Cross-Linked SnO2 Nanosheets Modified by Ag Nanoparticles for Formaldehyde Vapor Detection
Abstract
:1. Introduction
2. Experimental Details
2.1. Preparation of Cross-Linked SnO2 Nanosheets
2.2. Preparation of Cross-Linked Ag@SnO2 Nanosheets
2.3. Characterization
3. Results and Discussion
3.1. Characterizations
3.2. Sensing Performance of Ag@SnO2 Nanosheet Sensors
3.3. Gas-Sensing Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hui, C.; Sun, L.; Li, G.; Zou, X. Well-tuned surface oxygen chemistry of cation off-stoichiometric spinel oxides for highly selective and sensitive formaldehyde detection. Chem. Mater. 2018, 30, 2018–2027. [Google Scholar]
- Wang, D.; Wan, K.; Zhang, M.; Li, H.; Wang, P.; Wang, X.; Yang, J. Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection. Sens. Actuators B Chem. 2019, 283, 714–723. [Google Scholar] [CrossRef]
- Zhang, D.; Cao, Y.; Yang, Z.; Wu, J. Nanoheterostructure construction and DFT study of Ni-doped In2O3 nanocubes/WS2 hexagon nanosheets for formaldehyde sensing at room temperature. ACS Appl. Mater. Interfaces 2020, 12, 11979–11989. [Google Scholar] [CrossRef]
- Li, N.; Fan, Y.; Shi, Y.; Xiang, Q.; Wang, X.; Xu, J. A low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: Synthesis, sensing performance and mechanism. Sens. Actuators B Chem. 2019, 294, 106–115. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef]
- Huang, B.; Zeng, W.; Li, Y. Synthesis of ZIF-8 coating on ZnO nanorods for enhanced gas-sensing performance. Chemosensors 2022, 10, 297. [Google Scholar] [CrossRef]
- Deng, Z.; Zhang, Y.; Xu, D.; Zi, B.; Zeng, J.; Lu, Q.; Xiong, K.; Zhang, J.; Zhao, J.; Liu, Q. Ultrasensitive formaldehyde sensor based on SnO2 with rich adsorbed oxygen derived from a metal organic framework. ACS Sens. 2022, 7, 2577–2588. [Google Scholar] [CrossRef]
- Meng, F.; Qi, T.; Zhang, J.; Zhu, H.; Yuan, Z.; Liu, C.; Qin, W.; Ding, M. MoS2-templated porous hollow MoO3 microspheres for highly selective ammonia sensing via a Lewis acid-base interaction. IEEE Trans. Ind. Electron. 2022, 69, 960–970. [Google Scholar] [CrossRef]
- Li, Q.; Zeng, W.; Zhou, Q.; Wang, Z. Highly sensitive ethanol sensing using NiO hollow spheres synthesized via hydrothermal method. Chemosensors 2022, 10, 341. [Google Scholar] [CrossRef]
- Ou, Y.; Zhu, G.; Liu, P.; Jia, Y.; Zhu, L.; Nie, J.; Zhang, S.; Zhang, W.; Gao, J.; Lu, H.; et al. Anchoring platinum clusters onto oxygen vacancy-modified In2O3 for ultraefficient, low-temperature, highly sensitive, and stable detection of formaldehyde. ACS Sens. 2022, 7, 1201–1212. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Liu, B.; Li, P.; Kang, W.; Zhang, Y. High sensitivity and anti-humidity gas sensor for nitrogen dioxide based on Ce/SnO2 nanomaterials. Sensor Actuat. A-Phys. 2022, 344, 113717. [Google Scholar]
- Xu, R.; Zhang, L.; Li, M.; Yin, Y.; Yin, J.; Zhu, M.; Chen, J.; Wang, Y.; Bie, L. Ultrathin SnO2 nanosheets with dominant high-energy {001} facets for low temperature formaldehyde gas sensor. Sens. Actuators B Chem. 2019, 289, 186–194. [Google Scholar] [CrossRef]
- Yang, T.; Zhu, M.; Gu, K.; Zhai, C.; Zhao, Q.; Yang, X.; Zhang, M. Facile synthesis of SnO2 nanoparticles for improved formaldehyde detection. New J. Chem. 2018, 16, 3185–14014. [Google Scholar]
