Three Generations of Surface Nanocomposites Based on Hexagonally Ordered Gold Nanoparticle Layers and Their Application for Surface-Enhanced Raman Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fabrication
2.2. Substrate Characterization
2.3. Sample Preparation for SERS Measurements
2.4. PDMS Microfluidic Cell Fabrication
2.5. Raman Spectroscopy
3. Results and Discussion
3.1. AuNP Layers Characterization
3.2. Three Generations of Nanocomposites
3.3. Enhancement Factor on DNA Monolayers
3.4. Detection of R6G in a Microfluidic Environment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Azimi, S.; Docoslis, A. Recent Advances in the Use of Surface-Enhanced Raman Scattering for Illicit Drug Detection. Sensors 2022, 22, 3877. [Google Scholar] [CrossRef]
- Zheng, X.S.; Jahn, I.J.; Weber, K.; Cialla-May, D.; Popp, J. Label-Free SERS in Biological and Biomedical Applications: Recent Progress, Current Challenges and Opportunities. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 197, 56–77. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Blinn, K.; Chen, D.; Liu, M. In Situ and Surface-Enhanced Raman Spectroscopy Study of Electrode Materials in Solid Oxide Fuel Cells. Electrochem. Energy Rev. 2018, 1, 433–459. [Google Scholar] [CrossRef]
- Moisoiu, V.; Iancu, S.D.; Stefancu, A.; Moisoiu, T.; Pardini, B.; Dragomir, M.P.; Crisan, N.; Avram, L.; Crisan, D.; Andras, I.; et al. SERS Liquid Biopsy: An Emerging Tool for Medical Diagnosis. Colloids Surf. B Biointerfaces 2021, 208, 112064. [Google Scholar] [CrossRef]
- Fales, A. SERS for Point-of-Care and Clinical Applications; Elsevier: Amsterdam, The Netherlands, 2022; pp. 1–243. [Google Scholar] [CrossRef]
- Chakraborty, I.; Banik, S.; Biswas, R.; Yamamoto, T.; Noothalapati, H.; Mazumder, N. Raman Spectroscopy for Microplastic Detection in Water Sources: A Systematic Review. Int. J. Environ. Sci. Technol. 2022, 1–14. [Google Scholar] [CrossRef]
- Terry, L.R.; Sanders, S.; Potoff, R.H.; Kruel, J.W.; Jain, M.; Guo, H. Applications of Surface-Enhanced Raman Spectroscopy in Environmental Detection. Anal. Sci. Adv. 2022, 3, 113–145. [Google Scholar] [CrossRef]
- Xu, M.L.; Gao, Y.; Han, X.X.; Zhao, B. Innovative Application of SERS in Food Quality and Safety: A Brief Review of Recent Trends. Foods 2022, 11, 2097. [Google Scholar] [CrossRef]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- Mosier-Boss, P.A. Review of SERS Substrates for Chemical Sensing. Nanomaterials 2017, 7, 142. [Google Scholar] [CrossRef] [Green Version]
- Lin, C.; Liang, S.; Peng, Y.; Long, L.; Li, Y.; Huang, Z.; Long, N.V.; Luo, X.; Liu, J.; Li, Z.; et al. Visualized SERS Imaging of Single Molecule by Ag/Black Phosphorus Nanosheets. Nano-Micro Lett. 2022, 14, 1–15. [Google Scholar] [CrossRef]
- Qiu, Y.; Kuang, C.; Liu, X.; Tang, L. Single-Molecule Surface-Enhanced Raman Spectroscopy. Sensors 2022, 22, 4889. [Google Scholar] [CrossRef] [PubMed]
- Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L. A Review on Surface-Enhanced Raman Scattering. Biosensors 2019, 9, 57. [Google Scholar] [CrossRef] [Green Version]
