Nanocomposite Au/Si Cantilevers for Tip-Enhanced Raman Scattering (TERS) Sensors
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Preparation of Au TERS Cantilevers
- SD—standard deviation of the tip radius of curvature;
- n—number of values in the data set;
- xi—the measured value of the radius of curvature for each tip;
- —mean value of the tip radius of curvature ( = ROCmean).
2.2.1. Preparation of Au TERS Cantilevers by Chemical Deposition Technique
2.2.2. Preparation of Au TERS Cantilevers by Sputtering Technique
2.2.3. Preparation of Au TERS Cantilevers by Electrochemical Etching: Shear-Force Type All-Metal Au TERS Cantilevers
2.2.4. Preparation of Au TERS Cantilevers by Electrochemical Etching: AFM-Type All-Metal Au TERS Cantilevers
2.3. Evaluation of Prepared Au Cantilevers
3. Results and Discussion
3.1. Characterization of Au TERS Cantilevers Prepared by Chemical Deposition Technique
3.2. Characterization of Au TERS Cantilevers Prepared by Sputtering Technique
3.3. Characterization of Au TERS Cantilevers Prepared by Electrochemical Etching: Shear-Force Type All-Metal Au TERS Cantilevers
Au(s) + 2Cl−(aq) → [AuCl2]−(aq) + 1e− [AuCl2]−(aq) + 2Cl−(aq) → [AuCl4]−(aq) + 2e− Au(s) + 4Cl−(aq)→ [AuCl4]−(aq) + 3e− | (electrochemical dissolution of Au micro-wire) |
2Cl−(aq)→ Cl2(aq) + 2e− | (side reaction) |
Cathode (–): 2NH4+(aq) + 2e− → 2NH3(aq) + H2(g) |
3.4. Characterization of Au TERS Cantilevers Prepared by Electrochemical Etching: AFM Type All-Metal Au TERS Cantilevers
3.5. Comparison of Au TERS Cantilevers
3.6. Distribution of GO in Mouse Hepatoma MH-22A Cells Measured with Developed Hybrid Au/Si TERS Cantilever
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.; Huang, Y.; Li, X.; Zhang, Y.; Chen, Q.; Ye, Z.; Alqarni, Z.; Bell, S.E.J.; Xu, Y. Towards practical and sustainable SERS: A review of recent developments in the construction of multifunctional enhancing substrates. J. Mater. Chem. C 2021, 9, 11517–11552. [Google Scholar] [CrossRef]
- Snitka, V.; Batiuskaite, D.; Bruzaite, I.; Lafont, U.; Butenko, Y.; Semprimoschnig, C. Surface-enhanced Raman scattering sensors for biomedical and molecular detection applications in space. CEAS Space J. 2021, 13, 509–520. [Google Scholar] [CrossRef] [PubMed]
- Sonntag, M.D.; Pozzi, E.A.; Jiang, N.; Hersam, M.C.; Van Duyne, R.P. Recent Advances in Tip-Enhanced Raman Spectroscopy. J. Phys. Chem. Lett. 2014, 5, 3125–3130. [Google Scholar] [CrossRef]
- Sharma, G.; Deckert-Gaudig, T.; Deckert, V. Tip-enhanced Raman scattering—Targeting structure-specific surface characterization for biomedical samples. Adv. Drug Deliv. Rev. 2015, 89, 42–56. [Google Scholar] [CrossRef]
- Blum, C.; Opilik, L.; Atkin, J.M.; Braun, K.; Kämmer, S.B.; Kravtsov, V.; Kumar, N.; Lemeshko, S.; Li, J.-F.; Luszcz, K.; et al. Tip-enhanced Raman spectroscopy—An interlaboratory reproducibility and comparison study. J. Raman Spectrosc. 2014, 45, 22–31. [Google Scholar] [CrossRef]
- Mochalov, K.E.; Solovyova, D.O.; Efimov, A.E.; Klinov, D.V.; Oleinikov, V.A. High-performance, reproducible tip-enhanced Raman scattering probes. Tech. Phys. Lett. 2020, 46, 1084–1087. [Google Scholar] [CrossRef]
- Pettinger, B.; Schambach, P.; Villagómez, C.J.; Scott, N. Tip-Enhanced Raman Spectroscopy: Near-Fields Acting on a Few Molecules. Annu. Rev. Phys. Chem. 2012, 63, 379–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, T.-X.; Huang, S.-C.; Li, M.-H.; Zeng, Z.-C.; Wang, X.; Ren, B. Tip-enhanced Raman spectroscopy: Tip-related issues. Anal. Bioanal. Chem. 2015, 407, 8177–8195. [Google Scholar] [CrossRef] [PubMed]
- Rigor, J.; Kurouski, D.; Large, N. Plasmonic Heating Effects in Tip-Enhanced Raman Spectroscopy (TERS). J. Phys. Chem. C 2022, 126, 13986–13993. [Google Scholar] [CrossRef]
- Bonhommeau, S.; Cooney, G.S.; Huang, Y. Nanoscale chemical characterization of biomolecules using tip-enhanced Raman spectroscopy. Chem. Soc. Rev. 2022, 51, 2416–2430. [Google Scholar] [CrossRef]
