Microplotter Printing of Co3O4 Films as Receptor Component of Hydrogen Sulfide-Sensitive Gas Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Oxide Nanopowder Preparation
2.3. Microplotter Printing of Co3O4 Film
2.4. Instrumentation
3. Results and Discussion
3.1. Characterization of the Intermediate Product and the Obtained Oxide Nanopowder
3.2. Characterization of the Printed Co3O4 Film
3.3. Chemosensory Properties of Co3O4 Film
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Raval, D.; Gupta, S.K.; Gajjar, P.N. Detection of H2S, HF and H2 Pollutant Gases on the Surface of Penta-PdAs2 Monolayer Using DFT Approach. Sci. Rep. 2023, 13, 699. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, G.; Jiang, Y.; Wang, X.; Long, F.; Cai, T. A Sensor Based on High-Sensitivity Multi-Pass Resonant Photoacoustic Spectroscopy for Detection of Hydrogen Sulfide. Opt. Laser Technol. 2023, 159, 108884. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Bocharova, V.A.; Kozodaev, M.G.; Markeev, A.M.; Lizunova, A.A.; Volkov, I.A.; Simonenko, E.P.; et al. Microextrusion Printing of Gas-Sensitive Planar Anisotropic NiO Nanostructures and Their Surface Modification in an H2S Atmosphere. Appl. Surf. Sci. 2022, 578, 151984. [Google Scholar] [CrossRef]
- Liu, Y.; Zhou, X.; Shi, H. Sulfur Cycle by In Situ Analysis in the Sediment Biofilm of a Sewer System. J. Environ. Eng. 2016, 142, C4015011. [Google Scholar] [CrossRef]
- Yin, X.; Gao, M.; Miao, R.; Zhang, L.; Zhang, X.; Liu, L.; Shao, X.; Tittel, F.K. Near-Infrared Laser Photoacoustic Gas Sensor for Simultaneous Detection of CO and H2S. Opt. Express 2021, 29, 34258. [Google Scholar] [CrossRef]
- Guo, Y.; Qiu, X.; Li, N.; Feng, S.; Cheng, T.; Liu, Q.; He, Q.; Kan, R.; Yang, H.; Li, C. A Portable Laser-Based Sensor for Detecting H2S in Domestic Natural Gas. Infrared Phys. Technol. 2020, 105, 103153. [Google Scholar] [CrossRef]
- Pan, Y.; Zhao, J.; Lu, P.; Sima, C.; Liu, D. Recent Advances in Light-Induced Thermoelastic Spectroscopy for Gas Sensing: A Review. Remote Sens. 2022, 15, 69. [Google Scholar] [CrossRef]
- John, R.A.B.; Ruban Kumar, A. A Review on Resistive-Based Gas Sensors for the Detection of Volatile Organic Compounds Using Metal-Oxide Nanostructures. Inorg. Chem. Commun. 2021, 133, 108893. [Google Scholar] [CrossRef]
- Jeong, S.Y.; Kim, J.S.; Lee, J.H. Rational Design of Semiconductor-Based Chemiresistors and Their Libraries for Next-Generation Artificial Olfaction. Adv. Mater. 2020, 32, 2002075. [Google Scholar] [CrossRef] [PubMed]
- Galstyan, V.; Moumen, A.; Kumarage, G.W.C.; Comini, E. Progress towards Chemical Gas Sensors: Nanowires and 2D Semiconductors. Sens. Actuators B Chem. 2022, 357, 131466. [Google Scholar] [CrossRef]