- Jeanmaire, D.L.; van Duyne, R.P. Surface Raman Spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Šubr, M.; Procházka, M. Polarization- and Angular-Resolved Optical Response of Molecules on Anisotropic Plasmonic Nanostructures. Nanomaterials 2018, 8, 418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lednický, T.; Bonyár, A. Large Scale Fabrication of Ordered Gold Nanoparticle-Epoxy Surface Nanocomposites and Their Application as Label-Free Plasmonic DNA Biosensors. ACS Appl. Mater. Interfaces 2020, 12, 4804–4814. [Google Scholar] [CrossRef] [Green Version]
- Bonyár, A.; Zangana, S.; Lednický, T.; Rigó, I.; Csarnovics, I.; Veres, M. Application of Gold Nanoparticles–Epoxy Surface Nanocomposites for Controlling Hotspot Density on a Large Surface Area for SERS Applications. Nano-Struct. Nano-Objects 2021, 28, 100787. [Google Scholar] [CrossRef]
- Borók, A.; Laboda, K.; Bonyár, A. PDMS Bonding Technologies for Microfluidic Applications: A Review. Biosensors 2021, 11, 292. [Google Scholar] [CrossRef]
- Bonyár, A. Maximizing the Surface Sensitivity of LSPR Biosensors through Plasmon Coupling—Interparticle Gap Optimization for Dimers Using Computational Simulations. Biosensors 2021, 11, 527. [Google Scholar] [CrossRef]
- Li, J.; Ye, J.; Chen, C.; Li, Y.; Verellen, N.; Moshchalkov, V.V.; Lagae, L.; Van Dorpe, P. Revisiting the Surface Sensitivity of Nanoplasmonic Biosensors. ACS Photonics 2015, 2, 425–431. [Google Scholar] [CrossRef] [Green Version]
- Bonyár, A.; Lednický, T.; Hubálek, J. LSPR Nanosensors with Highly Ordered Gold Nanoparticles Fabricated on Nanodimpled Aluminium Templates. Procedia Eng. 2016, 168, 1160–1163. [Google Scholar] [CrossRef]
- Millet, L.J.; Jain, A.; Gillette, M.U. Less Is More: Oligomer Extraction and Hydrothermal Annealing Increase PDMS Bonding Forces for New Microfluidics Assembly and for Biological Studies. bioRxiv 2017, 150953. [Google Scholar] [CrossRef]
- Yunus, S.; de Crombrugghe De Looringhe, C.; Poleunis, C.; Delcorte, A. Diffusion of Oligomers from Polydimethylsiloxane Stamps in Microcontact Printing: Surface Analysis and Possible Application. Surf. Interface Anal. 2007, 39, 922–925. [Google Scholar] [CrossRef]
- le Ru, E.C.; Blackie, E.; Meyer, M.; Etchegoint, P.G. Surface Enhanced Raman Scattering Enhancement Factors: A Comprehensive Study. J. Phys. Chem. C 2007, 111, 13794–13803. [Google Scholar] [CrossRef]
- Rzhevskii, A. Basic Aspects of Experimental Design in Raman Microscopy. Spectroscopy 2016, 31, 40–45. [Google Scholar]
- Gong, P.; Levicky, R. DNA Surface Hybridization Regimes. Proc. Natl. Acad. Sci. USA 2008, 105, 5301–5306. [Google Scholar] [CrossRef] [Green Version]
- Sagar, D.M.; Korshoj, L.E.; Hanson, K.B.; Chowdhury, P.P.; Otoupal, P.B.; Chatterjee, A.; Nagpal, P. High-Throughput Block Optical DNA Sequence Identification. Small 2018, 14, 1703165. [Google Scholar] [CrossRef]
- Kim, J.; Park, H.J.; Kim, J.H.; Chang, B.; Park, H.K. Label-free Detection for a DNA Methylation Assay Using Raman Spectroscopy. Chin. Med. J. 2017, 130, 1961–1967. [Google Scholar] [CrossRef]
- Huang, D.; Cui, J.; Chen, X. A Morpholinium Surfactant Crystallization Induced Formation of Au Nanoparticle Sheet-like Assemblies with Uniform SERS Activity. Colloids Surf. A Phys. Eng. Asp. 2014, 456, 100–107. [Google Scholar] [CrossRef]
