Elemental Analysis of Heated Soil Samples Using Laser-Induced Breakdown Spectroscopy Assisted with High-Voltage Discharges
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Electric Circuit Characteristics
3.2. Spectroscopy Results
3.3. Plasma Characterization
3.4. Crater Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tóth, G.; Hermann, T.; Da Silva, M.R.; Montanarella, L. Heavy metals in agricultural soils of the European Union with implications for food safety. Environ. Int. 2016, 88, 299–309. [Google Scholar] [CrossRef] [PubMed]
- Tejada, M.; Gonzalez, J.L. Crushed cotton gin compost on soil biological properties and rice yield. Eur. J. Agron. 2006, 25, 22–29. [Google Scholar] [CrossRef]
- EN 16174:2012; NSAI Standards. Irish Standard I.S. NSAI Standards: Dublin, Ireland, 2012. Available online: https://infostore.saiglobal.com/preview/is/en/2012/i.s.en16174-2012.pdf?sku=1592195 (accessed on 20 September 2022).
- Hilbk-Kortenbruck, F.; Noll, R.; Wintjens, P.; Falk, H.; Becker, C. Analysis of heavy metals in soils using laser-induced breakdown spectrometry combined with laser-induced fluorescence. Spectrochim. Acta Part B 2001, 56, 933–945. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemski, L.J. Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley & Sons Ltd.: Hoboken, NJ, USA; Chichester, UK, 2006; pp. 171–194. [Google Scholar]
- Miziolek, A.; Palleschi, V.; Schechter, I. Laser-Induced Breakdown Spectroscopy (LIBS) Fundamentals and Applications; Cambridge University Press: Cambridge, UK, 2006; pp. 17–36. [Google Scholar]
- Dell’Aglio, M.; Gaudiuso, R.; Senesi, G.; De Giacomo, A.; De Pascale, O. Monitoring of Cr, Cu, Pb, V and Zn in polluted soils by laser induced breakdown spectroscopy (LIBS). J. Environ. Monit. 2011, 13, 1422. [Google Scholar] [CrossRef]
- Villas-Boas, P.R.; Franco, M.A.; Gollany, H.T.; Martin-Neto, L.; Milori, D.M.B.P. Applications of laser-induced breakdown spectroscopy for soil analysis, Part I: Review of Fundamentals and Chemical and Physical Properties. Eur. J. Soil Sci. 2019, 71, 789–804. [Google Scholar] [CrossRef]
- Villas-Boas, P.R.; Franco, M.A.; Martin-Neto, L.; Gollany, H.T.; Milori, D.M.B.P. Applications of laser-induced breakdown spectroscopy for soil characterization, part II: Review of elemental analysis and soil classification. Eur. J. Soil Sci. 2019, 71, 1–14. [Google Scholar] [CrossRef]
- Ferreira, E.C.; Gomes-Neto, J.A.; Milori, D.M.B.P.; Ferreira, E.J.; Anzano, J.M. Laser-induced breakdown spectroscopy: Extending its application to soil pH measurements. Spectrochim. Acta Part B 2015, 110, 96–99. [Google Scholar] [CrossRef]
- Santos, D., Jr.; Nunes, L.C.; Trevizan, L.C.; Godoi, Q.; Leme, F.O.; Braga, J.W.B.; Krug, F.J. Evaluation of laser induced breakdown spectroscopy for cadmium determination in soils. Spectrochim. Acta Part B 2009, 64, 1073–1078. [Google Scholar] [CrossRef]
- Wuana, R.A.; Okieimen, F.E. Heavy metals in contaminated soils: A review of sources, chemistry, risks and best available strategies for remediation. Int. Sch. Res. Netw. ISRN Ecol. 2011, 1–20. [Google Scholar] [CrossRef]
- Ferreira, E.C.; Milori, D.M.B.P.; dos Santos, L.M.; Martin-Neto, L.; Nogueira, A.R.A. Evaluation of laser induced breakdown spectroscopy for multielemental determination in soils under sewage sludge application. Talanta 2011, 85, 435–440. [Google Scholar] [CrossRef]
- Wang, T.; He, M.; Shen, T.; Liu, F.; Qiu, Z. Multi-element analysis of heavy metal content in soils using laser-induced breakdown spectroscopy: A case study in eastern China. Spectrochim. Acta Part B 2018, 149, 300–312. [Google Scholar] [CrossRef]
- Popov, A.; Labutin, T.; Zaytsev, S.; Seliverstova, I.; Nikolaev, Y. Determination of Ag, Cu, Mo and Pb in soils and ores by laser-induced breakdown spectrometry. J. Anal. At. Spectrom. 2014, 29, 1925. [Google Scholar] [CrossRef]
- Akhtar, M.; Jabbar, A.; Ahmed, N.; Mahmood, S.; Baig, M.A. Analysis of lead and copper in soil samples by laser-induced breakdown spectroscopy under external magnetic field. Appl. Phys. B 2019, 125, 110. [Google Scholar] [CrossRef]
- Yingchao, L.; Di, L.; Yu, D.; Guang, Y.; Xu, H. A review of laser-induced breakdown spectroscopy signal enhancement. Appl. Spectrosc. Rev. 2018, 53, 1–35. [Google Scholar] [CrossRef]
- Zhou, W.; Guo, Y.; Zhang, R. Laser ablation assisted spark induced breakdown spectroscopy and its application. Front. Phys. 2020, 15, 52201. [Google Scholar] [CrossRef]