- Chen, F.; Zhang, Y.; Wang, D.; Wang, T.; Zhang, J.; Zhang, D. High Performance Ammonia Gas Sensor Based on Electrospinned Co3O4 Nanofibers Decorated with Hydrothermally Synthesized MoTe2 Nanoparticles. J. Alloy. Compd. 2022, 923, 166355. [Google Scholar] [CrossRef]
- Mandal, S.; Rakibuddin, M.; Ananthakrishnan, R. Strategic Synthesis of SiO2-Modified Porous Co3O4 Nano-Octahedra Through the Nanocoordination Polymer Route for Enhanced and Selective Sensing of H2 Gas over NOx. ACS Omega 2018, 3, 648–661. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vetter, S.; Haffer, S.; Wagner, T.; Tiemann, M. Nanostructured Co3O4 as a CO Gas Sensor: Temperature-Dependent Behavior. Sens. Actuators B Chem. 2015, 206, 133–138. [Google Scholar] [CrossRef]
- Cheng, L.; He, Y.; Gong, M.; He, X.; Ning, Z.; Yu, H.; Jiao, Z. MOF-Derived Synthesis of Co3O4 Nanospheres with Rich Oxygen Vacancies for Long-Term Stable and Highly Selective n-Butanol Sensing Performance. J. Alloy. Compd. 2021, 857, 158205. [Google Scholar] [CrossRef]
- Fan, X.; Xu, Y.; Ma, C.; He, W. In-Situ Growth of Co3O4 Nanoparticles Based on Electrospray for an Acetone Gas Sensor. J. Alloy. Compd. 2021, 854, 157234. [Google Scholar] [CrossRef]
- Liu, H.; Jin, S.; Zhang, K.; Jiang, Y.; Feng, Y.; Li, D.; Tang, P. Tuning the Sensing Selectivity of Mesoporous Hierarchical Ti-Doped Co3O4 to Toluene and Xylene via Controlling the Oxygen Defects. Appl. Surf. Sci. 2023, 614, 156079. [Google Scholar] [CrossRef]
- Yu, H.X.; Guo, C.Y.; Zhang, X.F.; Xu, Y.M.; Cheng, X.L.; Gao, S.; Huo, L.H. Recent Development of Hierarchical Metal Oxides Based Gas Sensors: From Gas Sensing Performance to Applications. Adv. Sustain. Syst. 2022, 6, 1–21. [Google Scholar] [CrossRef]
- Mirzaei, A.; Ansari, H.R.; Shahbaz, M.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Metal Oxide Semiconductor Nanostructure Gas Sensors with Different Morphologies. Chemosensors 2022, 10, 289. [Google Scholar] [CrossRef]
- Lei, Q.; Li, H.; Zhang, H.; Wang, J.; Fan, W.; Cai, L. Three-Dimensional Hierarchical CuO Gas Sensor Modified by Au Nanoparticles. J. Semicond. 2019, 40, 22101. [Google Scholar] [CrossRef]
- Shin, H.; Ahn, J.; Kim, D.H.; Ko, J.; Choi, S.J.; Penner, R.M.; Kim, I.D. Rational Design Approaches of Two-Dimensional Metal Oxides for Chemiresistive Gas Sensors: A Comprehensive Review. MRS Bull. 2021, 46, 1080–1094. [Google Scholar] [CrossRef]
- Gupta, V.K.; Alharbie, N.S.; Agarwal, S.; Grachev, V.A. New Emerging One Dimensional Nanostructure Materials for Gas Sensing Application: A Mini Review. Curr. Anal. Chem. 2019, 15, 131–135. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, P.; Gupta, G. Dimension Dependency of Tungsten Oxide for Efficient Gas Sensing. Environ. Sci. Nano 2022, 9, 40–60. [Google Scholar] [CrossRef]
