Fabrication of Nanoparticle Agglomerate Films by Spark Ablation and Their Application in Surface-Enhanced Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production of Nanostructures
2.2. Characterization of Nanostructures
2.3. SERS Measurements
3. Results and Discussion
3.1. Morphology and Composition
3.2. Optical Properties
3.3. SERS Measurements
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thybo, S.; Jensen, S.; Johansen, J.; Johannessen, T.; Hansen, O.; Quaade, U.J. Flame Spray Deposition of Porous Catalysts on Surfaces and in Microsystems. J. Catal. 2004, 223, 271–277. [Google Scholar] [CrossRef]
- Guo, S.; Zhang, S.; Sun, S. Tuning Nanoparticle Catalysis for the Oxygen Reduction Reaction. Angew. Chem. Int. Ed. 2013, 52, 8526–8544. [Google Scholar] [CrossRef] [PubMed]
- Mädler, L.; Roessler, A.; Pratsinis, S.E.; Sahm, T.; Gurlo, A.; Barsan, N.; Weimar, U. Direct Formation of Highly Porous Gas-Sensing Films by in Situ Thermophoretic Deposition of Flame-Made Pt/SnO2 Nanoparticles. Sens. Actuators B Chem. 2006, 114, 283–295. [Google Scholar] [CrossRef]
- Isaac, N.A.; Ngene, P.; Westerwaal, R.J.; Gaury, J.; Dam, B.; Schmidt-Ott, A.; Biskos, G. Optical Hydrogen Sensing with Nanoparticulate Pd-Au Films Produced by Spark Ablation. Sens. Actuators B Chem. 2015, 221, 290–296. [Google Scholar] [CrossRef]
- Awada, C.; Dab, C.; Grimaldi, M.G.; Alshoaibi, A.; Ruffino, F. High Optical Enhancement in Au/Ag Alloys and Porous Au Using Surface-Enhanced Raman Spectroscopy Technique. Sci. Rep. 2021, 11, 4714. [Google Scholar] [CrossRef]
- Lu, L.; Eychmüller, A.; Kobayashi, A.; Hirano, Y.; Yoshida, K.; Kikkawa, Y.; Tawa, K.; Ozaki, Y. Designed Fabrication of Ordered Porous Au/Ag Nanostructured Films for Surface-Enhanced Raman Scattering Substrates. Langmuir 2006, 22, 2605–2609. [Google Scholar] [CrossRef]
- El-Aal, M.A.; Seto, T.; Kumita, M.; Abdelaziz, A.A.; Otani, Y. Synthesis of Silver Nanoparticles Film by Spark Discharge Deposition for Surface-Enhanced Raman Scattering. Opt. Mater. 2018, 83, 263–271. [Google Scholar] [CrossRef]
- Swihart, M.T. Vapor-Phase Synthesis of Nanoparticles. Curr. Opin. Colloid Interface Sci. 2003, 8, 127–133. [Google Scholar] [CrossRef]
- Kruis, F.E.; Fissan, H.; Peled, A. Synthesis of Nanoparticles in the Gas Phase for Electronic, Optical and Magnetic Applications—A Review. J. Aerosol Sci. 1998, 29, 511–535. [Google Scholar] [CrossRef]
- Kohut, A.; Kéri, A.; Horváth, V.; Kopniczky, J.; Ajtai, T.; Hopp, B.; Galbács, G.; Geretovszky, Z. Facile and Versatile Substrate Fabrication for Surface Enhanced Raman Spectroscopy Using Spark Discharge Generation of Au/Ag Nanoparticles. Appl. Surf. Sci. 2020, 531, 147268. [Google Scholar] [CrossRef]
- Van Ginkel, H.J.; Vollebregt, S.; Schmidt-Ott, A.; Zhang, G.Q. Mass and Density Determination of Porous Nanoparticle Films Using a Quartz Crystal Microbalance. Nanotechnology 2022, 33, 485704. [Google Scholar] [CrossRef]
