A Factorial Design and Simplex Optimization of a Bismuth Film Glassy Carbon Electrode for Cd(II) and Pb(II) Determination
Abstract
:1. Introduction
2. Experimental
2.1. Solution Preparation
2.2. Electrochemical Measurements
2.3. Determination of the Optimization Criterium
3. Results and Discussion
3.1. Fractional Factorial Design
Electrode No. | Edep [V] | tdep [s] | ΔE [mV] | Amplitude [mV] | Frequency [Hz] | γBi(III) [mg/L] |
---|---|---|---|---|---|---|
1 | + | + | + | + | + | + |
2 | + | + | − | + | − | − |
3 | + | − | + | − | + | − |
4 | + | − | − | − | − | + |
5 | − | + | + | − | − | + |
6 | − | + | − | − | + | − |
7 | − | − | + | + | − | − |
8 | − | − | − | + | + | + |
3.2. Simplex Optimization Procedure
3.3. Method Validation
3.4. A Comparison of Optimized BiFGCEs
3.5. Interferences
3.6. Real Sample Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Omanović, D.; Garnier, C.; Gibbon–Walsh, K.; Pižeta, I. Electroanalysis in environmental monitoring: Tracking trace metals—A mini review. Electrochem. Commun. 2015, 61, 78–83. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef] [PubMed]
- Švancara, I.; Prior, C.; Hočevar, S.B.; Wang, J. A Decade with Bismuth-Based Electrodes in Electroanalysis. Electroanalysis 2010, 22, 1405–1420. [Google Scholar] [CrossRef]
- Lu, Y.; Liang, X.; Niyungeko, C.; Zhou, J.; Xu, J.; Tian, G. A review of the identification and detection of heavy metal ions in the environment by voltammetry. Talanta 2018, 178, 324–338. [Google Scholar] [CrossRef]
- Ariño, C.; Serrano, N.; Díaz-Cruz, J.M.; Esteban, M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal. Chim. Acta 2017, 990, 11–53. [Google Scholar] [CrossRef]
- Injang, U.; Noyrod, P.; Siangproh, W.; Dungchai, W.; Motomizu, S.; Chailapakul, O. Determination of trace heavy metals in herbs by sequential injection analysis-anodic stripping voltammetry using screen-printed carbon nanotubes electrodes. Anal. Chim. Acta 2010, 668, 54–60. [Google Scholar] [CrossRef]
- Alves, G.M.S.; Rocha, L.S.; Soares, H.M.V.M. Multi-element determination of metals and metalloids in waters and wastewaters, at trace concentration level, using electroanalytical stripping methods with environmentally friendly mercury free-electrodes: A review. Talanta 2017, 175, 53–68. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G. Recent Advances in Chemically Modified Electrodes, Microfabricated Devices and Injection Systems for the Electrochemical Detection of Heavy Metals: A review. Int. J. Electrochem. Sci. 2017, 12, 8622–8641. [Google Scholar] [CrossRef]
- Wang, J.; Lu, J.; Hocevar, S.B.; Farias, P.A.M.; Ogorevc, B. Bismuth-Coated Carbon Electrodes for Anodic Stripping Voltammetry. Anal. Chem. 2000, 72, 3218–3222. [Google Scholar] [CrossRef]
- Economou, A. Bismuth-film electrodes: Recent developments and potentialities for electroanalysis. TrAC Trends Anal. Chem. 2005, 24, 334–340. [Google Scholar] [CrossRef]
- Pauliukaitė, R.; Brett, C.M.A. Characterization and Application of Bismuth-Film Modified Carbon Film Electrodes. Electroanalysis 2005, 17, 1354–1359. [Google Scholar] [CrossRef]
- Zidarič, T.; Jovanovski, V.; Menart, E.; Zorko, M.; Kolar, M.; Veber, M.; Hočevar, S. Multi-pulse galvanostatic preparation of nanostructured bismuth film electrode for trace metal detection. Sensors Actuators B Chem. 2017, 245, 720–725. [Google Scholar] [CrossRef]
- Petovar, B.; Xhanari, K.; Finšgar, M. A detailed electrochemical impedance spectroscopy study of a bismuth-film glassy carbon electrode for trace metal analysis. Anal. Chim. Acta 2018, 1004, 10–21. [Google Scholar] [CrossRef]
