.; Yu, J. Highly sensitive formaldehyde sensors based on polyvinylamine modified polyacrylonitrile nanofibers. RSC Adv. 2013, 3, 22994–23000. [Google Scholar] [CrossRef]
- Park, J.J.; Kim, Y.; Lee, C.; Kook, J.W.; Kim, D.; Kim, J.H.; Hwang, K.S.; Lee, J.Y. Colorimetric Visualization Using Polymeric Core-Shell Nanoparticles: Enhanced Sensitivity for Formaldehyde Gas Sensors. Polymers 2020, 12, 998. [Google Scholar] [CrossRef] [PubMed]
- Olsson, R.T.; Azizi Samir, M.A.; Salazar-Alvarez, G.; Belova, L.; Strom, V.; Berglund, L.A.; Ikkala, O.; Nogues, J.; Gedde, U.W. Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 2010, 5, 584–588. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Li, Y.; Du, Z.; Hu, S.; Huang, J.; Shi, Z.; Su, B.; Yang, G. CoFe2O4 embedded bacterial cellulose for flexible, biodegradable, and self-powered electromagnetic sensor. Nano Energy 2022, 102, 107740. [Google Scholar] [CrossRef]
- Meng, S.; Zhang, Y.; Wu, N.; Peng, C.; Huang, Z.; Lin, Z.; Qi, C.; Liu, Z.; Kong, T. Ultrasoft, sensitive fiber-like sensor by assembly of bacterial cellulose (BC) nanofibrils and BC molecules for biocompatible strain sensing. Nano Res. 2022, 1–10. [Google Scholar] [CrossRef]
- Babayekhorasani, F.; Hosseini, M.; Spicer, P.T. Molecular and Colloidal Transport in Bacterial Cellulose Hydrogels. Biomacromolecules 2022, 23, 2404–2414. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.L.; Guo, Y.J.; Long, G.D.; Tang, Y.L.; Tang, Q.B.; Zu, X.T.; Ma, J.Y.; Du, B.; Torun, H.; Fu, Y.Q. Integrated sensing layer of bacterial cellulose and polyethyleneimine to achieve high sensitivity of ST-cut quartz surface acoustic wave formaldehyde gas sensor. J. Hazard. Mater. 2020, 388, 121743. [Google Scholar] [CrossRef]
- Wang, N.; Wang, X.; Jia, Y.; Li, X.; Yu, J.; Ding, B. Electrospun nanofibrous chitosan membranes modified with polyethyleneimine for formaldehyde detection. Carbohydr. Polym. 2014, 108, 192–199. [Google Scholar] [CrossRef]
- Badr, I.H.; Gouda, M.; Abdel-Sattar, R.; Sayour, H.E. Reduction of thrombogenicity of PVC-based sodium selective membrane electrodes using heparin-modified chitosan. Carbohydr. Polym. 2014, 99, 783–790. [Google Scholar] [CrossRef]
- Antony, R.; Arun, T.; Manickam, S.T.D. A review on applications of chitosan-based Schiff bases. Int. J. Biol. Macromol. 2019, 129, 615–633. [Google Scholar] [CrossRef]
- Hosseini, E.S.; Manjakkal, L.; Shakthivel, D.; Dahiya, R. Glycine-Chitosan-Based Flexible Biodegradable Piezoelectric Pressure Sensor. ACS Appl. Mater. Interfaces 2020, 12, 9008–9016. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Zhang, D.; Zhang, Y.; Lu, W.; Wang, W.; Chen, T. Ultrafast and Efficient Detection of Formaldehyde in Aqueous Solutions Using Chitosan-based Fluorescent Polymers. ACS Sens. 2018, 3, 2394–2401. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Wan, Z.; Ouyang, X.; Qiu, X. Lignosulfonate: A Convenient Fluorescence Resonance Energy Transfer Platform for the Construction of a Ratiometric Fluorescence pH-Sensing Probe. J. Agric. Food Chem. 2019, 67, 1044–1051. [Google Scholar] [CrossRef] [PubMed]