- Ivanov, V.; Lizunova, A.; Rodionova, O.; Kostrov, A.; Kornyushin, D.; Aybush, A.; Golodyayeva, A.; Efimov, A.; Nadtochenko, V. Aerosol Dry Printing for SERS and Photoluminescence-Active Gold Nanostructures Preparation for Detection of Traces in Dye Mixtures. Nanomaterials 2022, 12, 448. [Google Scholar] [CrossRef]
- Li, H.; Merkl, P.; Sommertune, J.; Thersleff, T.; Sotiriou, G.A.; Li, H.; Merkl, P.; Sotiriou, G.A.; Sommertune, J.; Thersleff, T. SERS Hotspot Engineering by Aerosol Self-Assembly of Plasmonic Ag Nanoaggregates with Tunable Interparticle Distance. Adv. Sci. 2022, 9, 2201133. [Google Scholar] [CrossRef]
- Jung, W.; Jung, Y.H.; Pikhitsa, P.V.; Feng, J.; Yang, Y.; Kim, M.; Tsai, H.Y.; Tanaka, T.; Shin, J.; Kim, K.Y.; et al. Three-Dimensional Nanoprinting via Charged Aerosol Jets. Nature 2021, 592, 54–59. [Google Scholar] [CrossRef]
- Isaac, N.A.; Schlag, L.; Katzer, S.; Nahrstedt, H.; Reiprich, J.; Pezoldt, J.; Stauden, T.; Jacobs, H.O. Combinatorial Gas Phase Electrodeposition for Fabrication of Three-Dimensional Multimodal Gas Sensor Array. Mater. Today: Proc. 2020, 33, 2451–2457. [Google Scholar] [CrossRef]
- Spark Ablation: Building Blocks for Nanotechnology. Schmidt-Ott, A. (Ed.) Stanford Publishing: Redwood City, CA, USA, 2020; ISBN 9814800821. [Google Scholar]
- Kohut, A.; Villy, L.P.; Kéri, A.; Bélteki, Á.; Megyeri, D.; Hopp, B.; Galbács, G.; Geretovszky, Z. Full Range Tuning of the Composition of Au/Ag Binary Nanoparticles by Spark Discharge Generation. Sci. Rep. 2021, 11, 5117. [Google Scholar] [CrossRef]
- Kohut, A.; Villy, L.P.; Ajtai, T.; Geretovszky, Zs.; Galbács, G. The Effect of Circuit Resistance on the Particle Output of a Spark Discharge Nanoparticle Generator. J. Aerosol Sci. 2018, 118, 59–63. [Google Scholar] [CrossRef]
- Feng, J.; Ramlawi, N.; Biskos, G.; Schmidt-Ott, A. Internally Mixed Nanoparticles from Oscillatory Spark Ablation between Electrodes of Different Materials. Aerosol Sci. Technol. 2018, 52, 505–514. [Google Scholar] [CrossRef] [Green Version]
- Feng, J.; Huang, L.; Ludvigsson, L.; Messing, M.E.; Maisser, A.; Biskos, G.; Schmidt-Ott, A. General Approach to the Evolution of Singlet Nanoparticles from a Rapidly Quenched Point Source. J. Phys. Chem. C 2016, 120, 621–630. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Ullmann, M.; Vons, V.A.; Lafont, U.; Schmidt-Ott, A. Generation of Nanoparticles by Spark Discharge. J. Nanoparticle Res. 2009, 11, 315–332. [Google Scholar] [CrossRef] [Green Version]
- Mylnikov, D.; Efimov, A.; Ivanov, V. Measuring and Optimization of Energy Transfer to the Interelectrode Gaps during the Synthesis of Nanoparticles in a Spark Discharge. Aerosol Sci. Technol. 2019, 53, 1393–1403. [Google Scholar] [CrossRef]