- Snitka, V.; Rodrigues, R.D.; Lendraitis, V. Novel gold cantilever for nano-Raman spectroscopy of graphene. Microelectron. Eng. 2011, 88, 2759–2762. [Google Scholar] [CrossRef]
- Feng, H.; Xu, C.; Wang, Y.; Wei, Z.; Li, X.; Kan, Y.; Zhang, Y. Effects of electrolyte concentration on the morphology control of gold nanotips in electrochemical etching. J. Appl. Electrochem. 2020, 50, 799–807. [Google Scholar] [CrossRef]
- Foti, A.; Barreca, F.; Fazio, E.; D’Andrea, C.; Matteini, P.; Maragò, O.M.; Gucciardi, P.G. Low cost tips for tip-enhanced Raman spectroscopy fabricated by two-step electrochemical etching of 125 µm diameter gold wires. Beilstein J. Nanotechnol. 2018, 9, 2718–2729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Kim, S.T.; Jeong, B.G.; Yun, S.J.; Song, Y.J.; Lee, Y.H.; Park, D.J.; Jeong, M.S. Tip-enhanced Raman scattering imaging of two-dimensional tungsten disulfide with the optimized tip fabrication process. Sci. Rep. 2017, 7, 40810. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Kazuma, E.; Yokota, Y.; Kim, Y. Fabrication of Sharp Gold Tips by Three-Electrode Electrochemical Etching with High Controllability and Reproducibility. J. Phys. Chem. C 2018, 122, 16950–16955. [Google Scholar] [CrossRef]
- Ramanauskaite, L.; Xu, H.; Griskonis, E.; Batiuskaite, D.; Snitka, V. Comparison and Evaluation of Silver Probe Preparation Techniques for Tip-Enhanced Raman Spectroscopy. Plasmonics 2018, 13, 1907–1919. [Google Scholar] [CrossRef]
- Saito, Y.; Murakami, T.; Inouye, Y.; Kawata, S. Fabrication of silver probes for localized plasmon excitation in near-field Raman spectroscopy. Chem. Lett. 2005, 34, 920–921. [Google Scholar] [CrossRef]
- Asghari-Khiavi, M.; Wood, B.R.; Hojati-Talemi, P.; Downes, A.; McNaughton, D.; Mechler, A. Exploring the origin of tip-enhanced Raman scattering; preparation of efficient TERS probes with high yield. J. Raman Spectrosc. 2012, 43, 173–180. [Google Scholar] [CrossRef]
- Rodriguez, R.D.; Sheremet, E.; Müller, S.; Gordan, O.D.; Villabona, A.; Schulze, S.; Hietschold, M.; Zahn, D.R.T. Compact metal probes: A solution for atomic force microscopy based tip-enhanced Raman spectroscopy. Rev. Sci. Instrum. 2012, 83, 123708. [Google Scholar] [CrossRef]
- Fleischer, M.; Weber-Bargioni, A.; Altoe, M.V.P.; Schwartzberg, A.M.; Schuck, P.J.; Cabrini, S.; Kern, D.P. Gold Nanocone Near-Field Scanning Optical Microscopy Probes. ACS Nano 2011, 5, 2570–2579. [Google Scholar] [CrossRef]
- Nemciauskas, K.; Traksele, L.; Salaseviciene, A.; Snitka, V. A silicon membrane-silver nanoparticles SERS chip for trace molecules detection. Microelectron. Eng. 2020, 225, 111282. [Google Scholar] [CrossRef]
- Anderson, M.S. The Detection of Long-Chain Bio-Markers Using Atomic Force Microscopy. Appl. Sci. 2019, 9, 1280. [Google Scholar] [CrossRef] [Green Version]
- Celis, F.; Garcia, M.; Diaz-Fleming, G.; Campos-Vallette, M. A Review of Raman, Surface-Enhanced Raman Scattering (Sers) and Related Spectroscopic Techniques Applied to Biomolecules in Biomaterials. J. Chil. Chem. Soc. 2017, 62, 3627–3632. [Google Scholar] [CrossRef] [Green Version]
- Nicolas Behr, N.; Raschke, M.B. Optical Antenna Properties of Scanning Probe Tips: Plasmonic Light Scattering, Tip-Sample Coupling, and Near-Field Enhancement. J. Phys. Chem. C 2008, 112, 3766–3773. [Google Scholar] [CrossRef]
- Dongmo, L.S.; Villarrubia, J.S.; Jones, S.N.; Renegar, T.B.; Postek, M.T.; Song, J.F. Experiment test of blind tip reconstruction for scanning probe microscopy. Ultramicroscopy 2000, 85, 141–153. [Google Scholar] [CrossRef]
- Cao, Y.; Sun, M. Tip-enhanced Raman spectroscopy. Rev. Phys. 2022, 8, 100067. [Google Scholar] [CrossRef]
- Williams, C.; Roy, D. Fabrication of gold tips suitable for tip-enhanced Raman spectroscopy. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2008, 26, 1761–1764. [Google Scholar] [CrossRef]
