Microfluidic Detection of Adenylate Kinase as a Cell Damage Biomarker
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Fabrication of the Biomarker Detection Chamber
2.3. Fabrication of the Microfluidic Cell Culture Chamber
2.4. Packing of the Biomarker Detection Chamber
2.5. AK Labelling
2.6. Preparation of Lysed HCT116 Cell Supernatant
2.7. Image Acquisition and Processing
2.8. Direct Immunoassay for AK Detection
2.8.1. Microbead Screening Study
2.8.2. Optimisation
Anti-AK Antibody Concentration
Blocking Agent
2.8.3. AK Detection Calibration Curve Using the Optimised Anti-AK Antibody Concentration and Blocking Agent
2.8.4. Measurement of AK in the Cell Culture Supernatant
2.9. Cell Culture in the Microfluidic Cell Culture Chamber
2.9.1. Cell Growth + RIPA Lysis in the Microfluidic Cell Culture Chamber
2.9.2. Cell Growth + 5-FU + RIPA Lysis in the Microfluidic Cell Chamber
3. Results and Discussion
3.1. Screening of Microbeads for AK Capture: Optimisation of Anti-AK Antibody Concentration and Blocking Agent
3.2. AK Detection Sensitivity in Buffer and Lysed Cell Solution
3.3. Monitoring Cell Damage in a Microfluidic Cell Chip
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef]
- Sanjay, S.T.; Fu, G.; Dou, M.; Xu, F.; Liu, R.; Qi, H.; Li, X. Biomarker detection for disease diagnosis using cost-effective microfluidic platforms. Analyst 2015, 140, 7062–7081. [Google Scholar] [CrossRef] [Green Version]
- Shi, Y.; Cai, Y.; Cao, Y.; Hong, Z.; Chai, Y. Recent advances in microfluidic technology and applications for anti-cancer drug screening. TrAC Trends Anal. Chem. 2020, 134, 116118. [Google Scholar] [CrossRef]
- Shang, M.; Soon, R.H.; Lim, C.T.; Khoo, B.L.; Han, J. Microfluidic modelling of the tumor microenvironment for anti-cancer drug development. Lab Chip 2019, 19, 369–386. [Google Scholar] [CrossRef]
- Coluccio, M.L.; Perozziello, G.; Malara, N.; Parrotta, E.; Zhang, P.; Gentile, F.; Limongi, T.; Raj, P.M.; Cuda, G.; Candeloro, P.; et al. Microfluidic platforms for cell cultures and investigations. Microelectron. Eng. 2019, 208, 14–28. [Google Scholar] [CrossRef]
- Kapałczyńska, M.; Kolenda, T.; Przybyła, W.; Zajączkowska, M.; Teresiak, A.; Filas, V.; Ibbs, M.; Bliźniak, R.; Łuczewski, L.; Lamperska, K. 2D and 3D cell cultures—A comparison of different types of cancer cell cultures. Arch. Med. Sci. 2018, 14, 910–919. [Google Scholar] [CrossRef]
- Gao, D.; Liu, H.; Jiang, Y.; Lin, J.-M. Recent developments in microfluidic devices for in vitro cell culture for cell-biology research. TrAC Trends Anal. Chem. 2012, 35, 150–164. [Google Scholar] [CrossRef]
- Fujisawa, K.; Terai, S.; Takami, T.; Yamamoto, N.; Yamasaki, T.; Matsumoto, T.; Yamaguchi, K.; Owada, Y.; Nishina, H.; Noma, T.; et al. Modulation of anti-cancer drug sensitivity through the regulation of mitochondrial activity by adenylate kinase 4. J. Exp. Clin. Cancer Res. 2016, 35, 48. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, A.C.; DiDone, L.; Jobson, J.; Sofia, M.K.; Krysan, D.; Dunman, P.M. Adenylate Kinase Release as a High-Throughput-Screening-Compatible Reporter of Bacterial Lysis for Identification of Antibacterial Agents. Antimicrob. Agents Chemother. 2013, 57, 26–36. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- ToxiLightTM Non-Destructive Cytotoxicity BioAssay Kit, 500 Test, (n.d.). Available online: https://bioscience.lonza.com/lonza_bs/PT/en/Culture-Media-and-Reagents/p/000000000000186467/ToxiLightTM-Non-Destructive-Cytotoxicity-BioAssay-Kit%2C-500-test (accessed on 6 February 2023).
