Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Liquid-Phase Exfoliation of Gray Antimony
2.2. Preparation of 2D Sb Modified Screen-Printed Electrodes
2.3. Voltammetric Measurements
3. Results and Discussion
3.1. Characterization
3.2. Differential Pulse Anodic Stripping Voltammetry (DPASV) of Cd (II) and Pb (II)
3.3. Analysis of an Estuarine Water Sample Using a 2D Sbexf-SPCNFE
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sall, M.L.; Diaw, A.K.D.; Gningue-Sall, D.; Efremova Aaron, S.; Aaron, J.J. Toxic heavy metals: Impact on the environment and human health, and treatment with conducting organic polymers, a review. Environ. Sci. Pollut. Res. 2020, 27, 29927–29942. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2017; ISBN 9789241549950. [Google Scholar]
- Raj, D.; Maiti, S.K. Sources, bioaccumulation, health risks and remediation of potentially toxic metal(loid)s (As, Cd, Cr, Pb and Hg): An epitomised review. Environ. Monit. Assess. 2020, 192, 108. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Ravipati, E.S.; Mahajan, N.N.; Sharma, S.; Hatware, K.V.; Patil, K. The toxicological effects of lead and its analytical trends: An update from 2000 to 2018. Crit. Rev. Anal. Chem. 2021, 51, 87–102. [Google Scholar] [CrossRef] [PubMed]
- ICH Expert Working Group ICH harmonised guideline, Guideline for elemental impurities Q3D (R1). ICH Guidel. Q3D Elem. Impurities 2019.
- Wang, J. Stripping Analysis: Principles, Instrumentation and Applications; VCH: Deerfield Beach, FL, USA, 1985. [Google Scholar]
- Kaur, M.; Sharma, P.; Kaur, R.; Khetarpal, P. Increased incidence of spontaneous abortions on exposure to cadmium and lead: A systematic review and meta-analysis. Gynecol. Endocrinol. 2022, 38, 16–21. [Google Scholar] [CrossRef]
- Genchi, G.; Sinicropi, M.S.; Graziantono, L.; Carocci, A.; Catalano, A. The effects of Cadmium toxicity. Int. J. Environ. Res. Public Health 2020, 17, 3782. [Google Scholar] [CrossRef]
- Chen, Y.; Li, M.; Fu, L.; Hou, X.; Jiang, X. Simultaneous determination of trace cadmium and lead in single human hair by tungsten electrothermal vaporization-flame atomic fluorescence spectrometry. Microchem. J. 2014, 114, 182–186. [Google Scholar] [CrossRef]
- Valasques, G.S.; dos Santos, A.M.P.; de Souza, V.S.; Teixeira, L.S.G.; Alves, J.P.S.; de Jesus Santos, M.; dos Santos, W.P.C.; Bezerra, M.A. Multivariate optimization for the determination of cadmium and lead in crude palm oil by graphite furnace atomic absorption spectrometry after extraction induced by emulsion breaking. Microchem. J. 2020, 153, 104401. [Google Scholar] [CrossRef]
- Wysocka, I.; Vassileva, E. Determination of cadmium, copper, mercury, lead and zinc mass fractions in marine sediment by isotope dilution inductively coupled plasma mass spectrometry applied as a reference method. Microchem. J. 2016, 128, 198–207. [Google Scholar] [CrossRef]
- Roje, V.; Galinec, F. Water as a mild extractant of metals and metalloids from the samples of the selected certified reference materials and subsequent multi-elemental quantification by ICP-AES. Environ. Monit. Assess. 2019, 191, 534. [Google Scholar] [CrossRef]
- Barałkiewicz, D.; Kózka, M.; Piechalak, A.; Tomaszewska, B.; Sobczak, P. Determination of cadmium and lead species and phytochelatins in pea (Pisum sativum) by HPLC-ICP-MS and HPLC-ESI-MSn. Talanta 2009, 79, 493–498. [Google Scholar] [CrossRef]
- Ariño, C.; Serrano, N.; Díaz-Cruz, J.M.; Esteban, M. Voltammetric determination of metal ions beyond mercury electrodes. A review. Anal. Chim. Acta 2017, 990, 11–53. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martín-Yerga, D.; González-García, M.B.; Costa-García, A. Electrochemical determination of mercury: A review. Talanta 2013, 116, 1091–1104. [Google Scholar] [CrossRef] [PubMed]
- Chu, Z.; Peng, J.; Jin, W. Advanced nanomaterial inks for screen-printed chemical sensors. Sens. Actuators B Chem. 2017, 243, 919–926. [Google Scholar] [CrossRef]