- Tang, Y.; Han, Z.; Qi, Y.; Yang, Z.; Han, H.; Jiang, Y.; Zhang, X.; Wu, L.; Wang, Z.; Liu, J.; et al. Enhanced ppb-level formaldehyde sensing performance over Pt deposited SnO2 nanospheres. J. Alloy. Compd. 2022, 899, 163230. [Google Scholar] [CrossRef]
- Tonezzer, M. Selective gas sensor based on one single SnO2 nanowire. Sens. Actuators B Chem. 2019, 288, 53–59. [Google Scholar] [CrossRef]
- Sharma, A.P.; Dhakal, P.; Pradhan, D.K.; Behera, M.K.; Xiao, B.; Bahoura, M. Fabrication and characterization of SnO2 nanorods for room temperature gas sensors. Aip Adv. 2018, 8, 095219. [Google Scholar] [CrossRef]
- Su, P.; Li, W.; Zhang, J.; Xie, X. Chemiresistive gas sensor based on electrospun hollow SnO2 nanotubes for detecting NO at the ppb level. Vacuum 2022, 199, 110961. [Google Scholar] [CrossRef]
- Xiang, C.; Chen, T.; Zhao, Y.; Sun, J.; Jiang, K.; Li, Y.; Zhu, X.; Zhang, X.; Zhang, N.; Guo, R. Facile hydrothermal synthesis of SnO2 nanoflowers for low-Concentration formaldehyde detection. Nanomaterials 2022, 12, 2133. [Google Scholar] [CrossRef]
- Li, Y.; Chen, N.; Deng, D.; Xing, X.; Xiao, X.; Wang, Y. Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens. Actuators B Chem. 2017, 238, 264–273. [Google Scholar] [CrossRef]
- Hu, J.; Wang, H.; Chen, M.; Zhang, Y.; Zhao, X.; Zhang, D.; Lu, Q.; Zhang, J.; Liu, Q. Constructing hierarchical SnO2 nanoflowers for enhanced formaldehyde sensing performances. Mater. Lett. 2020, 263, 126843. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, B.; Yao, S.; Li, H.; Chen, C.; Bala, H.; Zhang, Z. Improved triethylamine sensing properties of fish-scale-like porous SnO2 nanosheets by decorating with Ag nanoparticles. J. Materiomics 2022, 8, 518–525. [Google Scholar] [CrossRef]
- Yu, H.; Yang, T.; Zhao, R.; Xiao, B.; Li, Z.; Zhang, M. Fast formaldehyde gas sensing response properties of ultrathin SnO2 nanosheets. RSC Adv. 2015, 126, 104574–104581. [Google Scholar] [CrossRef]
- Han, J.; Zheng, Y.; Fan, M. Qualitative and quantitative recognition method of drug-producing chemicals based on SnO2 gas Sensor with dynamic measurement and PCA weak separation. Sens. Actuators B Chem. 2021, 348, 130698. [Google Scholar]
- Zhao, R.; Zhang, X.; Peng, S.; Hong, P.; Zou, T.; Wang, Z.; Xing, X.; Yang, Y.; Wang, Y. Shaddock peels as bio-templates synthesis of Cd-doped SnO2 nanofibers: A high performance formaldehyde sensing material. J. Alloys Compd. 2020, 813, 152170. [Google Scholar] [CrossRef]
- Li, X.; Liu, W.; Huang, B.; Liu, H.; Li, X. Layered SnSe2 microflakes and SnSe2/SnO2 heterojunctions for low-temperature chemiresistive-type gas sensing. J. Mater. Chem. C 2020, 8, 15804–15815. [Google Scholar] [CrossRef]
- Meng, D.; Liu, D.; Wang, G.; Shen, Y.; San, X.; Li, M.; Meng, F. Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens. Actuators B Chem. 2018, 273, 418–428. [Google Scholar] [CrossRef]
- Kou, X.; Meng, F.; Chen, K.; Wang, T.; Sun, P.; Liu, F.; Yan, X.; Sun, Y.; Liu, F.; Shimanoe, K.; et al. High-performance acetone gas sensor based on Ru-doped SnO2 nanofibers. Sens. Actuators B Chem. 2020, 320, 128292. [Google Scholar] [CrossRef]