- Jovanovski, V.; Hrastnik, N.; Hočevar, S. Copper film electrode for anodic stripping voltammetric determination of trace mercury and lead. Electrochem. Commun. 2015, 57, 1–4. [Google Scholar] [CrossRef]
- Zhao, G.; Wang, H.; Liu, G.; Wang, Z. Box–Behnken response surface design for the optimization of electrochemical detection of cadmium by Square Wave Anodic Stripping Voltammetry on bismuth film/glassy carbon electrode. Sensors Actuators B Chem. 2016, 235, 67–73. [Google Scholar] [CrossRef]
- Zhou, H.; Hou, H.; Dai, L.; Li, Y.; Zhu, J.; Wang, L. Preparation of dendritic bismuth film electrodes and their application for detection of trace Pb (II) and Cd (II). Chin. J. Chem. Eng. 2016, 24, 410–414. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A.; Raptis, I.; Speliotis, T. Disposable microfabricated bismuth microelectrode arrays for trace metal analysis by stripping voltammetry. Procedia Eng. 2011, 25, 880–883. [Google Scholar] [CrossRef]
- Kokkinos, C.; Economou, A. Microfabricated chip integrating a bismuth microelectrode array for the determination of trace cobalt(II) by adsorptive cathodic stripping voltammetry. Sensors Actuators B Chem. 2016, 229, 362–369. [Google Scholar] [CrossRef]
- Plum, L.; Rink, L.; Haase, H. The Essential Toxin: Impact of Zinc on Human Health. Int. J. Environ. Res. Public Health 2010, 7, 1342–1365. [Google Scholar] [CrossRef] [PubMed]
- Lead in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO Press, World Health Organization: Geneva, Switzerland, 2011; Available online: https://apps.who.int/iris/bitstream/handle/10665/75370/WHO_SDE_WSH_03.04_09_eng.pdf?sequence=1&isAllowed=y (accessed on 30 September 2022).
- Cadmium in Drinking-Water, Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO Press, World Health Organization: Geneva, Switzerland, 2011; Available online: https://cdn.who.int/media/docs/default-source/wash-documents/wash-chemicals/cadmium.pdf?sfvrsn=4dd545bd_4 (accessed on 30 September 2022).
- Kefala, G. A study of bismuth-film electrodes for the detection of trace metals by anodic stripping voltammetry and their application to the determination of Pb and Zn in tapwater and human hair. Talanta 2003, 61, 603–610. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Niu, X.; Chai, Y.; Zhao, H.; Lan, M. Bismuth-based porous screen-printed carbon electrode with enhanced sensitivity for trace heavy metal detection by stripping voltammetry. Sens. Actuators B Chem. 2013, 178, 339–342. [Google Scholar] [CrossRef]
- Kefala, G.; Economou, A. Polymer-coated bismuth film electrodes for the determination of trace metals by sequential-injection analysis/anodic stripping voltammetry. Anal. Chim. Acta 2006, 576, 283–289. [Google Scholar] [CrossRef]
- Lee, S.; Park, S.-K.; Choi, E.; Piao, Y. Voltammetric determination of trace heavy metals using an electrochemically deposited graphene/bismuth nanocomposite film-modified glassy carbon electrode. J. Electroanal. Chem. 2016, 766, 120–127. [Google Scholar] [CrossRef]
- Lee, S.; Bong, S.; Ha, J.; Kwak, M.; Park, S.-K.; Piao, Y. Electrochemical deposition of bismuth on activated graphene-nafion composite for anodic stripping voltammetric determination of trace heavy metals. Sens. Actuators B Chem. 2015, 215, 62–69. [Google Scholar] [CrossRef]
- Saturno, J.; Valera, D.; Carrero, H.; Fernández, L. Electroanalytical detection of Pb, Cd and traces of Cr at micro/nano-structured bismuth film electrodes. Sensors Actuators B Chem. 2011, 159, 92–96. [Google Scholar] [CrossRef]