- Tyagi, D.; Wang, H.; Huang, W.; Hu, L.; Tang, Y.; Guo, Z.; Ouyang, Z.; Zhang, H. Recent advances in two-dimensional-material-based sensing technology toward health and environmental monitoring applications. Nanoscale 2020, 12, 3535–3559. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. Glutathione modified screen-printed carbon nanofiber electrode for the voltammetric determination of metal ions in natural samples. Talanta 2016, 155, 8–13. [Google Scholar] [CrossRef] [Green Version]
- Zhang, B.; Chen, J.; Zhu, H.; Yang, T.; Zou, M.; Zhang, M.; Du, M. Facile and green fabrication of size-controlled AuNPs/CNFs hybrids for the highly sensitive simultaneous detection of heavy metal ions. Electrochim. Acta 2016, 196, 422–430. [Google Scholar] [CrossRef]
- Gao, S.; Xu, C.; Yalikun, N.; Mamat, X.; Li, Y.; Wågberg, T.; Hu, X.; Liu, J.; Luo, J.; Hu, G. Sensitive and Selective Differential Pulse Voltammetry Detection of Cd(II) and Pb(II) Using Nitrogen-Doped Porous Carbon Nanofiber Film Electrode. J. Electrochem. Soc. 2017, 164, H967–H974. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Cerovac, S.; Mudrić, S.; Guzsvány, V.; Husáková, L.; Urbanová, I.; Vytřas, K. Antimony nanoparticle-multiwalled carbon nanotubes composite immobilized at carbon paste electrode for determination of trace heavy metals. Sens. Actuators B Chem. 2014, 191, 320–325. [Google Scholar] [CrossRef]
- Pérez-Ràfols, C.; Serrano, N.; Díaz-Cruz, J.M.; Ariño, C.; Esteban, M. New approaches to antimony film screen-printed electrodes using carbon-based nanomaterials substrates. Anal. Chim. Acta 2016, 916, 17–23. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gibaja, C.; Rodriguez-San-Miguel, D.; Ares, P.; Gómez-Herrero, J.; Varela, M.; Gillen, R.; Maultzsch, J.; Hauke, F.; Hirsch, A.; Abellán, G.; et al. Few-layer antimonene by liquid-phase exfoliation. Angew. Chemie Int. Ed. 2016, 55, 14345–14349. [Google Scholar] [CrossRef] [PubMed]
- Gibaja, C.; Assebban, M.; Torres, I.; Fickert, M.; Sanchis-Gual, R.; Brotons, I.; Paz, W.S.; Palacios, J.J.; Michel, E.G.; Abellán, G.; et al. Liquid phase exfoliation of antimonene: Systematic optimization, characterization and electrocatalytic properties. J. Mater. Chem. A 2019, 7, 22475–22486. [Google Scholar] [CrossRef]
- Tapia, M.A.; Pérez-Ràfols, C.; Paštika, J.; Gusmão, R.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Antimony nanomaterials modified screen-printed electrodes for the voltammetric determination of metal ions. Electrochim. Acta 2022, 425, 140690. [Google Scholar] [CrossRef]
- Tapia, M.A.; Pérez-Ràfols, C.; Gusmão, R.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Enhanced voltammetric determination of metal ions by using a bismuthene-modified screen-printed electrode. Electrochim. Acta 2020, 362, 137144. [Google Scholar] [CrossRef]
- Tapia, M.A.; Gusmão, R.; Serrano, N.; Sofer, Z.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. TrAC—Trends Anal. Chem. 2021, 139, 116249. [Google Scholar] [CrossRef]
- Tapia, M.A.; Gusmão, R.; Pérez-Ràfols, C.; Subirats, X.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Enhanced voltammetric performance of sensors based on oxidized 2D layered black phosphorus. Talanta 2022, 238, 102401. [Google Scholar] [CrossRef] [PubMed]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical performance of passivated antimonene nanosheets and of in-situ prepared antimonene oxide-PEDOT:PSS modified screen-printed graphite electrodes. Electrochim. Acta 2022, 410, 140033. [Google Scholar] [CrossRef]
- Lazanas, A.C.; Tsirka, K.; Paipetis, A.S.; Prodromidis, M.I. 2D bismuthene/graphene modified electrodes for the ultra-sensitive stripping voltammetric determination of lead and cadmium. Electrochim. Acta 2020, 336, 135726. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, L.; Wu, R.; Zhu, Y.; Sheng, Y.; Nie, P.; Liu, P.; Xu, L.; Wen, Y. Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens. Bioelectron. 2021, 179, 113062. [Google Scholar] [CrossRef]