- Tomić, M.; Šetka, M.; Vojkůvka, L.; Vallejos, S. Vocs Sensing by Metal Oxides, Conductive Polymers, and Carbon-Based Materials. Nanomaterials 2021, 11, 552. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Q.; Guo, X.; Wang, C.; Jia, L.; Zhao, Z.; Yang, R.; Wang, P.; Deng, Q. Polyvinylpyrrolidone-Mediated Co3O4 Microspheres Assembled in Size-Tunable Submicron Spheres with Porous Core-Shell Structure for High-Performance Gases Sensing. J. Alloy. Compd. 2023, 935, 167976. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Bocharova, V.A.; Simonenko, N.P.; Gorobtsov, F.Y.; Simonenko, E.P.; Muradova, A.G.; Sevastyanov, V.G.; Kuznetsov, N.T. Formation of One-Dimensional Hierarchical MoO3 Nanostructures under Hydrothermal Conditions. Russ. J. Inorg. Chem. 2020, 65, 459–465. [Google Scholar] [CrossRef]
- Zhang, R.; Gao, S.; Zhou, T.; Tu, J.; Zhang, T. Facile Preparation of Hierarchical Structure Based on P-Type Co3O4 as Toluene Detecting Sensor. Appl. Surf. Sci. 2020, 503, 144167. [Google Scholar] [CrossRef]
- Li, K.; Chang, X.; Qiao, X.; Yu, S.; Li, X.; Xia, F.; Xue, Q. Bimetallic Metal–Organic Frameworks Derived Hierarchical Flower-like Zn-Doped Co3O4 for Enhanced Acetone Sensing Properties. Appl. Surf. Sci. 2021, 565, 150520. [Google Scholar] [CrossRef]
- Hao, F.; Zhang, Z.; Yin, L. Co3O4/Carbon Aerogel Hybrids as Anode Materials for Lithium-Ion Batteries with Enhanced Electrochemical Properties. ACS Appl. Mater. Interfaces 2013, 5, 8337–8344. [Google Scholar] [CrossRef]
- Wang, X.; Sumboja, A.; Khoo, E.; Yan, C.; Lee, P.S. Cryogel Synthesis of Hierarchical Interconnected Macro-/Mesoporous Co3O4 with Superb Electrochemical Energy Storage. J. Phys. Chem. C 2012, 116, 4930–4935. [Google Scholar] [CrossRef]
- Kim, G.; Kim, B.-H. One-Dimensional Hierarchical Porous Carbon Nanofibers with Cobalt Oxide in a Hollow Channel for Electrochemical Applications. J. Alloy. Compd. 2022, 910, 164886. [Google Scholar] [CrossRef]
- Li, S.; Zhang, J.; Chao, H.; Tan, X.; Wu, X.; He, S.; Liu, H.; Wu, M. High Energy Density Lithium-Ion Capacitor Enabled by Nitrogen-Doped Amorphous Carbon Linked Hierarchically Porous Co3O4 Nanofibers Anode and Porous Carbon Polyhedron Cathode. J. Alloy. Compd. 2022, 918, 165726. [Google Scholar] [CrossRef]
- Yin, X.; Liu, H.; Cheng, C.; Li, K.; Lu, J. MnO2 Nanosheets Decorated MOF-Derived Co3O4 Triangle Nanosheet Arrays for High-Performance Supercapacitors. Mater. Technol. 2022, 37, 2188–2193. [Google Scholar] [CrossRef]
- Sun, Y.; Wang, C.; Qin, S.; Pan, F.; Li, Y.; Wang, Z.; Qin, C. Co3O4 Nanopetals Grown on the Porous CuO Network for the Photocatalytic Degradation. Nanomaterials 2022, 12, 2850. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Wang, Y.; Yang, H.; Chu, P.K. Hierarchical CoMoO4@Co3O4 Nanocomposites on an Ordered Macro-Porous Electrode Plate as a Multi-Dimensional Electrode in High-Performance Supercapacitors. J. Mater. Chem. A 2017, 5, 17312–17324. [Google Scholar] [CrossRef]