- Wang, J.; Lu, D.; Thongngamdee, S.; Lin, Y.; Sadik, O.A. Catalytic adsorptive stripping voltammetric measurements of trace vanadium at bismuth film electrodes. Talanta 2006, 69, 914–917. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Lee, P.; Liu, E. Graphene thin film electrodes synthesized by thermally treating co-sputtered nickel–carbon mixed layers for detection of trace lead, cadmium and copper ions in acetate buffer solutions. Thin Solid Film. 2013, 544, 341–347. [Google Scholar] [CrossRef]
- Grabarczyk, M.; Wasąg, J. Determination of trace amounts of Ga(III) by adsorptive stripping voltammetry with in situ plated bismuth film electrode. Talanta 2015, 144, 1091–1095. [Google Scholar] [CrossRef] [PubMed]
- Dabrowska, S.; Migdalski, J.; Lewenstam, A. Direct Potentiometric Determination of Hydrogen Carbonate in Mineral Waters. Electroanalysis 2017, 29, 140–145. [Google Scholar] [CrossRef]
- Bia, G.; Borgnino, L.; Ortiz, P.I.; Pfaffen, V. Multivariate optimization of square wave voltammetry using bismuth film electrode to determine atrazine. Sensors Actuators B Chem. 2014, 203, 396–405. [Google Scholar] [CrossRef]
- Finšgar, M.; Jezernik, K. The Use of Factorial Design and Simplex Optimization to Improve Analytical Performance of In Situ Film Electrodes. Sensors 2020, 20, 3921. [Google Scholar] [CrossRef]
- Oduoza, C. Simplex optimisation of electroanalytical experiments. Chemom. Intell. Lab. Syst. 1992, 17, 243–248. [Google Scholar] [CrossRef]
- The Fitness for Purpose of Analytical Methods, A Laboratory Guide to Method Validation and Related Topics, 2nd ed. 2014. Available online: https://www.eurachem.org/images/stories/Guides/pdf/MV_guide_2nd_ed_EN.pdf (accessed on 27 September 2022).
- Massart, M.; Vandeginste, B.G.M.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier: Amsterdam, The Netherlands, 1997. [Google Scholar]
- Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Antimony- based electrodes for analytical determinations. TrAC Trends Anal. Chem. 2016, 77, 203–213. [Google Scholar] [CrossRef]
- Lin, L.; Lawrence, N.S.; Thongngamdee, S.; Wang, J.; Lin, Y. Catalytic adsorptive stripping determination of trace chromium (VI) at the bismuth film electrode. Talanta 2005, 65, 144–148. [Google Scholar] [CrossRef] [PubMed]
- Tesarova, E.; Baldrianova, L.; Hocevar, S.B.; Svancara, I.; Vytras, K.; Ogorevc, B. Anodic stripping voltammetric measurement of trace heavy metals at antimony film carbon paste electrode. Electrochim. Acta 2009, 54, 1506–1510. [Google Scholar] [CrossRef]
- Bassie, T.; Siraj, K.; Tesema, T.E. Determination of Heavy Metal Ions on Glassy Carbon Electrode Modified with Antimony. Adv. Sci. Eng. Med. 2013, 5, 275–284. [Google Scholar] [CrossRef]
- Hocevar, S.B.; Švancara, I.; Ogorevc, B.; Vytřas, K. Antimony Film Electrode for Electrochemical Stripping Analysis. Anal. Chem. 2007, 79, 8639–8643. [Google Scholar] [CrossRef]
- Van Loco, J.; Elskens, M.; Croux, C.; Beernaert, H. Linearity of Calibration Curves: Use and Misuse of the Correlation Coefficient. Accredit. Qual. Assur. 2002, 7, 281–285. [Google Scholar] [CrossRef]
- Shrivastava, A.; Gupta, V.B. Methods for the Determination of Limit of Detection and Limit of Quantitation of the Analytical Methods. Chron. Young Sci. 2011, 2, 15–21. [Google Scholar] [CrossRef]
- Guidance for the Validation of Analytical Methodology and Calibration of Equipment Used for Testing of Illicit Drugs in Seized Materials and Biological Specimens, A commitment to Quality and Continuous Improvement; Laboratory and Scientific Section United Nations Office on Drugs and Crime: Vienna, Austria; New York, NY, USA, 2009; Available online: https://www.unodc.org/documents/scientific/validation_E.pdf (accessed on 27 September 2022).