- Megyeri, D.; Kohut, A.; Geretovszky, Z. Effect of Flow Geometry on the Nanoparticle Output of a Spark Discharge Generator. J. Aerosol Sci. 2021, 154, 105758. [Google Scholar] [CrossRef]
- Han, K.; Kim, W.; Yu, J.; Lee, J.; Lee, H.; Gyu Woo, C.; Choi, M. A Study of Pin-to-Plate Type Spark Discharge Generator for Producing Unagglomerated Nanoaerosols. J. Aerosol Sci. 2012, 52, 80–88. [Google Scholar] [CrossRef]
- Chae, S.; Lee, D.; Kim, M.-C.; Kim, D.S.; Choi, M. Wire-in-Hole-Type Spark Discharge Generator for Long-Time Consistent Generation of Unagglomerated Nanoparticles. Aerosol Sci. Technol. 2015, 49, 463–471. [Google Scholar] [CrossRef]
- Kohut, A.; Ludvigsson, L.; Meuller, B.O.; Deppert, K.; Messing, M.E.; Galbács, G.; Geretovszky, Zs. From Plasma to Nanoparticles: Optical and Particle Emission of a Spark Discharge Generator. Nanotechnology 2017, 28, 475603. [Google Scholar] [CrossRef] [Green Version]
- Byeon, J.H.; Park, J.H.; Hwang, J. Spark Generation of Monometallic and Bimetallic Aerosol Nanoparticles. J. Aerosol Sci. 2008, 39, 888–896. [Google Scholar] [CrossRef]
- Kala, S.; Theissmann, R.; Kruis, F.E. Generation of AuGe Nanocomposites by Co-Sparking Technique and Their Photoluminescence Properties. J. Nanoparticle Res. 2013, 15, 1963. [Google Scholar] [CrossRef]
- Snellman, M.; Eom, N.; Ek, M.; Messing, M.E.; Deppert, K. Continuous Gas-Phase Synthesis of Core-Shell Nanoparticlesviasurface Segregation. Nanoscale Adv. 2021, 3, 3041–3052. [Google Scholar] [CrossRef]
- Villy, L.P.; Kohut, A.; Kéri, A.; Bélteki, Á.; Radnóczi, G.; Fogarassy, Z.; Radnóczi, G.Z.; Galbács, G.; Geretovszky, Z. Continuous Spark Plasma Synthesis of Au/Co Binary Nanoparticles with Tunable Properties. Sci. Rep. 2022, 12, 18560. [Google Scholar] [CrossRef]
- Hallberg, R.T.; Ludvigsson, L.; Preger, C.; Meuller, B.O.; Dick, K.A.; Messing, M.E. Hydrogen-Assisted Spark Discharge Generated Metal Nanoparticles to Prevent Oxide Formation. Aerosol Sci. Technol. 2018, 52, 347–358. [Google Scholar] [CrossRef] [Green Version]
- Olszok, V.; Bierwirth, M.; Weber, A.P. Interaction of Reactive Gases with Platinum Aerosol Particles at Room Temperature: Effects on Morphology and Surface Properties. Nanomaterials 2021, 11, 2266. [Google Scholar] [CrossRef]
- Kohut, A. Hydrogen-Assisted Spark Generation of Silver Nanoparticles: The Effect of Hydrogen Content on the Signal Intensity in Surface-Enhanced Raman Spectroscopy. J. Aerosol Sci. 2023, 167, 106090. [Google Scholar] [CrossRef]
- Tabrizi, N.S.; Xu, Q.; Van Der Pers, N.M.; Lafont, U.; Schmidt-Ott, A. Synthesis of Mixed Metallic Nanoparticles by Spark Discharge. J. Nanoparticle Res. 2009, 11, 1209–1218. [Google Scholar] [CrossRef]
- Muntean, A.; Wagner, M.; Meyer, J.; Seipenbusch, M. Generation of Copper, Nickel, and CuNi Alloy Nanoparticles by Spark Discharge. J. Nanoparticle Res. 2016, 18, 229. [Google Scholar] [CrossRef]