- Yi, H.; Zhang, X.; Zheng, R.; Song, S.; An, Q.; Yang, H. Rich Se Nanoparticles Modified Cobalt Carbonate Hydroxide as an Efficient Electrocatalyst for Boosted Hydrogen Evolution in Alkaline Conditions. Appl. Surf. Sci. 2021, 565, 150505. [Google Scholar] [CrossRef]
- Wijitwongwan, R.; Intasa-Ard, S.; Ogawa, M. Preparation of Layered Double Hydroxides toward Precisely Designed Hierarchical Organization. ChemEngineering 2019, 3, 68. [Google Scholar] [CrossRef] [Green Version]
- Wei, C.; Yan, X.; Zhou, Y.; Xu, W.; Gan, Y.; Zhang, Y.; Zhang, N. Morphological Control of Layered Double Hydroxides Prepared by Co-Precipitation Method. Crystals 2022, 12, 1713. [Google Scholar] [CrossRef]
- Jiang, W.; Pacella, M.S.; Athanasiadou, D.; Nelea, V.; Vali, H.; Hazen, R.M.; Gray, J.J.; McKee, M.D. Chiral Acidic Amino Acids Induce Chiral Hierarchical Structure in Calcium Carbonate. Nat. Commun. 2017, 8, 15066. [Google Scholar] [CrossRef]
- Yang, H.; Wang, Y.; Liang, T.; Deng, Y.; Qi, X.; Jiang, H.; Wu, Y.; Gao, H. Hierarchical Porous Calcium Carbonate Microspheres as Drug Delivery Vector. Prog. Nat. Sci. Mater. Int. 2017, 27, 674–677. [Google Scholar] [CrossRef]
- Huang, Y.; Huang, Y.; Li, K.; Chen, W.; Wu, X.; Wu, W.; Huang, L.; Zhao, Q. Synthesis and Electrochemical Properties of NixCo3−xO4 with Porous Hierarchical Structures for Na-Ion Batteries. J. Electron. Mater. 2020, 49, 5508–5522. [Google Scholar] [CrossRef]
- Liu, H.; Zhu, G.; Zhang, L.; Qu, Q.; Shen, M.; Zheng, H. Controllable Synthesis of Spinel Lithium Nickel Manganese Oxide Cathode Material with Enhanced Electrochemical Performances through a Modified Oxalate Co-Precipitation Method. J. Power Sources 2015, 274, 1180–1187. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Vlasov, I.S.; Solovey, V.R.; Shelaev, A.V.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Kozodaev, M.G.; et al. Microplotter Printing of Planar Solid Electrolytes in the CeO2–Y2O3 System. J. Colloid Interface Sci. 2021, 588, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Cao, Y.; Chu, Y.; Liu, M.; Snyder, K.; MacKenzie, D.; Cao, C. Additive Manufacturing of Batteries. Adv. Funct. Mater. 2020, 30, 1906244. [Google Scholar] [CrossRef]
- Zhang, H.; Moon, S.K.; Ngo, T.H. 3D Printed Electronics of Non-Contact Ink Writing Techniques: Status and Promise. Int. J. Precis. Eng. Manuf. Technol. 2020, 7, 511–524. [Google Scholar] [CrossRef]
- Rieu, M.; Camara, M.; Tournier, G.; Viricelle, J.-P.; Pijolat, C.; de Rooij, N.F.; Briand, D. Fully Inkjet Printed SnO2 Gas Sensor on Plastic Substrate. Sens. Actuators B Chem. 2016, 236, 1091–1097. [Google Scholar] [CrossRef] [Green Version]
- Homenick, C.M.; James, R.; Lopinski, G.P.; Dunford, J.; Sun, J.; Park, H.; Jung, Y.; Cho, G.; Malenfant, P.R.L. Fully Printed and Encapsulated SWCNT-Based Thin Film Transistors via a Combination of R2R Gravure and Inkjet Printing. ACS Appl. Mater. Interfaces 2016, 8, 27900–27910. [Google Scholar] [CrossRef] [Green Version]