- Kumar, M.; Ray, J.; Gupta, P.; Sundar, S.; Bhardwaj, A.; Gautam, S.; Jain, A.; Gaur, A.; Sigh, Y.; Singh, S.; et al. A Validated Method for Analysis Of Toxic Heavy Metal In Food Spices By ICPMS. Plant Arch. 2020, 20, 123–128. [Google Scholar]
- Alam, A.U.; Howlader, M.M.; Hu, N.-X.; Deen, M.J. Electrochemical sensing of lead in drinking water using β-cyclodextrin-modified MWCNTs. Sensors Actuators B Chem. 2019, 296, 126632. [Google Scholar] [CrossRef] [Green Version]
- Huang, W.-H.; Mai, V.-P.; Wu, R.-Y.; Yeh, K.-L.; Yang, R.-J. A Microfluidic Aptamer-Based Sensor for Detection of Mercury(II) and Lead(II) Ions in Water. Micromachines 2021, 12, 1283. [Google Scholar] [CrossRef] [PubMed]
Electrode No. | Edep [V] | tdep [s] | ΔE [mV] | Amplitude [mV] | Frequency [Hz] | γBi(III) [mg/L] |
---|---|---|---|---|---|---|
1 | −1.0 | 120 | 6 | 50 | 50 | 1.0 |
2 | −1.0 | 120 | 3 | 50 | 25 | 0.2 |
3 | −1.0 | 30 | 6 | 25 | 50 | 0.2 |
4 | −1.0 | 30 | 3 | 25 | 25 | 1.0 |
5 | −1.4 | 120 | 6 | 25 | 25 | 1.0 |
6 | −1.4 | 120 | 3 | 25 | 50 | 0.2 |
7 | −1.4 | 30 | 6 | 50 | 25 | 0.2 |
8 | −1.4 | 30 | 3 | 50 | 50 | 1.0 |
Response | Edep [V] | tdep [s] | ΔE [mV] | Amplitude [mV] | Frequency [Hz] | γBi(III) [mg/L] |
---|---|---|---|---|---|---|
OCprod | No | No | No | No | No | Yes |
OCsum | No | No | No | No | No | No |
1 slopeprod | No | No | No | No | No | No |
2 LOQprod | No | No | No | No | No | No |
3 RSDprod | No | No | No | No | No | No |
4 |100% − Re|prod | No | Yes | No | No | No | No |
5 LLCRprod | No | Yes | No | No | No | No |
6 slopesum | No | Yes | No | No | No | No |
7 LOQsum | No | Yes | No | No | No | No |
8 RSDsum | No | No | No | No | No | No |
9 |100% − Re|sum | No | Yes | No | No | No | No |
10 LLCRsum | No | No | No | No | No | No |
slopeCd(II) | No | Yes | No | No | No | No |
LOQCd(II) | No | Yes | No | No | No | No |
RSDCd(II) | No | No | No | No | No | No |
|100% − Re|Cd(II) | No | Yes | No | No | No | No |
LLCRCd(II) | No | No | No | No | No | No |
OCCd(II) | No | No | No | No | No | No |
slopePb(II) | No | Yes | No | No | No | No |
LOQPb(II) | No | Yes | No | No | No | No |
RSDPb(II) | No | No | No | No | No | No |
|100% − Re|Pb(II) | No | No | No | No | No | No |
LLCRPb(II) | No | No | Yes | No | No | No |