- Chi, C.-W.; Ahmed, A.R.; Korkut, Z.D.; Wang, S. Microfluidic cell chips for high-throughput drug screening. Bioanalysis 2016, 8, 921–937. [Google Scholar] [CrossRef]
- Primiceri, E.; Chiriacò, M.S.; Rinaldi, R.; Maruccio, G. Cell chips as new tools for cell biology—Results, perspectives and opportunities. Lab Chip 2013, 13, 3789–3802. [Google Scholar] [CrossRef]
- Wang, P.; Liu, Q. Cell-Based Biosensors Principles and Applications; Artech House: Norwood, MA, USA, 2010. [Google Scholar]
- Halldorsson, S.; Lucumi, E.; Gómez-Sjöberg, R.; Fleming, R.M.T. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens. Bioelectron. 2015, 63, 218–231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Joshi, P.N. Cells and Organs on Chip—A Revolutionary Platform for Biomedicine. In Lab-on-a-Chip Fabrication and Application; IntechOpen: London, UK, 2016; pp. 77–79. [Google Scholar] [CrossRef] [Green Version]
- Kieninger, J.; Weltin, A.; Flamm, H.; Urban, G.A. Microsensor systems for cell metabolism—From 2D culture to organ-on-chip. Lab Chip 2018, 18, 1274–1291. [Google Scholar] [CrossRef] [Green Version]
- Pinto, I.; Caneira, C.; Soares, R.; Madaboosi, N.; Aires-Barros, M.; Conde, J.; Azevedo, A.; Chu, V. The application of microbeads to microfluidic systems for enhanced detection and purification of biomolecules. Methods 2017, 116, 112–124. [Google Scholar] [CrossRef] [PubMed]
- Brás, E.J.; Domingues, C.; Chu, V.; Fernandes, P.; Conde, J.P. Microfluidic bioreactors for enzymatic synthesis in packed-bed reactors—Multi-step reactions and upscaling. J. Biotechnol. 2020, 323, 24–32. [Google Scholar] [CrossRef]
- Condelipes, P.G.M.; Fontes, P.M.; Godinho-Santos, A.; Brás, E.J.S.; Marques, V.; Afonso, M.B.; Rodrigues, C.M.P.; Chu, V.; Gonçalves, J.; Conde, J.P. Towards personalized antibody cancer therapy: Development of a microfluidic cell culture device for antibody selection. Lab Chip 2022, 22, 4717–4728. [Google Scholar] [CrossRef]
- Alexa FluorTM 430 NHS Ester (Succinimidyl Ester), Thermo Fisher Scientific, (n.d.). Available online: https://www.thermofisher.com/order/catalog/product/A10169 (accessed on 3 June 2022).
- BODIPYTM FL NHS Ester (Succinimidyl Ester), Thermo Fisher Scientific, (n.d.). Available online: https://www.thermofisher.com/order/catalog/product/D2184 (accessed on 3 June 2022).
- HCT 116, CCL-247TM. ATCC: The Global Bioresource Center, (n.d.). Available online: https://www.atcc.org/products/ccl-247 (accessed on 3 June 2022).
- RIPA Lysis Buffer. In Cold Spring Harbor Protocols; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, USA, 2017; Volume 2017. [CrossRef]
- Schneider, C.A.; Rasband, W.S.; Eliceiri, K.W. NIH Image to ImageJ: 25 Years of image analysis. Nat. Methods 2012, 9, 671–675. [Google Scholar] [CrossRef]
- Meineke, B.; Heimgärtner, J.; Eirich, J.; Landreh, M.; Elsässer, S.J. Site-Specific Incorporation of Two ncAAs for Two-Color Bioorthogonal Labeling and Crosslinking of Proteins on Live Mammalian Cells. Cell Rep. 2020, 31, 107811. [Google Scholar] [CrossRef]
- Tsuboi, K.K.; Chervenka, C.H. Adenylate kinase of human erythrocyte. Isolation and properties of the predominant inherited form. J. Biol. Chem. 1975, 250, 132–140. [Google Scholar] [CrossRef]
- Milo, R. What is the total number of protein molecules per cell volume? A call to rethink some published values. Bioessays 2013, 35, 1050–1055. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wigle, T.J.; Tsvetkova, E.V.; Welch, S.A.; Kim, R.B. DPYD and Fluorouracil-Based Chemotherapy: Mini Review and Case Report. Pharmaceutics 2019, 11, 199. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Domingues, C.; Fontes, P.M.; Condelipes, P.G.M.; Marques, V.; Afonso, M.B.; Chu, V.; Rodrigues, C.M.P.; Conde, J.P. Microfluidic Detection of Adenylate Kinase as a Cell Damage Biomarker. Chemosensors 2023, 11, 220. https://doi.org/10.3390/chemosensors11040220
Domingues C, Fontes PM, Condelipes PGM, Marques V, Afonso MB, Chu V, Rodrigues CMP, Conde JP. Microfluidic Detection of Adenylate Kinase as a Cell Damage Biomarker. Chemosensors. 2023; 11(4):220. https://doi.org/10.3390/chemosensors11040220
Chicago/Turabian StyleDomingues, Cristiana, Pedro Mendes Fontes, Pedro G. M. Condelipes, Vanda Marques, Marta B. Afonso, Virginia Chu, Cecília M. P. Rodrigues, and João Pedro Conde. 2023. "Microfluidic Detection of Adenylate Kinase as a Cell Damage Biomarker" Chemosensors 11, no. 4: 220. https://doi.org/10.3390/chemosensors11040220
APA StyleDomingues, C., Fontes, P. M., Condelipes, P. G. M., Marques, V., Afonso, M. B., Chu, V., Rodrigues, C. M. P., & Conde, J. P. (2023). Microfluidic Detection of Adenylate Kinase as a Cell Damage Biomarker. Chemosensors, 11(4), 220. https://doi.org/10.3390/chemosensors11040220