- Simonenko, E.P.; Mokrushin, A.S.; Simonenko, N.P.; Voronov, V.A.; Kim, V.P.; Tkachev, S.V.; Gubin, S.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Ink-Jet Printing of a TiO2–10%ZrO2 Thin Film for Oxygen Detection Using a Solution of Metal Alkoxoacetylacetonates. Thin Solid Film. 2019, 670, 46–53. [Google Scholar] [CrossRef]
- Kiaee, M.M.; Maeder, T.; Brugger, J. Inkjet-Printed Composites for Room-Temperature VOC Sensing: From Ink Formulation to Sensor Characterization. Adv. Mater. Technol. 2021, 6, 1–11. [Google Scholar] [CrossRef]
- Zhu, Y.; Yu, L.; Wu, D.; Lv, W.; Wang, L. A High-Sensitivity Graphene Ammonia Sensor via Aerosol Jet Printing. Sens. Actuators A Phys. 2021, 318, 112434. [Google Scholar] [CrossRef]
- Cabañas, M.V.; Delabouglise, G.; Labeau, M.; Vallet-Regí, M. Application of a Modified Ultrasonic Aerosol Device to the Synthesis of SnO2 and Pt/SnO2 for Gas Sensors. J. Solid State Chem. 1999, 144, 86–90. [Google Scholar] [CrossRef]
- Arsenov, P.V.; Vlasov, I.S.; Efimov, A.A.; Minkov, K.N.; Ivanov, V. V Aerosol Jet Printing of Platinum Microheaters for the Application in Gas Sensors. IOP Conf. Ser. Mater. Sci. Eng. 2019, 473, 012042. [Google Scholar] [CrossRef]
- Sahm, T.; Rong, W.; Bârsan, N.; Mädler, L.; Weimar, U. Sensing of CH4, CO and Ethanol with in Situ Nanoparticle Aerosol-Fabricated Multilayer Sensors. Sens. Actuators B Chem. 2007, 127, 63–68. [Google Scholar] [CrossRef]
- Zhang, H.; Moon, S.K.; Ngo, T.H. Hybrid Machine Learning Method to Determine the Optimal Operating Process Window in Aerosol Jet 3D Printing. ACS Appl. Mater. Interfaces 2019, 11, 17994–18003. [Google Scholar] [CrossRef] [PubMed]
- Gupta, A.A.; Arunachalam, S.; Cloutier, S.G.; Izquierdo, R. Fully Aerosol-Jet Printed, High-Performance Nanoporous ZnO Ultraviolet Photodetectors. ACS Photonics 2018, 5, 3923–3929. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Vlasov, I.S.; Volkov, I.A.; Kuznetsov, N.T. Microplotter Printing of Hierarchically Organized Planar NiCo2O4 Nanostructures. Russ. J. Inorg. Chem. 2022, 67, 1848–1854. [Google Scholar] [CrossRef]
- Fedorov, F.S.; Simonenko, N.P.; Trouillet, V.; Volkov, I.A.; Plugin, I.A.; Rupasov, D.P.; Mokrushin, A.S.; Nagornov, I.A.; Simonenko, T.L.; Vlasov, I.S.; et al. Microplotter-Printed On-Chip Combinatorial Library of Ink-Derived Multiple Metal Oxides as an “Electronic Olfaction” Unit. ACS Appl. Mater. Interfaces 2020, 12, 56135–56150. [Google Scholar] [CrossRef]