OCPb(II) | No | No | No | No | No | Yes |
Electrode No. | Edep [V] | tdep [s] | ΔE [mV] | Amplitude [mV] | Frequency [Hz] | γBi(III) [mg/L] | OCprod | |
---|---|---|---|---|---|---|---|---|
1 | −1.0 | 120 | 6.0 | 50.0 | 50.0 | 1.0 | 1.15 ∙ 10−10 | W5 |
2 | −1.0 | 120 | 3.0 | 50.0 | 25.0 | 0.2 | 3.58 ∙ 10−9 | |
3 | −1.0 | 30 | 6.0 | 25.0 | 50.0 | 0.2 | 1.32 ∙ 10−11 | W1 |
4 | −1.0 | 30 | 3.0 | 25.0 | 25.0 | 1.0 | 6.53 ∙ 10−11 | W4 |
5 | −1.4 | 120 | 6.0 | 25.0 | 25.0 | 1.0 | 3.68 ∙ 10−11 | W3 |
6 | −1.4 | 120 | 3.0 | 25.0 | 50.0 | 0.2 | 3.46 ∙ 10−9 | |
7 | −1.4 | 30 | 6.0 | 50.0 | 25.0 | 0.2 | 1.01 ∙ 10−9 | |
8 | −1.4 | 30 | 3.0 | 50.0 | 50.0 | 1.0 | 6.64 ∙ 10−12 | |
Simplex Optimization | ||||||||
Electrode Designation | Edep[V] | tdep[s] | ΔE [mV] | Amplitude [mV] | Frequency [Hz] | γBi(III)[mg/L] | OCprod | |
B1prod | −1.4 | 150 | 3.0 | 50.0 | 16.7 | 1.0 | 6.96 ∙ 10−12 | W2 |
B2prod | −1.0 | 30 | 6.0 | 25.0 | 50.0 | 0.2 | 1.27 ∙ 10−10 | W6 |
B3prod | −0.9 | 30 | 3.0 | 50.0 | 50.0 | 0.2 | 1.43 ∙ 10−10 | |
B4prod | −1.2 | 120 | 6.0 | 58.3 | 58.3 | 0.2 | 2.91 ∙ 10−9 | |
B5prod | −1.3 | 30 | 3.0 | 36.1 | 36.1 | 0.2 | 4.83 ∙ 10−8 | |
B6prod | −1.4 | 120 | 2.0 | 64.8 | 31.5 | 0.2 | 1.92 ∙ 10−6 |
Electrode No. | Edep [V] | tdep [s] | ΔE [mV] | Amplitude [mV] | Frequency [Hz] | γBi(III) [mg/L] | OCsum | |
---|---|---|---|---|---|---|---|---|
1 | −1.0 | 120 | 6.0 | 50.0 | 50.0 | 1.0 | 2.25 ∙ 10−5 | W3 |
2 | −1.0 | 120 | 3.0 | 50.0 | 25.0 | 0.2 | 1.32 ∙ 10−4 | |
3 | −1.0 | 30 | 6.0 | 25.0 | 50.0 | 0.2 | 1.82 ∙ 10−5 | W2 |
4 | −1.0 | 30 | 3.0 | 25.0 | 25.0 | 1.0 | 7.72 ∙ 10−5 | W6 |
5 | −1.4 | 120 | 6.0 | 25.0 | 25.0 | 1.0 | 1.41 ∙ 10−5 | W1 |
6 | −1.4 | 120 | 3.0 | 25.0 | 50.0 | 0.2 | 1.73 ∙ 10−4 | |
7 | −1.4 | 30 | 6.0 | 50.0 | 25.0 | 0.2 | 8.12 ∙ 10−5 | |
8 | −1.4 | 30 | 3.0 | 50.0 | 50.0 | 1.0 | 5.16 ∙ 10−6 | |
Simplex Optimization | ||||||||
Electrode Designation | Edep[V] | tdep[s] | ΔE [mV] | Amplitude [mV] | Frequency [Hz] | γBi(III)[mg/L] | OCsum | |
B1sum | −0.9 | 30 | 3.0 | 50.0 | 50.0 | 0.2 | 4.35 ∙ 10−5 | W5 |
B2sum | −1.2 | 120 | 2.0 | 58.3 | 25.0 | 0.7 | 1.68 ∙ 10−4 | |
B3sum | −1.3 | 30 | 0.7 | 36.1 | 16.7 | 0.2 | 4.98 ∙ 10−6 | W4 |
B4sum | −1.0 | 120 | 6.0 | 50.0 | 50.0 | 0.6 | 7.71 ∙ 10−4 | |