- Wang, F.; Hu, K.; Liu, H.; Zhao, Q.; Wang, K.; Zhang, Y. Low temperature and fast response hydrogen gas sensor with Pd coated SnO2 nanofiber rods. Int. J. Hydrogen Energ. 2020, 45, 7234–7242. [Google Scholar] [CrossRef]
- Meng, F.; Zheng, H.; Chang, Y.; Zhao, Y.; Li, M.; Wang, C.; Sun, Y.; Liu, J. One-step synthesis of Au/SnO2/RGO nanocomposites and their VOC sensing properties. IEEE Trans. Nanotechnol. 2018, 172, 212–219. [Google Scholar] [CrossRef]
- Duy, N.V.; Thai, N.X.; Ngoc, T.M.; Le, D.T.T.; Hung, C.M.; Nguyen, H.; Tonezzer, M.; Hieu, N.V.; Hoa, N.D. Design and fabrication of effective gradient temperature sensor array based on bilayer SnO2/Pt for gas classification. Sens. Actuators B Chem. 2022, 351, 130979. [Google Scholar]
- Yuan, X.; Sun, L.; Wang, J.; Liao, D.; Sun, J. Metal organic frameworks derived SnO2 microsphere doped Ag for monitoring low concentration ethanol. Mater. Sci. Semicond. Proc. 2021, 136, 106110. [Google Scholar] [CrossRef]
- Li, G.; Cheng, Z.; Xiang, Q.; Yan, L.; Wang, X.; Xu, J. Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B Chem. 2019, 283, 590–601. [Google Scholar] [CrossRef]
- Peng, S.; Hong, P.; Li, Y.; Xing, X.; Yang, Y.; Wang, Z.; Zou, T.; Wang, Y. Pt decorated SnO2 nanoparticles for high response CO gas sensor under the low operating temperature. J. Mater. Sci. Mater. Electron. 2019, 30, 3921–3932. [Google Scholar] [CrossRef]
- Liu, D.; Pan, J.; Tang, J.; Liu, W.; Bai, S.; Luo, R. Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 2019, 124, 36–43. [Google Scholar] [CrossRef]
- Ovsianytskyi, O.; Nam, Y.; Tsymbalenko, O.; Lan, P.; Moon, M.; Lee, K. Highly sensitive chemiresistive H2S gas sensor based on graphene decorated with Ag nanoparticles and charged impurities. Sens. Actuators B Chem. 2018, 257, 278–285. [Google Scholar] [CrossRef]
- Ma, X.; Gao, R.; Zhang, T.; Sun, X.; Li, T.; Gao, S.; Zhang, X.; Xu, Y.; Cheng, X.; Huo, L. Mesoporous SnO2 nanospheres sensor for fast detection of HCHO and its application in safety detection of aquatic products. Sens. Actuators B Chem. 2023, 374, 132844. [Google Scholar] [CrossRef]
- Luque, P.A.; Garrafa-Galvez, H.E.; Nava, O.; Olivas, A.; Martínez-Rosas, M.E.; Vilchis-Nestor, A.R.; Villegas-Fuentes, A.; Chinchillas-Chinchillas, M.J. Efficient sunlight and UV photocatalytic degradation of methyl orange, methylene blue and rhodamine B, using Citrus×paradisi synthesized SnO2 semiconductor nanoparticles. Ceram. Int. 2021, 47, 23861–23874. [Google Scholar] [CrossRef]
- Suriya, P.; Prabhu, M.; Kumar, E.; Jagannathan, K. Effect of Ag doping on structural, optical, complex impedance and photovoltaic properties of SnO2 nanoparticles prepared by co-precipitation method for dye sensitized solar cell application. Optik 2022, 260, 168971. [Google Scholar] [CrossRef]
- Bhangare, B.; Ramgir, N.S.; Jagtap, S.; Debnathb, A.K.; Muthe, K.P.; Terashima, C.; Aswal, D.K.; Gosavi, S.W.; Fujishima, A. XPS and Kelvin probe studies of SnO2/RGO nanohybrids based NO2 sensors. Appl. Surf. Sci. 2019, 487, 918–929. [Google Scholar] [CrossRef]
- Shi, C.; Wang, X.; Wang, Y.; Wang, T.; Li, H.; Yi, G.; Sun, G.; Zhang, Z. Synthesis, characterization, and gas-sensing properties of macroporous Ag/SnO2 composite by a template method. Mater. Sci. Semicond. Process. 2022, 138, 106256. [Google Scholar] [CrossRef]