- Sobolewski, P.; Goszczynska, A.; Aleksandrzak, M.; Urbas, K.; Derkowska, J.; Bartoszewska, A.; Podolski, J.; Mijowska, E.; Fray, M. El A Biofunctionalizable Ink Platform Composed of Catechol-Modified Chitosan and Reduced Graphene Oxide/Platinum Nanocomposite. Beilstein J. Nanotechnol. 2017, 8, 1508–1514. [Google Scholar] [CrossRef] [Green Version]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Simonenko, E.P.; Kuznetsov, N.T. Microextrusion Printing of Multilayer Hierarchically Organized Planar Nanostructures Based on NiO, (CeO2)0.8(Sm2O3)0.2 and La0.6Sr0.4Co0.2Fe0.8O3 − δ. Micromachines 2022, 14, 3. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Grafov, O.Y.; Simonenko, E.P.; Kuznetsov, N.T. Synthesis of ((CeO2)0.8(Sm2O3)0.2)@NiO Core-Shell Type Nanostructures and Microextrusion Printing of a Composite Anode Based on Them. Materials 2022, 15, 8918. [Google Scholar] [CrossRef]
- Gorobtsov, P.Y.; Mokrushin, A.S.; Simonenko, T.L.; Simonenko, N.P.; Simonenko, E.P.; Kuznetsov, N.T. Microextrusion Printing of Hierarchically Structured Thick V2O5 Film with Independent from Humidity Sensing Response to Benzene. Materials 2022, 15, 7837. [Google Scholar] [CrossRef]
- Fisenko, N.A.; Solomatov, I.A.; Simonenko, N.P.; Mokrushin, A.S.; Gorobtsov, P.Y.; Simonenko, T.L.; Volkov, I.A.; Simonenko, E.P.; Kuznetsov, N.T. Atmospheric Pressure Solvothermal Synthesis of Nanoscale SnO2 and Its Application in Microextrusion Printing of a Thick-Film Chemosensor Material for Effective Ethanol Detection. Sensors 2022, 22, 9800. [Google Scholar] [CrossRef] [PubMed]
- Simonenko, N.P.; Kadyrov, N.S.; Simonenko, T.L.; Simonenko, E.P.; Sevastyanov, V.G.; Kuznetsov, N.T. Preparation of ZnS Nanopowders and Their Use in the Additive Production of Thick-Film Structures. Russ. J. Inorg. Chem. 2021, 66, 1283–1288. [Google Scholar] [CrossRef]
- Seo, H.; Nishi, T.; Kishimoto, M.; Ding, C.; Iwai, H.; Saito, M.; Yoshida, H. Study of Microextrusion Printing for Enlarging Electrode–Electrolyte Interfacial Area in Anode-Supported SOFCs. ECS Trans. 2019, 91, 1923–1931. [Google Scholar] [CrossRef]
- Mokrushin, A.S.; Fisenko, N.A.; Gorobtsov, P.Y.; Simonenko, T.L.; Glumov, O.V.; Melnikova, N.A.; Simonenko, N.P.; Bukunov, K.A.; Simonenko, E.P.; Sevastyanov, V.G.; et al. Pen Plotter Printing of ITO Thin Film as a Highly CO Sensitive Component of a Resistive Gas Sensor. Talanta 2021, 221, 121455. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Cao, R.; Wu, J.; Guan, L.; Li, M.; Liu, J.; Tian, J. Directly Writing Barrier-Free Patterned Biosensors and Bioassays on Paper for Low-Cost Diagnostics. Sens. Actuators B Chem. 2019, 285, 529–535. [Google Scholar] [CrossRef]
- Liang, R.; Yonezawa, S.; Kim, J.-H.; Inoue, T. Low-Temperature Synthesis of LiCoO2 with Eutectic of Lithium Precursors via the Solid-State Reaction Method. J. Asian Ceram. Soc. 2018, 6, 332–341. [Google Scholar] [CrossRef] [Green Version]
- Vidhya, M.S.; Ravi, G.; Yuvakkumar, R.; Velauthapillai, D.; Thambidurai, M.; Dang, C.; Saravanakumar, B. Nickel–Cobalt Hydroxide: A Positive Electrode for Supercapacitor Applications. RSC Adv. 2020, 10, 19410–19418. [Google Scholar] [CrossRef]