B5sum | −1.4 | 150 | 4.7 | 36.1 | 16.7 | 0.8 | 1.99 ∙ 10−4 | |
B6sum | −1.5 | 190 | 5.2 | 64.8 | 38.9 | 0.2 | 3.97 ∙ 10−3 |
Electrode No. | Cd(II) | Pb(II) | ||
---|---|---|---|---|
LODCd(II) [µg/L] | LOQCd(II) [µg/L] | LODPb(II) [µg/L] | LOQPb(II) [µg/L] | |
1 | 1.2 | 2.7 | 0.2 | 2.0 |
2 | 2.3 | 3.8 | 1.6 | 3.1 |
3 | 7.4 | 10.7 | 3.8 | 5.7 |
4 | 10.7 | 16.7 | 2.7 | 7.4 |
5 | 2.7 | 5.7 | 0.8 | 2.3 |
6 | 2.0 | 3.5 | 0.4 | 0.8 |
7 | 2.3 | 5.7 | 1.6 | 3.5 |
8 | 2.7 | 5.7 | 1.6 | 3.8 |
Electrode Designation | ||||
B1prod | 0.4 | 3.1 | 0.8 | 2.0 |
B2prod | 2.3 | 5.7 | 1.2 | 3.1 |
B3prod | 1.6 | 3.8 | 0.8 | 2.3 |
B4prod | 0.2 | 1.6 | 0.2 | 0.4 |
B5prod | 1.6 | 3.8 | 0.8 | 3.1 |
B6prod | 0.4 | 3.1 | 0.4 | 0.8 |
B1sum | 3.8 | 10.7 | 1.2 | 3.1 |
B2sum | 0.8 | 3.1 | 0.4 | 1.6 |
B3sum | 3.1 | 13.8 | 1.6 | 7.4 |
B4sum | 0.8 | 2.3 | 0.2 | 0.4 |
B5sum | 0.4 | 3.1 | 0.4 | 0.8 |
B6sum | 0.4 | 2.3 | 0.2 | 0.4 |
Electrode No. | γCd(II) [µg/L] | RSDCd(II) [%] | γPb(II) [µg/L] | RSDPb(II) [%] |
---|---|---|---|---|
1 | 19.4 | 44.4 | 19.4 | 21.1 |
2 | 10.7 | 15.2 | 10.7 | 12.1 |
3 | 19.4 | 9.4 | 19.4 | 5.7 |
4 | 19.4 | 7.0 | 19.4 | 6.1 |
5 | 16.7 | 43.4 | 16.7 | 8.6 |
6 | 13.8 | 17.0 | 13.8 | 6.0 |
7 | 35.7 | 1.8 | 35.7 | 2.3 |
8 | 16.7 | 25.1 | 16.7 | 9.5 |
Electrode Designation | ||||
B1prod | 19.4 | 22.7 | 19.4 | 5.9 |
B2prod | 10.7 | 10.0 | 10.7 | 7.1 |
B3prod | 7.4 | 11.6 | 7.4 | 5.1 |
B4prod | 21.9 | 25.4 | 21.9 | 5.9 |
B5prod | 13.8 | 17.6 | 13.8 | 8.2 |
B6prod | 10.7 | 26.7 | 10.7 | 5.9 |
B1sum | 10.7 | 9.4 | 10.7 | 4.3 |
B2sum | 10.7 | 19.9 | 10.7 | 3.1 |
B3sum | 19.4 | 19.1 | 19.4 | 11.6 |
B4sum | 13.8 | 24.6 | 13.8 | 9.7 |
B5sum | 10.7 | 17.0 | 10.7 | 9.0 |
B6sum | 3.8 | 39.7 | 3.8 | 5.1 |
Electrode No. | γCd(II) [µg/L] | RSDCd(II) [%] | γPb(II) [µg/L] | RSDPb(II) [%] |
---|---|---|---|---|
1 | 19.4 | 89.1 | 19.4 | 23.5 |
2 | 10.7 | 24.6 | 10.7 | 11.6 |
3 | 19.4 | 35.3 | 19.4 | 41.4 |
4 | 19.4 | 31.1 | 19.4 | 23.2 |
5 | 16.7 | 76.6 | 16.7 | 16.1 |
6 | 13.8 | 9.3 | 13.8 | 19.8 |
7 | 35.7 | 14.1 | 35.7 | 16.1 |
8 | 16.7 | 28.1 | 16.7 | 21.5 |
Electrode Designation | ||||
B1prod | 19.4 | 95.2 | 19.4 | 14.5 |
B2prod | 10.7 | 22.5 | 10.7 | 17.1 |
B3prod | 7.4 | 26.1 | 7.4 | 38.7 |