- Gao, L.; Zhao, H.; Li, Y.; Li, T.; Chen, D.; Liu, B. Controllable Fabrication of Au-Coated AFM Probes via a Wet-Chemistry Procedure. Nanoscale Res. Lett. 2018, 13, 366. [Google Scholar] [CrossRef]
- Kharintsev, S.S.; Hoffmann, G.G.; Dorozhkin, P.S.; De With, G.; Loos, J. Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging. Nanotechnology 2007, 18, 315502. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, Y.; Lin, C.; Long, L.; Hu, J.; He, J.; Zeng, H.; Huang, Z.; Li, Z.-Y.; Tanemura, M. Human ACE2-functionalized gold “virus-trap” nanostructures for accurate capture of SARS-CoV-2 and single-virus SERS detection. Nano Micro Lett. 2021, 13, 109. [Google Scholar] [CrossRef]
- Kumar, N.; Mignuzzi, S.; Su, W.; Roy, D. Tip-enhanced Raman spectroscopy: Principles and applications. EPJ Tech. Instrum. 2015, 2, 9. [Google Scholar] [CrossRef] [Green Version]
- Bao, Y.-F.; Cao, M.-F.; Wu, S.-S.; Huang, T.-X.; Zeng, Z.-C.; Li, M.-H.; Wang, X.; Ren, B. Atomic Force Microscopy Based Top-Illumination Electrochemical Tip-Enhanced Raman Spectroscopy. Anal. Chem. 2020, 92, 12548–12555. [Google Scholar] [CrossRef]
- Haldavnekar, R.; Venkatakrishnan, K.; Tan, B. Next generation SERS- atomic scale platform for molecular level detection. Appl. Mater. Today 2020, 18, 100529. [Google Scholar] [CrossRef]
- Wang, R.; He, Z.; Sokolov, A.V.; Kurouski, D. Gap-mode tip-enhanced Raman scattering on au nanoplates of varied thickness. J. Phys. Chem. Lett. 2020, 11, 3815–3820. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.; Zhang, Y.; Dai, Y.; Min, C.; Zhu, S.; Yuan, X. Facilitated tip-enhanced Raman scattering by focused gap-plasmon hybridization. Photon. Res. 2020, 8, 103–109. [Google Scholar] [CrossRef]
- Ovali, R.V.; Sahin, R.; Bek, A.; Tasgin, M.E. Single-molecule-resolution ultrafast near-field optical microscopy via plasmon lifetime extension. Appl. Phys. Lett. 2021, 118, 241103. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, Q.; Gao, D.; Luo, D.; Niu, Y.; Yang, J.; Li, Y. Graphene Oxide as a Multifunctional Platform for Raman and Fluorescence Imaging of Cells. Small 2015, 11, 3000–3005. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Stellaci, F. Effect of Surface Properties on Nanoparticle–Cell Interactions. Small 2010, 6, 12–21. [Google Scholar] [CrossRef]
- Batiuskaite, D.; Bruzaite, I.; Snitka, V.; Ramanavicius, A. Assessment of TiO2 Nanoparticle Impact on Surface Morphology of Chinese Hamster Ovary Cells. Materials 2022, 15, 4570. [Google Scholar] [CrossRef]
- Huang, J.; Zong, C.; Shen, H.; Liu, M.; Chen, B.; Ren, B.; Zhang, Z. Mechanism of Cellular Uptake of Graphene Oxide Studied by Surface-Enhanced Raman Spectroscopy. Small 2012, 8, 2577–2584. [Google Scholar] [CrossRef] [Green Version]
Method (Chapter No) | Reproducibility (Tip Shape and ROC) | Difficulty | EF | References of the EFs Previously Reported | Special Equipment |
---|---|---|---|---|---|
Section 2.2.1 | Medium | Medium | 2600 | [26,27,28,29] | No |
Section 2.2.2 | High | Medium | 850–2700 | [26,30] | Yes |
Section 2.2.3 | High | High | 3800 | [26,31] | Yes |
Section 2.2.4 | Low | High | 500 | [26,29] | Yes |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slekiene, N.; Snitka, V. Nanocomposite Au/Si Cantilevers for Tip-Enhanced Raman Scattering (TERS) Sensors. Chemosensors 2023, 11, 218. https://doi.org/10.3390/chemosensors11040218
Slekiene N, Snitka V. Nanocomposite Au/Si Cantilevers for Tip-Enhanced Raman Scattering (TERS) Sensors. Chemosensors. 2023; 11(4):218. https://doi.org/10.3390/chemosensors11040218
Chicago/Turabian StyleSlekiene, Nora, and Valentinas Snitka. 2023. "Nanocomposite Au/Si Cantilevers for Tip-Enhanced Raman Scattering (TERS) Sensors" Chemosensors 11, no. 4: 218. https://doi.org/10.3390/chemosensors11040218
APA StyleSlekiene, N., & Snitka, V. (2023). Nanocomposite Au/Si Cantilevers for Tip-Enhanced Raman Scattering (TERS) Sensors. Chemosensors, 11(4), 218. https://doi.org/10.3390/chemosensors11040218