- Rahimi, S.A.; Norouzi, P.; Ganjali, M.R. One-Step Cathodic Electrodeposition of a Cobalt Hydroxide–Graphene Nanocomposite and Its Use as a High Performance Supercapacitor Electrode Material. RSC Adv. 2018, 8, 26818–26827. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Quan, S.; Yang, L.; Liu, C.; Shi, F. Anchoring Co3O4 on BiFeO3: Achieving High Photocatalytic Reduction in Cr(VI) and Low Cobalt Leaching. J. Mater. Sci. 2019, 54, 12424–12436. [Google Scholar] [CrossRef]
- Abdallah, A.M.; Awad, R. Study of the Structural and Physical Properties of Co3O4 Nanoparticles Synthesized by Co-Precipitation Method. J. Supercond. Nov. Magn. 2020, 33, 1395–1404. [Google Scholar] [CrossRef]
- Wang, L.; Fu, J.; Zhang, Y.; Liu, X.; Yin, Y.; Dong, L.; Chen, S. Mesoporous β-Co(OH)2 Nanowafers and Nanohexagonals Obtained Synchronously in One Solution and Their Electrochemical Hydrogen Storage Properties. Prog. Nat. Sci. Mater. Int. 2016, 26, 555–561. [Google Scholar] [CrossRef]
- Sun, J.; Wang, H.; Li, Y.; Zhao, M. Porous Co3O4 Column as a High-Performance Lithium Anode Material. J. Porous Mater. 2021, 28, 889–894. [Google Scholar] [CrossRef]
- Liu, X.; Qu, B.; Zhu, F.; Gong, L.; Su, L.; Zhu, L. Sonochemical Synthesis of β-Co(OH)2 Hexagonal Nanoplates and Their Electrochemical Capacitive Behaviors. J. Alloy. Compd. 2013, 560, 15–19. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, X.; Hu, X.; Zhou, W.; Zhao, Y. Effect of Formic Acid Treatment on the Structure and Catalytic Activity of Co3O4 for N2O Decomposition. Catal. Lett. 2019, 149, 1026–1036. [Google Scholar] [CrossRef]
- Rashad, M.; Rüsing, M.; Berth, G.; Lischka, K.; Pawlis, A. CuO and Co3O4 Nanoparticles: Synthesis, Characterizations, and Raman Spectroscopy. J. Nanomater. 2013, 2013, 1–6. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ke, J.; Li, Y.; Liu, B.; Wang, L.; Xiao, H.; Wang, S. Co3O4 Quantum Dots/TiO2 Nanobelt Hybrids for Highly Efficient Photocatalytic Overall Water Splitting. Appl. Catal. B Environ. 2018, 236, 396–403. [Google Scholar] [CrossRef]
- Liu, M.; Liu, J.; Li, Z.; Wang, F. Atomic-Level Co3O4 Layer Stabilized by Metallic Cobalt Nanoparticles: A Highly Active and Stable Electrocatalyst for Oxygen Reduction. ACS Appl. Mater. Interfaces 2018, 10, 7052–7060. [Google Scholar] [CrossRef] [PubMed]
- Creazzo, F.; Galimberti, D.R.; Pezzotti, S.; Gaigeot, M.-P. DFT-MD of the (110)-Co3O4 Cobalt Oxide Semiconductor in Contact with Liquid Water, Preliminary Chemical and Physical Insights into the Electrochemical Environment. J. Chem. Phys. 2019, 150, 041721. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Navale, S.T.; Liu, C.; Gaikar, P.S.; Patil, V.B.; Sagar, R.U.R.; Du, B.; Mane, R.S.; Stadler, F.J. Solution-Processed Rapid Synthesis Strategy of Co3O4 for the Sensitive and Selective Detection of H2S. Sens. Actuators B Chem. 2017, 245, 524–532. [Google Scholar] [CrossRef] [Green Version]