B4prod | 21.9 | 137.8 | 21.9 | 24.5 |
B5prod | 13.8 | 7.3 | 13.8 | 5.0 |
B6prod | 10.7 | 20.5 | 10.7 | 7.0 |
B1sum | 10.7 | 24.3 | 10.7 | 16.3 |
B2sum | 10.7 | 21.2 | 10.7 | 13.7 |
B3sum | 19.4 | 43.9 | 19.4 | 9.7 |
B4sum | 13.8 | 34.7 | 13.8 | 26.0 |
B5sum | 10.7 | 28.7 | 10.7 | 37.2 |
B6sum | 3.8 | 59.9 | 3.8 | 19.6 |
Electrode No. | γCd(II) [µg/L] | ReCd(II) [%] | γPb(II) [µg/L] | RePb(II) [%] |
---|---|---|---|---|
1 | 19.4 | 25.0 | 19.4 | 21.0 |
2 | 10.7 | 87.5 | 10.7 | 67.4 |
3 | 19.4 | 97.2 | 19.4 | 160.4 |
4 | 19.4 | 100.2 | 19.4 | 49.1 |
5 | 16.7 | 43.2 | 16.7 | 39.5 |
6 | 13.8 | 187.1 | 13.8 | 188.6 |
7 | 35.7 | 113.7 | 35.7 | 101.2 |
8 | 16.7 | 56.8 | 16.7 | 58.3 |
Electrode Designation | ||||
B1prod | 19.4 | 331.6 | 19.4 | 64.3 |
B2prod | 10.7 | 56.3 | 10.7 | 61.0 |
B3prod | 7.4 | 63.0 | 7.4 | 51.3 |
B4prod | 21.9 | 371.6 | 21.9 | 188.9 |
B5prod | 13.8 | 94.4 | 13.8 | 97.8 |
B6prod | 10.7 | 95.8 | 10.7 | 90.9 |
B1sum | 10.7 | 31.1 | 10.7 | 56.2 |
B2sum | 10.7 | 94.2 | 10.7 | 58.8 |
B3sum | 19.4 | 384.6 | 19.4 | 108.7 |
B4sum | 13.8 | 65.5 | 13.8 | 41.9 |
B5sum | 10.7 | 82.4 | 10.7 | 3.8 |
B6sum | 3.8 | 70.6 | 3.8 | 7.5 |
Electrode B6prod | ||
---|---|---|
Cd(II) | Pb(II) | |
LOD [µg/L] | 0.4 | 0.4 |
LOQ [µg/L] | 3.1 | 0.8 |
Linearity [µg/L] | 10.7–54.9 | 0.8–24.2 |
Sensitivity [µAL/µg] | 0.51 | 0.44 |
RSD [%] | 20.5 at 10.7 µg/L | 7.0 at 10.7 µg/L |
Re[%] | 95.8 at 10.7 µg/L | 90.9 at 10.7 µg/L |
OCprod | 1.92 ∙ 10−6 | |
Electrode B6sum | ||
Cd(II) | Pb(II) | |
LOD [µg/L] | 0.4 | 0.2 |
LOQ [µg/L] | 2.3 | 0.4 |
Linearity [µg/L] | 3.8–13.8 | 2.3–28.6 |
Sensitivity [µAL/µg] | 0.84 | 6.52 |
RSD [%] | 59.9 at 3.8 µg/L | 19.6 at 3.8 µg/L |
Re[%] | 70.6 at 3.8 µg/L | 7.5 at 3.8 µg/L |
OCsum | 3.97 ∙ 10−3 |
Interferent | Mass Concentration Ratio Cd(II):Interferent | Mass Concentration Ratio Pb(II):Interferent | ||||
---|---|---|---|---|---|---|
1:1 | 1:10 | 1:100 | 1:1 | 1:10 | 1:100 | |
Na(I) | −24.4 | −46.3 | −87.9 | −4.7 | −13.2 | −59.7 |
K(I) | −33.4 | −50.1 | −82.1 | −7.4 | −10.5 | −47.5 |
Ca(II) | −9.5 | −26.8 | −79.9 | −1.8 | −7.7 | −52.3 |
Mg(II) | −24.2 | −44.8 | −77.9 | −4.1 | −13.0 | −49.8 |
Fe(II) | −58.7 | −92.9 | * | ** | ** | * |
As(III) | 16.4 | 10.5 | −64.9 | 15.0 | 15.5 | −45.4 |
