Selective Label-Free Electrochemical Aptasensor Based on Carbon Nanotubes for Carbendazim Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Apparatus
2.3. Fabrication of the Aptasensor
2.4. CBZ Detection
2.5. Real Sample Preparation
3. Results and Discussion
3.1. Aptasensor Fabrication
- Surface modification of the electrode with CNT-COOH
- Covalent immobilization of the aptamer-NH2 to CNT-COOH (via EDC/NHS reaction)
- Incorporation of bovine serum albumin (BSA) to block unspecific adsorption
3.2. Carbendazim Recognition Assessment
3.3. Selectivity, Reproducibility, and Stability of the Aptasensor
3.4. Analysis of CBZ in Tomato
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cesewski, E.; Johnson, B.N. Electrochemical Biosensors for Pathogen Detection. Biosens. Bioelectron. 2020, 159, 112214. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Chen, J.; Li, B.; Tang, L. Carbendazim Residues in Vegetables in China between 2014 and 2016 and a Chronic Carbendazim Exposure Risk Assessment. Food Control 2018, 91, 20–25. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, P.; Zhao, Y.; Zhang, H. Low Dose Carbendazim Disrupts Mouse Spermatogenesis Might Be through Estrogen Receptor Related Histone and DNA Methylation. Ecotoxicol. Environ. Saf. 2019, 176, 242–249. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xiong, K.; Yang, Y.; Ye, X.; Liu, J.; Li, F. Deleterious Effects of Benomyl and Carbendazim on Human Placental Trophoblast Cells. Reprod. Toxicol. 2015, 51, 64–71. [Google Scholar] [CrossRef]
- Jiang, J.; Wu, S.; Wang, Y.; An, X.; Cai, L.; Zhao, X.; Wu, C. Carbendazim Has the Potential to Induce Oxidative Stress, Apoptosis, Immunotoxicity and Endocrine Disruption during Zebrafish Larvae Development. Toxicol. Vitr. 2015, 29, 1473–1481. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Guo, T.; Wang, Y.; Wang, A.; Zhang, M. Carbendazim: Ecological Risks, Toxicities, Degradation Pathways and Potential Risks to Human Health. Chemosphere 2022, 261, 137723. [Google Scholar] [CrossRef] [PubMed]
- Grujic, S.; Radisic, M.; Vasiljevic, T.; Lausevic, M. Determination of Carbendazim Residues in Fruit Juices by Liquid Chromatography-Tandem Mass Spectrometry. Food Addit. Contam. 2005, 22, 1132–1137. [Google Scholar] [CrossRef]
- Pourreza, N.; Rastegarzadeh, S.; Larki, A. Determination of Fungicide Carbendazim in Water and Soil Samples Using Dispersive Liquid-Liquid Microextraction and Microvolume UV-Vis Spectrophotometry. Talanta 2015, 134, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.-H.; Zhang, J.; Hong, Y.-C.; Wang, Y.-R.; Chen, X. Determination of Carbendazim in Tea Using Surface Enhanced Raman Spectroscopy. Chin. Chem. Lett. 2015, 26, 1455–1459. [Google Scholar] [CrossRef]
- Garrido Frenich, A.; Picón Zamora, D.; Martínez Vidal, J.; Martínez Galera, M. Standardization of SPE Signals in Multicomponent Analysis of Three Benzimidazolic Pesticides by Spectrofluorimetry. Anal. Chim. Acta 2003, 477, 211–222. [Google Scholar] [CrossRef]
- Takeda, S.; Fukushi, K.; Chayama, K.; Nakayama, Y.; Tanaka, Y.; Wakida, S. Simultaneous Separation and On-Line Concentration of Amitrole and Benzimidazole Pesticides by Capillary Electrophoresis with a Volatile Migration Buffer Applicable to Mass Spectrometric Detection. J. Chromatogr. A 2004, 1051, 297–301. [Google Scholar] [CrossRef]
- Rezaee, M.; Yamini, Y.; Shariati, S.; Esrafili, A.; Shamsipur, M. Dispersive Liquid–Liquid Microextraction Combined with High-Performance Liquid Chromatography-UV Detection as a Very Simple, Rapid and Sensitive Method for the Determination of Bisphenol A in Water Samples. J. Chromatogr. A 2009, 1216, 1511–1514. [Google Scholar] [CrossRef]