- Balouria, V.; Samanta, S.; Singh, A.; Debnath, A.K.; Mahajan, A.; Bedi, R.K.; Aswal, D.K.; Gupta, S.K. Chemiresistive Gas Sensing Properties of Nanocrystalline Co3O4 Thin Films. Sens. Actuators B Chem. 2013, 176, 38–45. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Lal, P.; Dwivedi, R.; Srivastava, S.K. Sensing Mechanism in Tin Oxide-Based Thick-Film Gas Sensors. Sens. Actuators B Chem. 1994, 21, 213–218. [Google Scholar] [CrossRef]
- Simonenko, T.L.; Simonenko, N.P.; Gorobtsov, P.Y.; Mokrushin, A.S.; Solovey, V.R.; Pozharnitskaya, V.M.; Simonenko, E.P.; Glumov, O.V.; Melnikova, N.A.; Lizunova, A.A.; et al. Pen Plotter Printing of Co3O4 Thin Films: Features of the Microstructure, Optical, Electrophysical and Gas-Sensing Properties. J. Alloy. Compd. 2020, 832, 154957. [Google Scholar] [CrossRef]
- Cui, G.; Zhang, P.; Chen, L.; Wang, X.; Li, J.; Shi, C.; Wang, D. Highly Sensitive H2S Sensors Based on Cu2O/Co3O4 Nano/Microstructure Heteroarrays at and below Room Temperature. Sci. Rep. 2017, 7, 43887. [Google Scholar] [CrossRef] [Green Version]
- Shi, T.; Hou, H.; Hussain, S.; Ge, C.; Alsaiari, M.A.; Alkorbi, A.S.; Liu, G.; Alsaiari, R.; Qiao, G. Efficient Detection of Hazardous H2S Gas Using Multifaceted Co3O4/ZnO Hollow Nanostructures. Chemosphere 2022, 287, 132178. [Google Scholar] [CrossRef]
- Moon, S.; Vuong, N.M.; Lee, D.; Kim, D.; Lee, H.; Kim, D.; Hong, S.-K.; Yoon, S.-G. Co3O4–SWCNT Composites for H2S Gas Sensor Application. Sens. Actuators B Chem. 2016, 222, 166–172. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Simonenko, T.L.; Simonenko, N.P.; Mokrushin, A.S.; Gorobtsov, P.Y.; Vlasov, I.S.; Volkov, I.A.; Simonenko, E.P.; Kuznetsov, N.T. Microplotter Printing of Co3O4 Films as Receptor Component of Hydrogen Sulfide-Sensitive Gas Sensors. Chemosensors 2023, 11, 166. https://doi.org/10.3390/chemosensors11030166
Simonenko TL, Simonenko NP, Mokrushin AS, Gorobtsov PY, Vlasov IS, Volkov IA, Simonenko EP, Kuznetsov NT. Microplotter Printing of Co3O4 Films as Receptor Component of Hydrogen Sulfide-Sensitive Gas Sensors. Chemosensors. 2023; 11(3):166. https://doi.org/10.3390/chemosensors11030166
Chicago/Turabian StyleSimonenko, Tatiana L., Nikolay P. Simonenko, Artem S. Mokrushin, Philipp Yu. Gorobtsov, Ivan S. Vlasov, Ivan A. Volkov, Elizaveta P. Simonenko, and Nikolay T. Kuznetsov. 2023. "Microplotter Printing of Co3O4 Films as Receptor Component of Hydrogen Sulfide-Sensitive Gas Sensors" Chemosensors 11, no. 3: 166. https://doi.org/10.3390/chemosensors11030166
APA StyleSimonenko, T. L., Simonenko, N. P., Mokrushin, A. S., Gorobtsov, P. Y., Vlasov, I. S., Volkov, I. A., Simonenko, E. P., & Kuznetsov, N. T. (2023). Microplotter Printing of Co3O4 Films as Receptor Component of Hydrogen Sulfide-Sensitive Gas Sensors. Chemosensors, 11(3), 166. https://doi.org/10.3390/chemosensors11030166