- Feng, J.; Chen, D.; Pikhitsa, P.V.; Jung, Y.H.; Yang, J.; Choi, M. Unconventional Alloys Confined in Nanoparticles: Building Blocks for New Matter. Matter 2020, 3, 1646–1663. [Google Scholar] [CrossRef]
- Preger, C.; Bulbucan, C.; Meuller, B.O.; Ludvigsson, L.; Kostanyan, A.; Muntwiler, M.; Deppert, K.; Westerstroö, R.; Messing, M.E. Controlled Oxidation and Self-Passivation of Bimetallic Magnetic FeCr and FeMn Aerosol Nanoparticles. J. Phys. Chem. C 2019, 123, 16083–16090. [Google Scholar] [CrossRef] [Green Version]
- Bae, Y.; Pikhitsa, P.V.; Cho, H.; Choi, M. Multifurcation Assembly of Charged Aerosols and Its Application to 3D Structured Gas Sensors. Adv. Mater. 2017, 29, 1604159. [Google Scholar] [CrossRef]
- Efimov, A.A.; Kornyushin, D.V.; Buchnev, A.I.; Kameneva, E.I.; Lizunova, A.A.; Arsenov, P.V.; Varfolomeev, A.E.; Pavzderin, N.B.; Nikonov, A.V.; Ivanov, V.V. Fabrication of Conductive and Gas-Sensing Microstructures Using Focused Deposition of Copper Nanoparticles Synthesized by Spark Discharge. Appl. Sci. 2021, 11, 5791. [Google Scholar] [CrossRef]
- Isaac, N.A.; Reiprich, J.; Schlag, L.; Moreira, P.H.O.; Baloochi, M.; Raheja, V.A.; Hess, A.L.; Centeno, L.F.; Ecke, G.; Pezoldt, J.; et al. Three-Dimensional Platinum Nanoparticle-Based Bridges for Ammonia Gas Sensing. Sci. Rep. 2021, 11, 12551. [Google Scholar] [CrossRef]
- Trachioti, M.G.; Tzianni, E.I.; Riman, D.; Jurmanova, J.; Prodromidis, M.I.; Hrbac, J. Extended Coverage of Screen-Printed Graphite Electrodes by Spark Discharge Produced Gold Nanoparticles with a 3D Positioning Device. Assessment of Sparking Voltage-Time Characteristics to Develop Sensors with Advanced Electrocatalytic Properties. Electrochim. Acta 2019, 304, 292–300. [Google Scholar] [CrossRef]
- Vasiliev, A.A.; Varfolomeev, A.E.; Volkov, I.A.; Simonenko, N.P.; Arsenov, P.V.; Vlasov, I.S.; Ivanov, V.V.; Pislyakov, A.V.; Lagutin, A.S.; Jahatspanian, I.E.; et al. Reducing Humidity Response of Gas Sensors for Medical Applications: Use of Spark Discharge Synthesis of Metal Oxide Nanoparticles. Sensors 2018, 18, 2600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Volkov, I.A.; Simonenko, N.P.; Efimov, A.A.; Simonenko, T.L.; Vlasov, I.S.; Borisov, V.I.; Arsenov, P.V.; Lebedinskii, Y.Y.; Markeev, A.M.; Lizunova, A.A.; et al. Platinum Based Nanoparticles Produced by a Pulsed Spark Discharge as a Promising Material for Gas Sensors. Appl. Sci. 2021, 11, 526. [Google Scholar] [CrossRef]
- Van Ginkel, H.J.; Orvietani, M.; Romijn, J.; Zhang, G.Q.; Vollebregt, S. ZnO Nanoparticle Printing for UV Sensor Fabrication. In Proceedings of the 2022 IEEE Sensors, Dallas, TX, USA, 30 October–2 November 2022. [Google Scholar] [CrossRef]
