Detection of Low-Level Adulteration of Hungarian Honey Using near Infrared Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Sample Preparation
2.2. Determination of the Main Physical Properties
2.3. Near-Infrared Spectroscopy Measurements
2.4. Statistical Evaluation
2.4.1. Evaluation of the Physical Parameters
2.4.2. Spectral Preprocessing
- Savitzky–Golay smoothing (different window sizes 13, 17, 21, and/or derivation levels—0, 1st, 2nd);
- Multiplicative scatter correction (MSC);
- Standard normal variate (SNV) or;
- Detrending (detr).
2.4.3. Chemometric Analysis of the near-Infrared Spectra
- (1)
- including the results of all the syrups (all syrup models, one model per honey type)
- (2)
- and separately, including only data of one syrup mixture set and control (resulting in two models in the case of linden and acacia, and three models in the case of rape, sunflower, and forest honeys).
- Determination coefficient of training (R2C) and validation (R2CV)—the higher the value, the better the model;
- Root mean square error of training and RMSEC validation (RMSECV)—the lower the value, the better the model;
- Residual prediction deviation training (RPDC) and validation (RPDCV).
3. Results and Discussion
3.1. Results of the Physical Analysis
3.2. Results of Near-Infrared Spectroscopy
3.2.1. Introduction of the Spectra
3.2.2. Results of the PCA-LDA Analysis
3.2.3. Results of the Partial Least Square Regression Models
3.2.4. Regression Vectors and Spectral Assignations
Spectral Region nm | Models | Spectral Assignation Based on [14,33,37,38,39,40,41,42,43] |
---|---|---|
950–1000 | Acacia—all syrups, F40 Linden—Rice syrup Forest—All models Rape—all syrups, GF Sunflower—Rice | N–H stretches of second overtone |
1000–1130 | All the models except sunflower GF model | O–H stretches of second overtone |
1150–1220 | Acacia—all syrups, F40 Linden, forest, rape, all models Sunflower—all syrups, rice, and GF | C–H (CH2, CH3) stretches of second overtone, C–H combination stretch of first overtone (CH2, CH3) |
1300–1600 | All the models | 1st overtone O–H stretches |
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ciulu, M.; Solinas, S.; Floris, I.; Panzanelli, A.; Pilo, M.I.; Piu, P.C.; Spano, N.; Sanna, G. RP-HPLC Determination of Water-Soluble Vitamins in Honey. Talanta 2011, 83, 924–929. [Google Scholar] [CrossRef]
- Zamora, M.C.; Chirife, J. Determination of Water Activity Change Due to Crystallization in Honeys from Argentina. Food Control 2006, 17, 59–64. [Google Scholar] [CrossRef] [Green Version]
- Da Silva, P.M.; Gauche, C.; Gonzaga, L.V.; Costa, A.C.O.; Fett, R. Honey: Chemical Composition, Stability and Authenticity. Food Chem. 2016, 196, 309–323. [Google Scholar] [CrossRef] [PubMed]
- Codex Alimentarius Hungaricus 1-3-2001/110 számú Előírás Méz (1-3-2001/110 Regulation Honey). In Codex Alimentarius Hungaricus; Codex Alimentarius Hungaricus (Ed.) Magyar Élelmiszerkönyv Bizottság: Budapest, Hungary, 2002; pp. 1–7. [Google Scholar]
- The European Council. Council Directive 2001/110/EC of 20 December 2001 Relating to Honey. Off. J. Eur. Union 2001, L 10, 47–52. [Google Scholar]
- Codex Alimentarius Commission. Codex Standard for Honey, CODEX STAN 12-1981; FAO: Rome, Italy, 2001; Volume 11, p. 7. [Google Scholar]
- Benedek, C.; Zaukuu, Z.J.-L.; Bodor, Z.; Kovacs, Z. Honey-Based Polyphenols: Extraction, Quantification, Bioavailability, and Biological Activities. In Plant-Based Functional Foods and Phytochemicals; Goyal, R.M., Nath, A., Suleria, R.H.A., Eds.; Apple Academic Press: New York, NY, USA, 2021; pp. 35–63. [Google Scholar]