- Gaudin, V. Receptor-Based Electrochemical Biosensors for the Detection of Contaminants in Food Products. In Electrochemical Biosensors; Elsevier: Amsterdam, The Netherlands, 2019; pp. 307–365. ISBN 9780128164914. [Google Scholar]
- Majdinasab, M.; Mishra, R.K.; Tang, X.; Marty, J.L. Detection of Antibiotics in Food: New Achievements in the Development of Biosensors. Trends Anal. Chem. 2020, 127, 115883. [Google Scholar] [CrossRef]
- Xia, X.; He, Q.; Dong, Y.; Deng, R.; Li, J. Aptamer-Based Homogeneous Analysis for Food Control. Curr. Anal. Chem. 2020, 16, 4–13. [Google Scholar] [CrossRef]
- Oberhaus, F.V.; Frense, D.; Beckmann, D. Immobilization Techniques for Aptamers on Gold Electrodes for the Electrochemical Detection of Proteins: A Review. Biosensors 2020, 10, 45. [Google Scholar] [CrossRef] [PubMed]
- Rapini, R.; Marrazza, G. Electrochemical Aptasensors for Contaminants Detection in Food and Environment: Recent Advances. Bioelectrochemistry 2017, 118, 47–61. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Yu, Z.; Han, X.; Lai, R.Y. Electrochemical Aptamer-Based Sensors for Food and Water Analysis: A Review. Anal. Chim. Acta 2019, 1051, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Eissa, S.; Zourob, M. Selection and Characterization of DNA Aptamers for Electrochemical Biosensing of Carbendazim. Anal. Chem. 2017, 89, 3138–3145. [Google Scholar] [CrossRef]
- Zhu, C.; Liu, D.; Chen, Z.; Li, L.; You, T. An Ultra-Sensitive Aptasensor Based on Carbon Nanohorns/Gold Nanoparticles Composites for Impedimetric Detection of Carbendazim at Picogram Levels. J. Colloid Interface Sci. 2019, 546, 92–100. [Google Scholar] [CrossRef]
- Wang, R.; Qin, Y.; Liu, X.; Li, Y.; Lin, Z.; Nie, R.; Shi, Y.; Huang, H. Electrochemical Biosensor Based on Well-Dispersed Boron Nitride Colloidal Nanoparticles and DNA Aptamers for Ultrasensitive Detection of Carbendazim. ACS Omega 2021, 6, 27405–27411. [Google Scholar] [CrossRef]
- Khosropour, H.; Maeboonruan, N.; Sriprachuabwong, C.; Tuantranont, A.; Laiwattanapaisal, W. A New Double Signal on Electrochemical Aptasensor Based on Gold Nanoparticles/Graphene Nanoribbons/MOF-808 as Enhancing Nanocomposite for Ultrasensitive and Selective Detection of Carbendazim. OpenNano 2022, 8. [Google Scholar] [CrossRef]
- Cañete-Rosales, P.; Ortega, V.; Álvarez-Lueje, A.; Bollo, S.; González, M.; Ansón, A.; Martínez, M.T. Influence of Size and Oxidative Treatments of Multi-Walled Carbon Nanotubes on Their Electrocatalytic Properties. Electrochim. Acta 2012, 62, 163–171. [Google Scholar] [CrossRef]
- Zhou, J.; Pan, K.; Qu, G.; Ji, W.; Ning, P.; Tang, H. RGO/MWCNTs-COOH 3D Hybrid Network as a High-Performance Electrochemical Sensing Platform of Screen-Printed Carbon Electrodes with an Ultra-Wide Detection Range of Cd(II) and Pb(II). Chem. Eng. J. 2022, 449, 137853. [Google Scholar] [CrossRef]
- Chelly, S.; Chelly, M.; Zribi, R.; Gdoura, R.; Bouaziz-ketata, H.; Neri, G. Electrochemical Detection of Dopamine and Riboflavine on a Screen-Printed Carbon Electrode Modified by AuNPs Derived from Rhanterium Suaveolens Plant Extract. ACS Omega 2021, 6, 23666–23675. [Google Scholar] [CrossRef]
- Tabrizi, M.A.; Acedo, P. Highly Sensitive RNA-Based Electrochemical Aptasensor for the Determination of C-Reactive Protein Using Carbon Nanofiber-Chitosan Modified Screen-Printed Electrode. Nanomaterials 2022, 12, 415. [Google Scholar] [CrossRef] [PubMed]
- Cañete-Rosales, P.; González, M.; Ansón, A.; Martínez, M.T.; Yáñez, C.; Bollo, S. Electrochemical Characterization of Oligonucleotide-Carbon Nanotube Functionalized Using Different Strategies. Electrochim. Acta 2014, 140, 489–496. [Google Scholar] [CrossRef]