- Mondal, A.K.; Xu, D.; Wu, S.; Zou, Q.; Huang, F.; Ni, Y. Design of Fe3+-Rich, High-Conductivity Lignin Hydrogels for Supercapacitor and Sensor Applications. Biomacromolecules 2022, 23, 766–778. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Liu, C.; Niu, N.; Chen, Z.; Li, S.; Liu, S.; Li, J. Seeking Brightness from Nature: J-Aggregation-Induced Emission in Cellulolytic Enzyme Lignin Nanoparticles. ACS Sustain. Chem. Eng. 2018, 6, 3169–3175. [Google Scholar] [CrossRef]
- Yang, L.; Zhao, H.; Li, C.P.; Fan, S.; Li, B. Dual beta-cyclodextrin functionalized Au@SiC nanohybrids for the electrochemical determination of tadalafil in the presence of acetonitrile. Biosens. Bioelectron. 2015, 64, 126–130. [Google Scholar] [CrossRef]
- Immohr, L.I.; Pein-Hackelbusch, M. Development of stereoselective e-tongue sensors considering the sensor performance using specific quality attributes—A bottom up approach. Sens. Actuators B Chem. 2017, 253, 868–878. [Google Scholar] [CrossRef]
- Celebioglu, A.; Sen, H.S.; Durgun, E.; Uyar, T. Molecular entrapment of volatile organic compounds (VOCs) by electrospun cyclodextrin nanofibers. Chemosphere 2016, 144, 736–744. [Google Scholar] [CrossRef]
- Niu, X.; Mo, Z.; Yang, X.; Sun, M.; Zhao, P.; Li, Z.; Ouyang, M.; Liu, Z.; Gao, H.; Guo, R.; et al. Advances in the use of functional composites of beta-cyclodextrin in electrochemical sensors. Mikrochim. Acta 2018, 185, 328. [Google Scholar] [CrossRef]
- Kadam, V.; Truong, Y.B.; Easton, C.; Mukherjee, S.; Wang, L.; Padhye, R.; Kyratzis, I.L. Electrospun Polyacrylonitrile/β-Cyclodextrin Composite Membranes for Simultaneous Air Filtration and Adsorption of Volatile Organic Compounds. ACS Appl. Nano Mater. 2018, 1, 4268–4277. [Google Scholar] [CrossRef]
- Hodul, J.N.; Carneiro, N.F.; Murray, A.K.; Lee, W.; Brayton, K.M.; He, X.; Flores-Hansen, C.; Zemlyanov, D.; Chiu, G.T.C.; Braun, J.E.; et al. Poly (5-carboxyindole)–β-cyclodextrin composite material for enhanced formaldehyde gas sensing. J. Mater. Sci. 2022, 57, 11460–11474. [Google Scholar] [CrossRef]
- Xiao, Z.H.; Wu, S.S.; Sun, Y.L.; Zhao, Y.L.; Wang, Y.M. Microwave-Hydrothermal Synthesis and Characterization of Graphene. Adv. Mater. Res. 2012, 602–604, 917–920. [Google Scholar] [CrossRef]
- Cao, M.; Fu, A.; Wang, Z.; Liu, J.; Kong, N.; Zong, X.; Liu, H.; Gooding, J.J. Electrochemical and Theoretical Study of π–π Stacking Interactions between Graphitic Surfaces and Pyrene Derivatives. J. Phys. Chem. C 2014, 118, 2650–2659. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Cui, L.; Wang, R.; Luo, X.; Barrow, C.J.; Yang, W. Preparation of graphene/polymer composites by direct exfoliation of graphite in functionalised block copolymer matrix. Carbon 2013, 51, 148–155. [Google Scholar] [CrossRef]