- Chandra Barman, S.; Sharifuzzaman, M.; Zahed, M.A.; Park, C.; Yoon, S.H.; Zhang, S.; Kim, H.; Yoon, H.; Park, J.Y. A Highly selective and stable cationic polyelectrolyte encapsulated black phosphorene based impedimetric immunosensor for interleukin-6 biomarker detection. Biosens. Bioelectron. 2021, 186, 113287. [Google Scholar] [CrossRef] [PubMed]
- Fatima, B.; Hussain, D.; Bashir, S.; Hussain, H.T.; Aslam, R.; Nawaz, R.; Rashid, H.N.; Bashir, N.; Majeed, S.; Ashiq, M.N.; et al. Catalase immobilized antimonene quantum dots used as an electrochemical biosensor for quantitative determination of H2O2 from CA-125 diagnosed ovarian cancer samples. Mater. Sci. Eng. C 2020, 117, 111296. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Yan, Z.; Li, Y.; Chen, Z.; Zeng, H. Atomically Thin Arsenene and Antimonene: Semimetal-Semiconductor and Indirect-Direct Band-Gap Transitions. Angew. Chemie—Int. Ed. 2015, 54, 3112–3115. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Guo, S.; Chen, Z.; Wang, Y.; Gao, H.; Gómez-Herrero, J.; Ares, P.; Zamora, F.; Zhu, Z.; Zeng, H. Recent Progress in 2D Group-VA Semiconductors: From Theory to Experiment. Chem. Soc. Rev. 2018, 47, 982–1021. [Google Scholar] [CrossRef] [Green Version]
- Carrasco, J.A.; Congost-Escoin, P.; Assebban, M.; Abellán, G. Antimonene: A Tuneable Post-Graphene Material for Advanced Applications in Optoelectronics, Catalysis, Energy and Biomedicine. Chem. Soc. Rev. 2023, 52, 1288–1330. [Google Scholar] [CrossRef]
- Ruengpirasiri, P.; Punrat, E.; Chailapakul, O.; Chuanuwatanakul, S. Graphene oxide-modified electrode coated with in-situ antimony film for the simultaneous determination of heavy metals by sequential injection-anodic stripping voltammetry. Electroanalysis 2017, 29, 1022–1030. [Google Scholar] [CrossRef]
- Le Hai, T.; Hung, L.C.; Phuong, T.T.B.; Ha, B.T.T.; Nguyen, B.S.; Hai, T.D.; Nguyen, V.H. Multiwall carbon nanotube modified by antimony oxide (Sb2O3/MWCNTs) paste electrode for the simultaneous electrochemical detection of cadmium and lead ions. Microchem. J. 2020, 153, 104456. [Google Scholar] [CrossRef]
SPCEbare | SPCNFEbare | 2D Sbexf-SPCE | 2D Sbexf-SPCNFE | |||||
---|---|---|---|---|---|---|---|---|
Cd(II) | Pb(II) | Cd(II) | Pb(II) | Cd(II) | Pb(II) | Cd(II) | Pb(II) | |
Sensitivity (nA V µg−1 L) | 2.9 (0.1) | 2.6 (0.1) | 4.69 (0.09) | 5.6 (0.1) | 4.09 (0.06) | 4.50 (0.01) | 6.19 (0.05) | 6.597 (0.008) |
Intercept (µg L−1) | −62 (6) | −1 (1) | −59 (5) | −36 (5) | −12 (4) | −0.5 (0.5) | −28 (2) | −0.1 (0.2) |
1st Linear range (µg L−1) a R2 | 20.3–104.5 0.987 | 6.9–29.6 0.980 | 10.8–108.7 0.994 | 9.8–105.1 0.993 | 9.1–132.7 0.994 | 1.1–128.3 0.999 | 2.9–85.0 0.999 | 0.3–82.0 0.999 |
2nd Linear range (µg L−1) a R2 | - | 29.6–101.1 0.988 | - | - | - | - | - | - |
LOD (µg L−1) | 6.1 | 2.1 | 3.2 | 2.9 | 2.7 | 0.3 | 0.9 | 0.1 |
Cd(II) | Pb(II) | |||||
---|---|---|---|---|---|---|
c (µg L−1) | RSDa (%) | Relative Error (%) | c (µg L−1) | RSDa (%) | Relative Error (%) | |
2D Sbexf-SPCNFE | 99.1 | 3.18 | 1.88 | 196.3 | 2.52 | 0.17 |
Certified metal value | 101.0 | 2.00 | - | 196.0 | 1.50 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tapia, M.A.; Pérez-Ràfols, C.; Oliveira, F.M.; Gusmão, R.; Serrano, N.; Sofer, Z.; Díaz-Cruz, J.M. Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions. Chemosensors 2023, 11, 219. https://doi.org/10.3390/chemosensors11040219
Tapia MA, Pérez-Ràfols C, Oliveira FM, Gusmão R, Serrano N, Sofer Z, Díaz-Cruz JM. Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions. Chemosensors. 2023; 11(4):219. https://doi.org/10.3390/chemosensors11040219
Chicago/Turabian StyleTapia, María A., Clara Pérez-Ràfols, Filipa M. Oliveira, Rui Gusmão, Núria Serrano, Zdeněk Sofer, and José Manuel Díaz-Cruz. 2023. "Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions" Chemosensors 11, no. 4: 219. https://doi.org/10.3390/chemosensors11040219
APA StyleTapia, M. A., Pérez-Ràfols, C., Oliveira, F. M., Gusmão, R., Serrano, N., Sofer, Z., & Díaz-Cruz, J. M. (2023). Antimonene-Modified Screen-Printed Carbon Nanofibers Electrode for Enhanced Electroanalytical Response of Metal Ions. Chemosensors, 11(4), 219. https://doi.org/10.3390/chemosensors11040219