- Ruiz-Valdepenas Montiel, V.; Povedano, E.; Vargas, E.; Torrente-Rodríguez, R.M.; Pedrero, M.; Reviejo, A.J.; Campuzano, S.; Pingarrón, J.M. Comparison of Different Strategies for the Development of Highly Sensitive Electrochemical Nucleic Acid Biosensors Using Neither Nanomaterials nor Nucleic Acid Amplification. ACS Sens. 2018, 3, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Serafín, V.; Torrente-Rodríguez, R.M.; González-Cortés, A.; García de Frutos, P.; Sabaté, M.; Campuzano, S.; Yáñez-Sedeño, P.; Pingarrón, J.M. An Electrochemical Immunosensor for Brain Natriuretic Peptide Prepared with Screen-Printed Carbon Electrodes Nanostructured with Gold Nanoparticles Grafted through Aryl Diazonium Salt Chemistry. Talanta 2018, 179, 131–138. [Google Scholar] [CrossRef]
- Lee, J.; Park, I.S.; Kim, H.; Woo, J.S.; Choi, B.S.; Min, D.H. BSA as Additive: A Simple Strategy for Practical Applications of PNA in Bioanalysis. Biosens. Bioelectron. 2015, 69, 167–173. [Google Scholar] [CrossRef]
- Chen, Y.J.; Peng, Y.R.; Lin, H.Y.; Hsueh, T.Y.; Lai, C.S.; Hua, M.Y. Preparation and Characterization of Au/Nipc/Anti-P53/Bsa Electrode for Application as a P53 Antigen Sensor. Chemosensors 2021, 9, 17. [Google Scholar] [CrossRef]
- Farzadfard, A.; Shayeh, J.S.; Habibi-Rezaei, M.; Omidi, M. Modification of Reduced Graphene/Au-Aptamer to Develop an Electrochemical Based Aptasensor for Measurement of Glycated Albumin. Talanta 2020, 211, 120722. [Google Scholar] [CrossRef] [PubMed]
Variable | Range Tested | Selected Value |
---|---|---|
The concentration of CNT dispersion, mg/mL | 0.5–1.0–2.0 | 1.0 |
Concentration of Nafion® in the dispersion, % (v/v) | 0.05–0.1–0.2 | 0.2 |
Activation time of CNT-COOH by EDC/NHS reaction, hours | 1–2 | 1 |
The concentration of the Aptamer-NH2, μM | 1.0–5.0–10.0–20.0 | 10.0 |
The incubation time of the Aptamer-NH2, hours | 1–5–12–24–48 | 12 |
Blocking agent (BSA) | Presence and absence | Presence |
Electrode surface | SPAuNPE and SPCE | SPCE |
Electrode | Aptamer Immobilization Strategy | Aptasensor Fabrication Time | Technique | Linear Range (ng/mL) | LOD (ng/mL) | Ref. |
---|---|---|---|---|---|---|
GCE/BN/AuNPs/CP/MCH/AP-SH | Hybridization with label-oligonucleotide | MB-CP probe (1 h) + MCH (1 h) + Aptamer (overnight) | DPV | 0.10–1 · 10 5 | 0.019 | [21] |
Au/AP-SH/MCH | Self-assembly monolayer formation | Aptamer (24 h) + MCH (30 min) | EIS | 0.01–10 | 0.0082 | [19] |
GCE/CNHs/AuNPs/AP-SH/MCH | Self-assembly monolayer formation | Aptamer (10 h) + MCH (1 h) | EIS | 0.001–1 | 0.0005 | [20] |
GCE-MOF/GNR@AuNP/cAP-SH/AP/MCH | Hybridization | cAP-SH (30 min) + Hybridization (60 min) + MCH (1 h) | EIS DPV | 1.9 · 10−7–0.02 1.5 · 10−7–0.02 | 0.08 3.8 · 10−8 | [22] |
SPCE/CNT/AP-NH2/BSA | Covalent by carbodiimide reaction | EDC/NHS (1 h) + Aptamer (12 h) + BSA (1 h) | DPV | 0.19–10 | 0.83 | This work |
Sample | Added (μM) | Found (μM) | RSD (%) | Recovery (%) |
---|---|---|---|---|
Tomato | 20.0 | 20.93 ± 3.78 | 4.7 | 104.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venegas, C.J.; Rodríguez, L.; Sierra-Rosales, P. Selective Label-Free Electrochemical Aptasensor Based on Carbon Nanotubes for Carbendazim Detection. Chemosensors 2023, 11, 117. https://doi.org/10.3390/chemosensors11020117
Venegas CJ, Rodríguez L, Sierra-Rosales P. Selective Label-Free Electrochemical Aptasensor Based on Carbon Nanotubes for Carbendazim Detection. Chemosensors. 2023; 11(2):117. https://doi.org/10.3390/chemosensors11020117
Chicago/Turabian StyleVenegas, Constanza J., Luna Rodríguez, and Paulina Sierra-Rosales. 2023. "Selective Label-Free Electrochemical Aptasensor Based on Carbon Nanotubes for Carbendazim Detection" Chemosensors 11, no. 2: 117. https://doi.org/10.3390/chemosensors11020117
APA StyleVenegas, C. J., Rodríguez, L., & Sierra-Rosales, P. (2023). Selective Label-Free Electrochemical Aptasensor Based on Carbon Nanotubes for Carbendazim Detection. Chemosensors, 11(2), 117. https://doi.org/10.3390/chemosensors11020117