- Kongkaew, S.; Kanatharana, P.; Thavarungkul, P.; Limbut, W. A preparation of homogeneous distribution of palladium nanoparticle on poly (acrylic acid)-functionalized graphene oxide modified electrode for formalin oxidation. Electrochim. Acta 2017, 247, 229–240. [Google Scholar] [CrossRef]
- Chuang, W.Y.; Yang, S.Y.; Wu, W.J.; Lin, C.T. A Room-Temperature Operation Formaldehyde Sensing Material Printed Using Blends of Reduced Graphene Oxide and Poly(methyl methacrylate). Sensors 2015, 15, 28842–28853. [Google Scholar] [CrossRef]
- Ishihara, S.; Labuta, J.; Nakanishi, T.; Tanaka, T.; Kataura, H. Amperometric Detection of Sub-ppm Formaldehyde Using Single-Walled Carbon Nanotubes and Hydroxylamines: A Referenced Chemiresistive System. ACS Sens. 2017, 2, 1405–1409. [Google Scholar] [CrossRef] [PubMed]
- Yin, F.; Yue, W.; Li, Y.; Gao, S.; Zhang, C.; Kan, H.; Niu, H.; Wang, W.; Guo, Y. Carbon-based nanomaterials for the detection of volatile organic compounds: A review. Carbon 2021, 180, 274–297. [Google Scholar] [CrossRef]
- Emran, M.Y.; El-Safty, S.A.; Elmarakbi, A.; Reda, A.; El Sabagh, A.; Shenashen, M.A. Chipset Nanosensor Based on N-Doped Carbon Nanobuds for Selective Screening of Epinephrine in Human Samples. Adv. Mater. Interfaces 2021, 9, 2101473. [Google Scholar] [CrossRef]
- Jeong, S.; Gonzalez-Grandio, E.; Navarro, N.; Pinals, R.L.; Ledesma, F.; Yang, D.; Landry, M.P. Extraction of Viral Nucleic Acids with Carbon Nanotubes Increases SARS-CoV-2 Quantitative Reverse Transcription Polymerase Chain Reaction Detection Sensitivity. ACS Nano 2021, 15, 10309–10317. [Google Scholar] [CrossRef]
- Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-based SERS biosensor: From substrate design to sensing and bioapplication. NPG Asia Mater. 2021, 13, 8. [Google Scholar] [CrossRef]
- Xia, C.; Zhang, D.; Li, H.; Li, S.; Liu, H.; Ding, L.; Liu, X.; Lyu, M.; Li, R.; Yang, J.; et al. Single-walled carbon nanotube based SERS substrate with single molecule sensitivity. Nano Res. 2021, 15, 694–700. [Google Scholar] [CrossRef]
- Jellicoe, M.; Gibson, C.T.; Quinton, J.S.; Raston, C.L. Coiling of Single-Walled Carbon Nanotubes via Selective Topological Fluid Flow: Implications for Sensors. ACS Appl. Nano Mater. 2022, 5, 11586–11594. [Google Scholar] [CrossRef]
- Wang, C.; Li, F.; Li, J.; Cui, L.; Zhong, J.; Zhao, H.; Komarneni, S. Highly sensitive determination of niclosamide based on chitosan functionalized carbon nanotube/carbon black scaffolds with interconnected long- and short-range conductive network. J. Mater. Res. Technol. 2022, 19, 4525–4535. [Google Scholar] [CrossRef]
- Sachan, A.; Castro, M.; Choudhary, V.; Feller, J.-F. vQRS Based on Hybrids of CNT with PMMA-POSS and PS-POSS Copolymers to Reach the Sub-PPM Detection of Ammonia and Formaldehyde at Room Temperature Despite Moisture. Chemosensors 2017, 5, 22. [Google Scholar] [CrossRef]
- Dai, H.; Gong, L.; Xu, G.; Li, X.; Zhang, S.; Lin, Y.; Zeng, B.; Yang, C.; Chen, G. An electrochemical impedimetric sensor based on biomimetic electrospun nanofibers for formaldehyde. Analyst 2015, 140, 582–589. [Google Scholar] [CrossRef]