Cu(II) | −89.9 | * | * | −48.6 | −87.6 | * |
Sn(II) | −21.8 | −44.9 | −93.8 | −2.8 | −10.9 | −73.8 |
Sb(III) | −15.8 | −17.2 | −58.9 | −3.1 | −3.3 | −62.0 |
Zn(II) | −24.0 | −65.3 | −97.9 | −3.7 | −31.3 | −65.6 |
Cl− | −41.6 | −62.1 | −89.2 | −8.1 | −16.5 | −57.2 |
NO3− | −22.3 | −48.8 | −86.4 | −5.5 | −14.7 | −59.8 |
SO42− | −28.3 | −47.9 | −84.1 | −6.2 | −11.3 | −53.8 |
Interferent | Mass Concentration Ratio Cd(II):Interferent | Mass Concentration Ratio Pb(II):Interferent | ||||
---|---|---|---|---|---|---|
1:1 | 1:10 | 1:100 | 1:1 | 1:10 | 1:100 | |
Na(I) | −7.9 | −24.7 | −79.6 | 3.9 | 0.3 | −51.9 |
K(I) | −19.5 | −40.0 | −82.6 | −2.9 | −12.2 | −56.5 |
Ca(II) | −12.0 | −32.9 | −86.2 | −4.2 | −10.9 | −57.0 |
Mg(II) | −9.9 | −34.1 | −81.6 | −2.7 | −14.1 | −61.9 |
Fe(II) | −81.3 | −73.7 | * | −53.5 | * | * |
As(III) | 33.8 | 13.5 | −57.2 | 24.6 | 20.1 | −40.8 |
Cu(II) | −93.2 | * | * | −55.3 | −89.1 | * |
Sn(II) | 15.6 | −17.5 | −92.5 | 3.7 | −8.7 | −80.8 |
Sb(III) | −2.0 | −13.3 | −49.1 | −3.6 | −18.0 | −68.3 |
Zn(II) | −20.0 | −71.8 | * | 7.6 | −22.6 | −77.2 |
Cl− | −8.9 | −33.4 | −81.3 | −5.7 | −20.8 | −59.4 |
NO3− | −9.5 | −30.4 | −81.0 | −6.8 | −21.4 | −68.3 |
SO42− | −8.6 | −26.8 | −79.1 | −7.4 | −15.3 | −56.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Finšgar, M.; Rajh, B. A Factorial Design and Simplex Optimization of a Bismuth Film Glassy Carbon Electrode for Cd(II) and Pb(II) Determination. Chemosensors 2023, 11, 129. https://doi.org/10.3390/chemosensors11020129
Finšgar M, Rajh B. A Factorial Design and Simplex Optimization of a Bismuth Film Glassy Carbon Electrode for Cd(II) and Pb(II) Determination. Chemosensors. 2023; 11(2):129. https://doi.org/10.3390/chemosensors11020129
Chicago/Turabian StyleFinšgar, Matjaž, and Barbara Rajh. 2023. "A Factorial Design and Simplex Optimization of a Bismuth Film Glassy Carbon Electrode for Cd(II) and Pb(II) Determination" Chemosensors 11, no. 2: 129. https://doi.org/10.3390/chemosensors11020129
APA StyleFinšgar, M., & Rajh, B. (2023). A Factorial Design and Simplex Optimization of a Bismuth Film Glassy Carbon Electrode for Cd(II) and Pb(II) Determination. Chemosensors, 11(2), 129. https://doi.org/10.3390/chemosensors11020129