- Becker, R.; Weber, K.; Pfeiffer, T.V.; Van Kranendonk, J.; Schouten, K.J. A Scalable High-Throughput Deposition and Screening Setup Relevant to Industrial Electrocatalysis. Catalysts 2020, 10, 1165. [Google Scholar] [CrossRef]
- Valenti, M.; Dolat, D.; Biskos, G.; Schmidt-Ott, A.; Smith, W.A. Enhancement of the Photoelectrochemical Performance of CuWO4 Thin Films for Solar Water Splitting by Plasmonic Nanoparticle Functionalization. J. Phys. Chem. C 2015, 119, 2096–2104. [Google Scholar] [CrossRef]
- El-Aal, M.A.; Seto, T. Spark Discharge Deposition of Au/Cu Nanoparticles for Surface-Enhanced Raman Scattering. Surf. Interface Anal. 2021, 53, 824–828. [Google Scholar] [CrossRef]
- El-Aal, M.A.; Seto, T.; Atsushi, M. The Effects of Operating Parameters on the Morphology, and the SERS of Cu NPs Prepared by Spark Discharge Deposition. Appl. Phys. A 2020, 126, 572. [Google Scholar] [CrossRef]
- Lee, H.; You, S.; Pikhitsa, P.V.; Kim, J.; Kwon, S.; Woo, C.G.; Choi, M. Three-Dimensional Assembly of Nanoparticles from Charged Aerosols. Nano Lett. 2011, 11, 119–124. [Google Scholar] [CrossRef]
- Kohut, A.; Horváth, V.; Pápa, Z.; Vajda, B.; Kopniczky, J.; Galbács, G.; Geretovszky, Z. One-Step Fabrication of Fiber Optic SERS Sensors via Spark Ablation. Nanotechnology 2021, 32, 395501. [Google Scholar] [CrossRef]
- Arsenov, P.V.; Efimov, A.A.; Ivanov, V.V. Optimizing Aerosol Jet Printing Process of Platinum Ink for High-Resolution Conductive Microstructures on Ceramic and Polymer Substrates. Polymers 2021, 13, 918. [Google Scholar] [CrossRef]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Fan, M.; Lai, F.J.; Chou, H.L.; Lu, W.T.; Hwang, B.J.; Brolo, A.G. Surface-Enhanced Raman Scattering (SERS) from Au:Ag Bimetallic Nanoparticles: The Effect of the Molecular Probe. Chem. Sci. 2013, 4, 509–515. [Google Scholar] [CrossRef]
- Wu, C.; Chen, E.; Wei, J. Surface Enhanced Raman Spectroscopy of Rhodamine 6G on Agglomerates of Different-Sized Silver Truncated Nanotriangles. Colloids Surf. A: Physicochem. Eng. Asp. 2016, 506, 450–456. [Google Scholar] [CrossRef] [Green Version]
- Lee, H.K.; Lee, Y.H.; Koh, C.S.L.; Phan-Quang, G.C.; Han, X.; Lay, C.L.; Sim, H.Y.F.; Kao, Y.C.; An, Q.; Ling, X.Y. Designing Surface-Enhanced Raman Scattering (SERS) Platforms beyond Hotspot Engineering: Emerging Opportunities in Analyte Manipulations and Hybrid Materials. Chem. Soc. Rev. 2019, 48, 731–756. [Google Scholar] [CrossRef]
- Zhu, J.; Sun, Z.; Li, J.J.; Zhao, J.W. Bovine Serum Albumins (BSA) Induced Aggregation and Separation of Gold Colloid Nanoparticles. J. Nanosci. Nanotechnol. 2012, 12, 2206–2211. [Google Scholar] [CrossRef]
- Pápa, Z.; Kasza, J.; Budai, J.; Márton, Z.; Molnár, G.; Dombi, P. Tuning Plasmonic Field Enhancement and Transients by Far-Field Coupling between Nanostructures. Appl. Phys. Lett. 2020, 117, 081105. [Google Scholar] [CrossRef]