- Khan, A.A.; Rao, R.A.K.; Alam, N.; Shaheen, S. Formaldehyde sensing properties and electrical conductivity of newly synthesized Polypyrrole-zirconium(IV)selenoiodate cation exchange nanocomposite. Sens. Actuators B Chem. 2015, 211, 419–427. [Google Scholar] [CrossRef]
- Darder, M.d.M.; Bedoya, M.; Serrano, L.A.; Alba, M.Á.; Orellana, G. Fiberoptic colorimetric sensor for in situ measurements of airborne formaldehyde in workplace environments. Sens. Actuators B Chem. 2022, 353, 131099. [Google Scholar] [CrossRef]
- Zong, J.; Zhang, Y.S.; Zhu, Y.; Zhao, Y.; Zhang, W.; Zhu, Y. Rapid and highly selective detection of formaldehyde in food using quartz crystal microbalance sensors based on biomimetic poly-dopamine functionalized hollow mesoporous silica spheres. Sens. Actuators B Chem. 2018, 271, 311–320. [Google Scholar] [CrossRef]
- Liu, C.; Duan, Z.; Zhang, B.; Zhao, Y.; Yuan, Z.; Zhang, Y.; Wu, Y.; Jiang, Y.; Tai, H. Local Gaussian process regression with small sample data for temperature and humidity compensation of polyaniline-cerium dioxide NH3 sensor. Sens. Actuators B Chem. 2023, 378, 133113. [Google Scholar] [CrossRef]
Types | Materials | Sensitive | Respond Time | LOD | References |
---|---|---|---|---|---|
Resistance | PANI | Not mention | Not mention | 400 ppb | [82] |
QCM | PDA | 1400 Hz/ppm | 8.3 s | 100 ppb | [83] |
MEMS | PEI | 1,216,000 Hz/ppm | Not mention | 37 ppb | [57] |
Resistance | MIP | Not mention | 2.5 × 10−5 s | 30 ppb | [88] |
QCM | MIP | Not mention | Not mention | 500 ppb | [89] |
QCM | MIP | Not mention | 28 s | 152 ppb | [86] |
Resistance | PET/TiO2 | Not mention | Not mention | 25 ppb | [90] |
QCM | PEI/PA6 | Not mention | <150 s | 50 ppb | [68] |
Colorimetric | PEI/PSMA | Not mention | 60 s | 500 ppb | [102] |
QCM | PEI/BC | 3560 Hz/ppm | Not mention | 100 ppb | [107] |
QCM | PEI/chitosan | Not mention | Not mention | 5 ppm | [111] |
Resistance | PMMA/graphene | Not mention | Not mention | 10 ppb | [20] |
MEMS | PEI/SW-CNT | Not mention | <60 s | 24 ppb | [76] |
MEMS | PEI/MW-CNT | 6,220,000 HZ/ppm | Not mention | 60 ppb | [74] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Min, Y.; Yuan, C.; Fu, D.; Liu, J. Formaldehyde Gas Sensors Fabricated with Polymer-Based Materials: A Review. Chemosensors 2023, 11, 134. https://doi.org/10.3390/chemosensors11020134
Min Y, Yuan C, Fu D, Liu J. Formaldehyde Gas Sensors Fabricated with Polymer-Based Materials: A Review. Chemosensors. 2023; 11(2):134. https://doi.org/10.3390/chemosensors11020134
Chicago/Turabian StyleMin, Yuru, Chenyao Yuan, Donglei Fu, and Jingquan Liu. 2023. "Formaldehyde Gas Sensors Fabricated with Polymer-Based Materials: A Review" Chemosensors 11, no. 2: 134. https://doi.org/10.3390/chemosensors11020134
APA StyleMin, Y., Yuan, C., Fu, D., & Liu, J. (2023). Formaldehyde Gas Sensors Fabricated with Polymer-Based Materials: A Review. Chemosensors, 11(2), 134. https://doi.org/10.3390/chemosensors11020134