- Gontrani, L.; Tagliatesta, P.; Agresti, A.; Pescetelli, S.; Carbone, M. New Insights into the Structure of Glycols and Derivatives: A Comparative X-Ray Diffraction, Raman and Molecular Dynamics Study of Ethane-1,2-Diol, 2-Methoxyethan-1-Ol and 1,2-Dimethoxy Ethane. Crystals 2020, 10, 1011. [Google Scholar] [CrossRef]
- McNaught, A.D.; Wilkinson, A. Compendium of Chemical Terminology-Gold Book; IUPAC: Research Triangle Park, NC, USA, 2012; p. 1670. [Google Scholar] [CrossRef]
- Zhao, N.; Li, H.; Tian, C.; Xie, Y.; Feng, Z.; Wang, Z.; Yan, X.; Wang, W.; Yu, H. Bioscaffold Arrays Decorated with Ag Nanoparticles as a SERS Substrate for Direct Detection of Melamine in Infant Formula. RSC Adv. 2019, 9, 21771–21776. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.Y.; Lin, H.C.; Hung, G.Y.; Tu, C.S.; Liu, T.Y.; Hong, C.H.; Yu, G.; Hsu, J.C. High Sensitivity SERS Substrate of a Few Nanometers Single-Layer Silver Thickness Fabricated by DC Magnetron Sputtering Technology. Nanomaterials 2022, 12, 2742. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.Y.; Lin, H.C.; Liu, Y.H.; Chen, K.L.; Wang, Y.H.; Sun, Y.S.; Hsu, J.C. Highly Sensitive, Robust, and Recyclable TiO2/AgNP Substrate for SERS Detection. Molecules 2022, 27, 6755. [Google Scholar] [CrossRef] [PubMed]
- Chiang, C.Y.; Liu, T.Y.; Su, Y.A.; Wu, C.H.; Cheng, Y.W.; Cheng, H.W.; Jeng, R.J. Au Nanoparticles Immobilized on Honeycomb-Like Polymeric Films for Surface-Enhanced Raman Scattering (SERS) Detection. Polymers 2017, 9, 93. [Google Scholar] [CrossRef] [Green Version]
- Choi, C.J.; Xu, Z.; Wu, H.Y.; Liu, G.L.; Cunningham, B.T. Surface-Enhanced Raman Nanodomes. Nanotechnology 2010, 21, 415301. [Google Scholar] [CrossRef] [PubMed]
- Fu, H.; Chen, J.; Chen, L.; Zhu, X.; Chen, Z.; Qiu, B.; Lin, Z.; Guo, L.; Chen, G. A Calcium Alginate Sponge with Embedded Gold Nanoparticles as a Flexible SERS Substrate for Direct Analysis of Pollutant Dyes. Microchim. Acta 2019, 186, 1–7. [Google Scholar] [CrossRef]
- Liu, R.; Zha, Z.; Li, C.; Shafi, M.; Peng, Q.; Liu, M.; Zhang, C.; Du, X.; Jiang, S. Coupling of Multiple Plasma Polarization Modes in Particles–Multilayer Film System for Surface-Enhanced Raman Scattering. APL Photonics 2021, 6, 036104. [Google Scholar] [CrossRef]
- Zhang, W.; Zhu, X.; Chen, Z.; Belotelov, V.I.; Song, Y. Silver Nanopillar Arrayed Thin Films with Highly Surface-Enhanced Raman Scattering for Ultrasensitive Detection. ACS Omega 2022, 7, 25726–25731. [Google Scholar] [CrossRef]
- Wang, J.; Qiu, C.; Mu, X.; Pang, H.; Chen, X.; Liu, D. Ultrasensitive SERS Detection of Rhodamine 6G and P-Nitrophenol Based on Electrochemically Roughened Nano-Au Film. Talanta 2020, 210, 120631. [Google Scholar] [CrossRef]
- Hamzah, F.G.; Humud, H.R. The Raspberry-like Nanostructures (SiO2@AgNPs) Fabricated by Electrical Exploding Wire (EEW) Technique for Raman Scattering Enhancement. AIP Conf. Proc. 2020, 2290, 050033. [Google Scholar] [CrossRef]
- Xu, D.; Zhang, Y.; Zhang, S.; Yang, W.; Wang, Z.; Li, J. Copper Nanoleaves SERS Substrates with High Surface Roughness for Sensitive Detection Crystal Violet and Rhodamine 6G. Opt. Laser Technol. 2022, 145, 107502. [Google Scholar] [CrossRef]