- National Food Crime Unit; Scottish Food Crime Unit. Food Crime Strategic Assesment 2020; Food Standards Agency: London, UK, 2020. [Google Scholar]
- Zábrodská, B.; Vorlová, L. Adulteration of Honey and Available Methods for Detection—A Review. Acta Vet. Brno 2014, 83, S85–S102. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Technical Round Table on Honey Authentication; European Commission: Brussels, Belgium, 2018. [Google Scholar]
- Lohumi, S.; Lee, S.; Lee, H.; Cho, B.-K. A Review of Vibrational Spectroscopic Techniques for the Detection of Food Authenticity and Adulteration. Trends Food Sci. Technol. 2015, 46, 85–98. [Google Scholar] [CrossRef]
- Aouadi, B.; Zaukuu, J.L.Z.; Vitális, F.; Bodor, Z.; Fehér, O.; Gillay, Z.; Bazar, G.; Kovacs, Z. Historical Evolution and Food Control Achievements of Near Infrared Spectroscopy, Electronic Nose, and Electronic Tongue—Critical Overview. Sensors 2020, 20, 5479. [Google Scholar] [CrossRef] [PubMed]
- Gan, Z.; Yang, Y.; Li, J.; Wen, X.; Zhu, M.; Jiang, Y.; Ni, Y. Using Sensor and Spectral Analysis to Classify Botanical Origin and Determine Adulteration of Raw Honey. J. Food Eng. 2016, 178, 151–158. [Google Scholar] [CrossRef]
- Bázár, G.; Romvári, R.; Szabó, A.; Somogyi, T.; Éles, V.; Tsenkova, R. NIR Detection of Honey Adulteration Reveals Differences in Water Spectral Pattern. Food Chem. 2016, 194, 873–880. [Google Scholar] [CrossRef]
- Huang, F.; Song, H.; Guo, L.; Guang, P.; Yang, X.; Li, L.; Zhao, H.; Yang, M. Detection of Adulteration in Chinese Honey Using NIR and ATR-FTIR Spectral Data Fusion. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 235, 118297. [Google Scholar] [CrossRef]
- Aliaño-González, M.J.; Ferreiro-González, M.; Espada-Bellido, E.; Palma, M.; Barbero, G.F. A Screening Method Based on Visible-NIR Spectroscopy for the Identification and Quantification of Different Adulterants in High-Quality Honey. Talanta 2019, 203, 235–241. [Google Scholar] [CrossRef] [PubMed]
- Grassi, S.; Jolayemi, O.S.; Giovenzana, V.; Tugnolo, A.; Squeo, G.; Conte, P.; De Bruno, A.; Flamminii, F.; Casiraghi, E.; Alamprese, C. Near Infrared Spectroscopy as a Green Technology for the Quality Prediction of Intact Olives. Foods 2021, 10, 1042. [Google Scholar] [CrossRef] [PubMed]
- Lang, J.; McNitt, L.; Inc, P.; CT, S. Detection of Honey Adulteration Using FT-NIR Spectroscopy; PerkinElmer, Inc.: Waltham, MA, USA, 2015. [Google Scholar]
- Shafiee, S.; Polder, G.; Minaei, S.; Moghadam-Charkari, N.; van Ruth, S.; Kuś, P.M. Detection of Honey Adulteration Using Hyperspectral Imaging. IFAC-PapersOnLine 2016, 49, 311–314. [Google Scholar] [CrossRef]
- Longin, L.; Jurinjak Tusek, A.; Valinger, D.; Benkovic, M.; Jurina, T.; Gajdos Kljusuric, J. Application of Artificial Neural Networks (ANN) Coupled with Near-InfraRed(NIR) Spectroscopy for Detection of Adulteration in Honey. Biodivers. Inf. Sci. Stand. 2019, 3, e38048. [Google Scholar] [CrossRef]
- Yang, X.; Chen, J.; Jia, L.; Yu, W.; Wang, D.; Wei, W.; Li, S.; Tian, S.; Wu, D. Rapid and Non-Destructive Detection of Compression Damage of Yellow Peach Using an Electronic Nose and Chemometrics. Sensors 2020, 20, 1866. [Google Scholar] [CrossRef] [Green Version]
- Bodor, Z.; Zaukuu, J.Z.; Aouadi, B.; Benedek, C.; Kovacs, Z. Application of NIRS and Aquaphotomics for the Detection of Adulteration of Honey, Paprika and Tomato Paste. In Proceedings of the SZIEntific Meeting for Young Researchers—Ifjú Tehetségek Találkozója, Szent István University, Budapest, Hungary, 9 December 2019; pp. 76–91. Available online: http://itt.budaicampus.szie.hu/sites/default/files/files/ITT_2019_konferencia.pdf (accessed on 20 January 2020).