- Macias, G.; Alba, M.; Marsal, L.F.; Mihi, A. Surface Roughness Boosts the SERS Performance of Imprinted Plasmonic Architectures. J. Mater. Chem. C 2016, 4, 3970–3975. [Google Scholar] [CrossRef]
- Fang, S.U.; Hsu, C.L.; Hsu, T.C.; Juang, M.Y.; Liu, Y.C. Surface Roughness-Correlated SERS Effect on Au Island-Deposited Substrate. J. Electroanal. Chem. 2015, 741, 127–133. [Google Scholar] [CrossRef]
Sample | Electrode Configuration (Anode-Cathode) | Deposition Time (min) |
---|---|---|
S1 | Au-Au | 10 |
S2 | Au-Ag | 16 |
S3 | AuAg-AuAg | 22 |
S4 | Ag-AuAg | 27 |
S5 | AgAg | 35 |
Excitation Wavelength | 473 nm | 532 nm | 633 nm |
---|---|---|---|
Neutral density filter, % | 0.1 | 0.01 | 3.2 |
Laser intensity, mW | 0.03 | 0.01 | 0.22 |
Measurement time, s | 1 | 15 | 15 |
Number of accumulations | 1 | 3 | 1 |
Sample | Nanoparticle Composition (wt%Ag) | Layer Composition (wt%Ag) | Surface Roughness-Ra (nm) |
---|---|---|---|
S1 | 0 | 0 | 89 ± 4 |
S2 | 23.1 ± 1.0 | 25.1 ± 5.0 | 78 ± 3 |
S3 | 44.6 ± 5.0 | 44.7 ± 3.0 | 121 ± 13 |
S4 | 67.5 ± 4.4 | 50.1 ± 8.0 | 87 ± 8 |
S5 | 100 | 100 | 54 ± 1 |
Excitation Wavelength | 473 nm | 532 nm | 633 nm |
---|---|---|---|
S1 | 819 ± 112 | 8904 ± 1326 | 24,153 ± 2020 |
S2 | 10,759 ± 696 | 91,847 ± 5401 | 195,305 ± 12,638 |
S3 | 8163 ± 654 | 43,922 ± 3964 | 24,421 ± 3173 |
S4 | 30,130 ± 2890 | 124,547 ± 10,105 | 88,910 ± 7116 |
S5 | 197,155 ± 11,819 | 132,280 ± 3311 | 137,275 ± 28,584 |
S1 | S2 | S3 | S4 | S5 | |
---|---|---|---|---|---|
Average EF | 41,200 | 103,100 | 34,300 | 42,800 | 118,800 |
Standard deviation | 2140 | 1170 | 525 | 680 | 2487 |
Relative standard deviation | 5.2% | 1.1% | 1.5% | 1.6% | 2.1% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pál, P.; Horváth, V.; Juhász, L.; Kóródi, Z.; Kohut, A.; Csarnovics, I. Fabrication of Nanoparticle Agglomerate Films by Spark Ablation and Their Application in Surface-Enhanced Raman Spectroscopy. Chemosensors 2023, 11, 180. https://doi.org/10.3390/chemosensors11030180
Pál P, Horváth V, Juhász L, Kóródi Z, Kohut A, Csarnovics I. Fabrication of Nanoparticle Agglomerate Films by Spark Ablation and Their Application in Surface-Enhanced Raman Spectroscopy. Chemosensors. 2023; 11(3):180. https://doi.org/10.3390/chemosensors11030180
Chicago/Turabian StylePál, Petra, Viktória Horváth, Laura Juhász, Zoltán Kóródi, Attila Kohut, and Istvan Csarnovics. 2023. "Fabrication of Nanoparticle Agglomerate Films by Spark Ablation and Their Application in Surface-Enhanced Raman Spectroscopy" Chemosensors 11, no. 3: 180. https://doi.org/10.3390/chemosensors11030180
APA StylePál, P., Horváth, V., Juhász, L., Kóródi, Z., Kohut, A., & Csarnovics, I. (2023). Fabrication of Nanoparticle Agglomerate Films by Spark Ablation and Their Application in Surface-Enhanced Raman Spectroscopy. Chemosensors, 11(3), 180. https://doi.org/10.3390/chemosensors11030180