- Zhu, J.; Lin, G.; Wu, M.; Chen, Z.; Lu, P.; Wu, W. Large-Scale Fabrication of Ultrasensitive and Uniform Surface-Enhanced Raman Scattering Substrates for the Trace Detection of Pesticides. Nanomaterials 2018, 8, 520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, L.; Huang, J.; Xu, T.; Chen, L.; Zhang, K.; Han, S.; He, Y.; Lee, S.T. Silver Nanosheet-Coated Inverse Opal Film as a Highly Active and Uniform SERS Substrate. J. Mater. Chem. 2011, 22, 1370–1374. [Google Scholar] [CrossRef]
- Yang, W.; Ou, Q.; Li, C.; Cheng, M.; Li, W.; Liu, Y. Ultrasensitive Flower-like TiO2/Ag Substrate for SERS Detection of Pigments and Melamine. RSC Adv. 2022, 12, 6958–6965. [Google Scholar] [CrossRef] [PubMed]
Type | Size of AuNPs | Thickness | D/D0 | Defects per Particle |
---|---|---|---|---|
#1 | (67.4 ± 2.9) nm | ~25 nm | 0.65 ± 0.12 | 0.9 % |
#2 | (83.2 ± 3.4) nm | ~35 nm | 0.33 ± 0.10 | 3.2 % |
#3 | (91.5 ± 4.2) nm | ~45 nm | 0.21 ± 0.09 | 7.0 % |
SERS Substrate Type | LOD | Reference |
---|---|---|
Bioscaffold arrays decorated with silver nanoparticles (AgNPs) | 10−7 | [32] |
Few nm thick silver layer, deposited with sputtering | 10−8 | [33] |
TiO2/Ag NP composite substrate | 10−8 | [34] |
Honeycomb-like polymeric films filled with AuNPs | 10−8 | [35] |
Silver coated nanodomes | 10−9 | [36] |
AuNPs embedded in a calcium alginate sponge | 10−10 | [37] |
A hybrid AgNP/ AuNP /Al2O3 multilayer film | 10−10 | [38] |
Silver nanopillar arrayed thin films | 10−10 | [39] |
Electrochemically roughened Au film | 10−11 | [40] |
Raspberry-like SiO2@AgNPs nanostructures | 10−12 | [41] |
Dendritic copper nanoleaves | 10−13 | [42] |
Uniform AgNP array on a glass/PDMS substrate | 10−14 | [43] |
Silver nanosheet-coated inverse opal film | 10−14 | [44] |
Flower-like TiO2/Ag nanostructure | 5 × 10−16 | [45] |
Hexagonally ordered AuNP layers on SiO2 | 10−16 | this work |
Ag nanoparticles embedded in multi-layer black phosphorus nanosheets | 10−20 (single molecule) | [11] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zangana, S.; Lednický, T.; Bonyár, A. Three Generations of Surface Nanocomposites Based on Hexagonally Ordered Gold Nanoparticle Layers and Their Application for Surface-Enhanced Raman Spectroscopy. Chemosensors 2023, 11, 235. https://doi.org/10.3390/chemosensors11040235
Zangana S, Lednický T, Bonyár A. Three Generations of Surface Nanocomposites Based on Hexagonally Ordered Gold Nanoparticle Layers and Their Application for Surface-Enhanced Raman Spectroscopy. Chemosensors. 2023; 11(4):235. https://doi.org/10.3390/chemosensors11040235
Chicago/Turabian StyleZangana, Shireen, Tomáš Lednický, and Attila Bonyár. 2023. "Three Generations of Surface Nanocomposites Based on Hexagonally Ordered Gold Nanoparticle Layers and Their Application for Surface-Enhanced Raman Spectroscopy" Chemosensors 11, no. 4: 235. https://doi.org/10.3390/chemosensors11040235
APA StyleZangana, S., Lednický, T., & Bonyár, A. (2023). Three Generations of Surface Nanocomposites Based on Hexagonally Ordered Gold Nanoparticle Layers and Their Application for Surface-Enhanced Raman Spectroscopy. Chemosensors, 11(4), 235. https://doi.org/10.3390/chemosensors11040235