- Bogdanov, S. Harmonised Methods of the International Honey Commission. Swiss Bee Research Centre, FAM: Liebefeld, Switzerland, 2009; ISBN 9780874216561. [Google Scholar]
- Tabachnick, B.G.; Fidell, L.S. Using Multivariate Statistics, 6th ed.; Pearson Education: London, UK, 2013; ISBN 9780205849574. [Google Scholar]
- Luedeling, E. RPD: Residual Prediction Deviation (RPD) in ChillR: Statistical Methods for Phenology Analysis in Temperate Fruit Trees. Available online: https://rdrr.io/cran/chillR/man/RPD.html (accessed on 28 July 2021).
- Muncan, J.; Tsenkova, R. Aquaphotomics—From Innovative Knowledge to Integrative Platform in Science and Technology. Molecules 2019, 24, 2742. [Google Scholar] [CrossRef] [Green Version]
- Muncan, J.; Kovacs, Z.; Pollner, B.; Ikuta, K.; Ohtani, Y.; Terada, F.; Tsenkova, R. Near Infrared Aquaphotomics Study on Common Dietary Fatty Acids in Cow’s Liquid, Thawed Milk. Food Control 2021, 122, 107805. [Google Scholar] [CrossRef]
- Munawar, A.A.; Zulfahrizal; Meilina, H.; Pawelzik, E. Near Infrared Spectroscopy as a Fast and Non-Destructive Technique for Total Acidity Prediction of Intact Mango: Comparison among Regression Approaches. Comput. Electron. Agric. 2022, 193, 106657. [Google Scholar] [CrossRef]
- Pollner, B.; Kovacs, Z. R-Package Aquap2—Multivariate Data Analysis Tools for R Including Aquaphotomics Methods. Available online: https://www.aquaphotomics.com/aquap2/ (accessed on 28 July 2021).
- Ciursa, P.; Oroian, M. Influence of Corn and Inverted Sugar Adulteration on Physicochemical Properties of Romanian Acacia Honeys. Sci. Bulletin. Ser. F. Biotechnol. 2020, XXIV, 85–93. [Google Scholar]
- Czipa, N.; Phillips, C.J.C.; Kovács, B. Composition of Acacia Honeys Following Processing, Storage and Adulteration. J. Food Sci. Technol. 2019, 56, 1245–1255. [Google Scholar] [CrossRef] [Green Version]
- Bodor, Z. Application of Classical and Correlative Analytical Methods for Authentication of Honey. Ph.D. Thesis, Hungarian University of Agriculture and Life Sciences, Budapest, Hungary, 2022. Available online: https://uni-mate.hu/documents/20123/336900/Bodor_Zsanett-ertekezes.pdf/1908f699-17cd-9985-a058-2bc19dbdb5c7?t=1659596636531 (accessed on 22 December 2022).