- Re, P.; Qi, L.; You, K.; Shi, Q. Hydrothermal synthesis of hierarchical SnO2 nanostructures for improved formaldehyde gas sensing. Nanomaterials 2022, 12, 228. [Google Scholar]
- Jiao, S.; Xue, W.; Zhang, C.; Li, F.; Meng, B.; Zhan, Z. Improving the formaldehyde gas sensing performance of the ZnO/SnO2 nanoparticles by PdO decoration. J. Mater. Sci.-Mater. Electron. 2020, 31, 684–692. [Google Scholar]
- Zhu, K.M.; Ma, S.Y. Preparations of Bi-doped SnO2 hierarchical flower-shaped nanostructures with highly sensitive HCHO sensing properties. Mater. Lett. 2019, 607, 357–366. [Google Scholar] [CrossRef]
- Kim, S.; Singh, G.; Oh, M.; Lee, K. An analysis of a highly sensitive and selective hydrogen gas sensor based on a 3D Cu-doped SnO2 sensing material by efficient electronic sensor interface. ACS Sens. 2021, 6, 4145–4155. [Google Scholar] [CrossRef] [PubMed]
- Manikandan, V.; Petrila, L.; Vigneselvan, S.; Mane, R.S.; Vasile, B.; Dharmavarapu, R.; Lundgaard, S.; Juodkazis, S.; Chandrasekaran, J. A reliable chemiresistive sensor of nickel-doped tin oxide (Ni-SnO2) for sensing carbon dioxide gas and humidity. RSC Adv. 2020, 10, 3796. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, Y. Ultrasensitive and low detection limit of acetone gas sensor based on ZnO/SnO2 thick films. RSC Adv. 2020, 10, 35958. [Google Scholar] [CrossRef]
- Zhou, S.; Wang, H.; Hu, J.; Lv, T.; Rong, Q.; Zhang, Y.; Zi, B.; Chen, M.; Zhang, D.; Wei, J.; et al. Formaldehyde gas sensor with extremely high response employing cobalt-doped SnO2 ultrafine nanoparticles. Nanoscale Adv. 2022, 4, 824. [Google Scholar] [CrossRef]
- Xu, H.; Li, J.; Fu, Y.; Li, P.; Luo, W.; Tian, Y. Ag/Ag2S Nanoparticle-induced sensitization of recovered sulfurdoped SnO2 nanoparticles for SO2 detection. ACS Appl. Nano Mater. 2020, 3, 8075–8087. [Google Scholar] [CrossRef]
- Li, Z.; Li, H.; Wu, Z.; Wang, M.; Luo, J.; Torun, H.; Hu, P.; Yang, C.; Grundmann, M.; Liu, X.; et al. Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Mater. Horiz. 2019, 6, 470–506. [Google Scholar] [CrossRef]
- Tomer, V.K.; Duhan, S. Ordered mesoporous Ag-doped TiO2/SnO2 nanocomposite based highly sensitive and selective VOC sensors. J. Mater. Chem. A 2016, 4, 1033. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Weng, H.; Dong, X.; Sun, Y.; Ren, H.; Huang, J.; Joo, S.W. Cross-Linked SnO2 Nanosheets Modified by Ag Nanoparticles for Formaldehyde Vapor Detection. Chemosensors 2023, 11, 116. https://doi.org/10.3390/chemosensors11020116
Weng H, Dong X, Sun Y, Ren H, Huang J, Joo SW. Cross-Linked SnO2 Nanosheets Modified by Ag Nanoparticles for Formaldehyde Vapor Detection. Chemosensors. 2023; 11(2):116. https://doi.org/10.3390/chemosensors11020116
Chicago/Turabian StyleWeng, Huaipeng, Xumeng Dong, Yufeng Sun, Haibo Ren, Jiarui Huang, and Sang Woo Joo. 2023. "Cross-Linked SnO2 Nanosheets Modified by Ag Nanoparticles for Formaldehyde Vapor Detection" Chemosensors 11, no. 2: 116. https://doi.org/10.3390/chemosensors11020116
APA StyleWeng, H., Dong, X., Sun, Y., Ren, H., Huang, J., & Joo, S. W. (2023). Cross-Linked SnO2 Nanosheets Modified by Ag Nanoparticles for Formaldehyde Vapor Detection. Chemosensors, 11(2), 116. https://doi.org/10.3390/chemosensors11020116