- Li, S.; Zhang, X.; Shan, Y.; Su, D.; Ma, Q.; Wen, R.; Li, J. Qualitative and Quantitative Detection of Honey Adulterated with High-Fructose Corn Syrup and Maltose Syrup by Using near-Infrared Spectroscopy. Food Chem. 2017, 218, 231–236. [Google Scholar] [CrossRef]
- Xantheas, S.S. Ab Initio Studies of Cyclic Water Clusters (H2O)n, N = 1–6. III. Comparison of Density Functional with MP2 Results. J. Chem. Phys. 1995, 102, 4505. [Google Scholar] [CrossRef]
- Tsenkova, R.; Muncan, J.; Pollner, B.; Kovacs, Z. Essentials of Aquaphotomics and Its Chemometrics Approaches. Front. Chem. 2018, 6, 363. [Google Scholar] [CrossRef] [PubMed]
- Bodor, Z.; Benedek, C.; Aouadi, B.; Zsom-Muha, V.; Kovacs, Z. Revealing the Effect of Heat Treatment on the Spectral Pattern of Unifloral Honeys Using Aquaphotomics. Molecules 2022, 27, 780. [Google Scholar] [CrossRef] [PubMed]
- Siesler, H.W.; Ozaki, Y.; Kawata, S.; Heise, H.M. (Eds.) Near-Infrared Spectroscopy: Principles, Instruments, Applications; Wiley-VCH Verlag GmbH: Weinheim, Germany, 2001; ISBN 9783527612666. [Google Scholar]
- López, M.G.; García-González, A.S.; Franco-Robles, E. Carbohydrate Analysis by NIRS-Chemometrics. In Developments in Near-Infrared Spectroscopy; IntechOpen: London, UK, 2017; ISBN 978-953-51-3018-5. [Google Scholar]
- Ozaki, Y.; Genkawa, T.; Futami, Y. Near-Infrared Spectroscopy. In Encyclopedia of Spectroscopy and Spectrometry; Academic Press: Cambridge, MA, USA, 2016; pp. 40–49. [Google Scholar]
- Zhang, C.; Liu, F.; He, Y. Identification of Coffee Bean Varieties Using Hyperspectral Imaging: Influence of Preprocessing Methods and Pixel-Wise Spectra Analysis. Sci. Rep. 2018, 8, 2166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Guang, P.; Xu, G.; Zhu, S.; Chen, Z.; Huang, F. Manuka Honey Adulteration Detection Based on Near-Infrared Spectroscopy Combined with Aquaphotomics. LWT 2020, 132, 109837. [Google Scholar] [CrossRef]
- Farkas, J.; Dalmadi, I. Near Infrared and Fluorescence Spectroscopic Methods and Electronic Nose Technology for Monitoring Foods. Prog. Agric. Eng. Sci. 2009, 5, 1–29. [Google Scholar] [CrossRef]
- Muncan, J.; Kuroki, S.; Moyankova, D.; Morita, H.; Atanassova, S.; Djilianov, D.; Tsenkova, R. Protocol for Aquaphotomics Monitoring of Water Molecular Structure in Leaves of Resurrection Plants during Desiccation and Recovery. Protoc. Exch. 2019. [Google Scholar] [CrossRef]
Honey | Sample | Moisture % | pH | Electrical conductivity μS/cm |
---|---|---|---|---|
Acacia | RP Control | 16.60 ± 0.14 a | 3.59 ± 0.01 a | 141.40 ± 0.03 a |
RP F40 3% | 17.15 ± 0.35 a | 3.59 ± 0.02 a | 137.81 ± 0.40 b | |
RP F40 5% | 16.95 ± 0.07 a | 3.61 ± 0.01 a | 136.12 ± 1.65 abcd | |
RP F40 10% | 17.40 ± 0.00 a | 3.64 ± 0.04 a | 132.11 ± 1.66 bcd | |
RP RI 3% | 17.00 ± 0.14 a | 3.60 ± 0.02 a | 137.69 ± 0.27 bc | |
RP RI 5% | 17.05 ± 0.07 a | 3.60 ± 0.02 a | 135.77 ± 0.52 c | |
RP RI 10% | 17.10 ± 0.00 a | 3.60 ± 0.02 a | 130.12 ± 0.44 d | |
Linden | TI Control | 16.60 ± 0.14 a | 4.34 ± 0.02 a | 627.44 ± 3.50 a |
TI F40 3% | 17.15 ± 0.35 a | 4.32 ± 0.01 a | 607.44 ± 1.90 b | |
TI F40 5% | 16.95 ± 0.07 a | 4.32 ± 0.01 a | 593.89 ± 6.26 bcd | |
TI F40 10% | 17.40 ± 0.00 a | 4.32 ± 0.01 a | 568.00 ± 1.00 c | |
TI RI 3% | 17.00 ± 0.14 a | 4.33 ± 0.01 a | 607.22 ± 1.50 b | |
TI RI 5% | 17.05 ± 0.07 a | 4.31 ± 0.01 a | 597.78 ± 0.96 d | |
TI RI 10% | 17.10 ± 0.00 a | 4.34 ± 0.01 a | 570.33 ± 3.61 c | |
Rape | BN Control | 17.83 ± 0.08 a | 3.56 ± 0.01 a | 180.98 ± 1.16 a |
BN F40 3% | 17.83 ± 0.05 a | 3.56 ± 0.01 a | 175.46 ± 0.47 bc | |
BN F40 5% | 17.97 ± 0.15 ab | 3.57 ± 0.01 a | 172.72 ± 0.74 d | |
BN F40 10% | 18.18 ± 0.04 b | 3.57 ± 0.02 ab | 165.76 ± 1.46 e | |
BN GF 3% | 17.82 ± 0.13 a | 3.56 ± 0.01 a | 175.06 ± 0.46 b | |
BN GF 5% | 17.83 ± 0.05 a | 3.61 ± 0.02 b | 172.18 ± 0.66 d | |
BN GF 10% | 17.83 ± 0.05 a | 3.58 ± 0.04 ab | 165.17 ± 2.51 ef | |
BN RI 3% | 17.82 ± 0.04 a | 3.55 ± 0.01 ac | 176.06 ± 0.60 c | |
BN RI 5% | 17.92 ± 0.1 a | 3.53 ± 0.02 cd | 172.68 ± 0.22 d | |
BN RI 10% | 18.22 ± 0.31 ab | 3.52 ± 0.01 d | 167.88 ± 0.40 f | |
Sunflower | HA Control | 16.65 ± 0.08 a | 3.20 ± 0.01 a | 416.78 ± 0.67 ab |
HA F40 3% | 17.02 ± 0.04 bc | 3.19 ± 0.01 ab | 421.11 ± 1.27 c | |
HA F40 5% | 17.17 ± 0.20 bcd | 3.19 ± 0.01 ab | 415.78 ± 1.09 a | |
HA F40 10% | 17.25 ± 0.12 b | 3.19 ± 0.01 ab | 395.44 ± 0.73 d | |
HA GF 3% | 16.85 ± 0.08 d | 3.18 ± 0.01 b | 418.56 ± 1.24 b | |
HA GF 5% | 16.82 ± 0.18 acd | 3.18 ± 0.01 ab | 407.00 ± 2.60 e | |
HA GF 10% | 17.07 ± 0.10 bcd | 3.19 ± 0.01 ab | 387.33 ± 1.32 f | |
HA RI 3% | 16.90 ± 0.11 cd | 3.28 ± 0.08 abc | 425.56 ± 1.33 g | |
HA RI 5% | 16.75 ± 0.18 acd | 3.23 ± 0.02 c | 417.78 ± 0.97 b | |
HA RI 10% | 16.98 ± 0.04 cd | 3.23 ± 0.02 c | 397.78 ± 1.20 h | |
Forest | HD Control | 17.30 ± 0.17 abcd | 3.87 ± 0.01 a | 508.78 ± 3.07 a |
HD F40 3% | 17.25 ± 0.12 abc | 3.88 ± 0.00 ab | 493.33 ± 1.58 b | |
HD F40 5% | 17.38 ± 0.04 abd | 3.88 ± 0.00 a | 483.56 ± 1.51 c | |
HD F40 10% | 17.60 ± 0.18 ad | 3.88 ± 0.01 ab | 461.22 ± 2.17 d | |
HD GF 3% | 17.27 ± 0.10 abc | 3.89 ± 0.01 bc | 496.89 ± 2.15 e | |
HD GF 5% | 17.37 ± 0.08 abd | 3.88 ± 0.01 ab | 485.89 ± 2.52 cf | |
HD GF 10% | 17.53 ± 0.10 d | 3.88 ± 0.01 ab | 462.11 ± 2.89 d | |
HD RI 3% | 17.13 ± 0.10 c | 3.89 ± 0.01 abc | 496.00 ± 2.55 be | |
HD RI 5% | 17.17 ± 0.15 bc | 3.87 ± 0.01 a | 488.22 ± 1.39 f | |
HD RI 10% | 17.13 ± 0.15 bc | 3.90 ± 0.01 c | 472.11 ± 1.05 g |
Honey | Syrup | Pretreatment | Number of Latent Variables | R2C | RMSEC % | RPDC | R2CV | RMSECV % | RPDCV |
---|---|---|---|---|---|---|---|---|---|
Acacia | All syrups | sgol@2-13-0+sgol@2-17-1 | 4 | 0.99 | 0.29 | 11.42 | 0.98 | 0.49 | 6.70 |
Rice | sgol@2-13-0+deTr | 2 | 0.98 | 0.52 | 6.79 | 0.94 | 0.84 | 4.22 | |
F40 | sgol@2-17-0+sgol@2-21-1 | 4 | 0.99 | 0.36 | 9.69 | 0.98 | 0.50 | 6.83 | |
Linden | All syrups | deTr+snv | 4 | 0.97 | 0.68 | 5.49 | 0.92 | 1.07 | 3.50 |
Rice | sgol@2-21-0 | 3 | 0.96 | 0.71 | 5.25 | 0.80 | 1.64 | 2.27 | |
F40 | deTr | 3 | 0.94 | 0.93 | 4.03 | 0.86 | 1.37 | 2.73 | |
Forest | All syrups | sgol@2-17-0+snv | 4 | 0.92 | 0.89 | 3.53 | 0.88 | 1.07 | 2.95 |
Rice | sgol@2-17-0+sgol@2-17-2 | 4 | 1.00 | 0.22 | 14.70 | 0.95 | 0.72 | 4.52 | |
F40 | sgol@2-21-0+sgol@2-21-1 | 4 | 0.99 | 0.36 | 9.32 | 0.97 | 0.54 | 6.20 | |
GF | sgol@2-21-0+sgol@2-13-2 | 4 | 0.98 | 0.54 | 6.46 | 0.71 | 1.85 | 1.89 | |
Rape | All syrups | msc | 3 | 0.77 | 1.53 | 2.09 | 0.68 | 1.80 | 1.78 |
Rice | sgol@2-17-0+sgol@2-21-2 | 3 | 0.96 | 0.69 | 4.80 | 0.88 | 1.13 | 2.93 | |
F40 | deTr | 2 | 0.98 | 0.49 | 7.14 | 0.96 | 0.72 | 4.91 | |
GF | sgol@2-13-0+sgol@2-21-2 | 4 | 0.92 | 0.99 | 3.70 | 0.46 | 2.62 | 1.39 | |
Sunflower | All syrups | msc | 4 | 0.60 | 2.11 | 1.60 | 0.36 | 2.69 | 1.26 |
Rice | sgol@2-17-0+sgol@2-17-1 | 4 | 0.99 | 0.40 | 9.29 | 0.92 | 1.01 | 3.67 | |
F40 | sgol@2-13-0 | 4 | 0.99 | 0.41 | 8.36 | 0.94 | 0.80 | 4.27 | |
GF | msc | 4 | 0.83 | 1.50 | 2.49 | 0.39 | 2.89 | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodor, Z.; Majadi, M.; Benedek, C.; Zaukuu, J.-L.Z.; Veresné Bálint, M.; Csajbókné Csobod, É.; Kovacs, Z. Detection of Low-Level Adulteration of Hungarian Honey Using near Infrared Spectroscopy. Chemosensors 2023, 11, 89. https://doi.org/10.3390/chemosensors11020089
Bodor Z, Majadi M, Benedek C, Zaukuu J-LZ, Veresné Bálint M, Csajbókné Csobod É, Kovacs Z. Detection of Low-Level Adulteration of Hungarian Honey Using near Infrared Spectroscopy. Chemosensors. 2023; 11(2):89. https://doi.org/10.3390/chemosensors11020089
Chicago/Turabian StyleBodor, Zsanett, Mariem Majadi, Csilla Benedek, John-Lewis Zinia Zaukuu, Márta Veresné Bálint, Éva Csajbókné Csobod, and Zoltan Kovacs. 2023. "Detection of Low-Level Adulteration of Hungarian Honey Using near Infrared Spectroscopy" Chemosensors 11, no. 2: 89. https://doi.org/10.3390/chemosensors11020089
APA StyleBodor, Z., Majadi, M., Benedek, C., Zaukuu, J. -L. Z., Veresné Bálint, M., Csajbókné Csobod, É., & Kovacs, Z. (2023). Detection of Low-Level Adulteration of Hungarian Honey Using near Infrared Spectroscopy. Chemosensors, 11(2), 89. https://doi.org/10.3390/chemosensors11020089