- Vieira, A.; Silva, T.; de Sousa, F.; Senesi, G.; Neto, J. Determinations of phosphorus in fertilizers by spark discharge-assisted laser-induced breakdown spectroscopy. Microchem. J. 2018, 139, 322–326. [Google Scholar] [CrossRef]
- Jabbar, A.; Akhtar, M.; Mehmmod, S.; Iqbal, M.; Baig, M. Quantification of copper remediation in the Allium cepa L. leaves using electric field assisted laser induced breakdown spectroscopy. Spectrochim. Acta Part B 2019, 162, 105719. [Google Scholar] [CrossRef]
- Wang, X.; Li, A.; Xu, X.; He, Y.; Liu, R. High enhancement factor in low-power unipolar discharge arc assisted laser induced plasma spectroscopy. Spectrochim. Acta Part B 2020, 174, 105996. [Google Scholar] [CrossRef]
- Srungaram, P.; Ayyalasomayajula, K.; Yu-Yueh, F.; Singh, J. Comparison of laser induced breakdown spectroscopy and spark induced breakdown spectroscopy for determination of mercury in soils. Spectrochim. Acta Part B 2013, 87, 108–113. [Google Scholar] [CrossRef]
- Kexue, L.; Zhou, W.; Shen, Q.; Shao, J.; Qian, H. Signal enhancement of lead and arsenic in soil using laser ablation combined with fast electric discharge. Spectrochim. Acta Part B 2010, 65, 420–424. [Google Scholar] [CrossRef]
- Xiafen, L.; Zhou, W.; Kexue, l.; Qian, H.; Ren, Z. Laser ablation fast pulse discharge plasma spectroscopy analysis of Pb, Mg and Sn in soil. Opt. Commun. 2012, 285, 54–58. [Google Scholar] [CrossRef]
- Lednev, V.N.; Grishin, M.Y.; Sdvizhenskii, P.A.; Asyutin, R.D.; Pershin, S.M. Sample temperature effect on laser ablation and analytical capabilities of laser-induced breakdown spectroscopy. J. Anal. At. Spectrom 2019, 34, 607–615. [Google Scholar] [CrossRef]
- Hai, R.; He, Z.; Wu, D.; Tong, W.; Ding, H. Influence of sample temperature on the laser-induced breakdown spectroscopy of molybdenum–tungsten alloy. J. Anal. At. Spectrom 2019, 34, 2378–2384. [Google Scholar] [CrossRef]
- Zeshan, A.U.; Usman, L.; Rizwan, A.; Muhammad, A.B. Detection of lead in soil implying sample heating and laser-induced breakdown spectroscopy. Appl. Opt. 2021, 60, 452–458. [Google Scholar] [CrossRef]
- Sobral, H.; Robledo-Martinez, A. Signal enhancement in laser-induced breakdown spectroscopy using fast square-pulse discharges. Spectrochim. Acta Part B At. Spectrosc 2016, 124, 67–73. [Google Scholar] [CrossRef]
- Sarjeant, W.J.; Dollinger, R.E. High-Power Electronics; TAB Books: Blue Ridge Summit, PA, USA, 1989; pp. 122–124. [Google Scholar]
- Mexico’s Secretary of Environment and Natural Resources. Norma Oficial Mexicana NOM-147-SEMARNAT/SSA1-2004 (In Spanish); Official Journal of the Federation: Mexico City, Mexico, 2007; p. 8. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=4964569&fecha=02/03/2007#gsc.tab=0 (accessed on 2 December 2020).
- Washington State, Department of Ecology. Model Toxics Control Act Regulation and Statute, MTCA Cleanup Regulation; Washington State, Department of Ecology: Washington, DC, USA, 2022; p. 12. Available online: https://apps.leg.wa.gov/wac/default.aspx?cite=173-340-900 (accessed on 1 October 2022).
- Akhtar, M.; Jabbar, A.; Mehmood, S.; Ahmed, N.; Baig, M.A. Magnetic field enhanced detection of heavy metals in soil using laser induced breakdown spectroscopy. Spectrochim. Acta Part B 2018, 148, 143–151. [Google Scholar] [CrossRef]
- Horňáčková, M.; Plavčan, J.; Horňáček, M.; Hudec, P.; Veis, P. Heavy Metals Detection in Zeolites Using the LIBS Method. Atoms 2019, 7, 98. [Google Scholar] [CrossRef]
- Kexuem, L.I.; Weidong, Z.; Qinmei, S.; Zhijun, R.; Baojin, P. Laser ablation assisted spark induced breakdown spectroscopy on soil samples. J. Anal. At. Spectrom. 2010, 25, 1475–1481. [Google Scholar] [CrossRef]
- Popov, A.M.; Colao, F.; Fantoni, R. Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils. J. Anal. At. Spectrom. 2010, 25, 837–848. [Google Scholar] [CrossRef]
- Sackett, D.; Moller, S.; Jennings, M.; Spott, J. Initial Quantitative Measurements with Handheld LIBS. Spectroscopy 2014, 29, 92–93. [Google Scholar]
- Popov, A.M.; Kozhnov, M.O.; Zaytsev, S.M.; Zorov, N.B.; Labutin, T.A. Enhanced Sensitivity of Direct Beryllium Determination in Soil by Laser-Induced Breakdown Spectrometry. J. Appl. Spectrosc. 2015, 82, 739–743. [Google Scholar] [CrossRef]
- Zhou, W.; Li, K.; Shen, Q.; Chen, Q.; Long, J. Optical emission enhancement using laser ablation combined with fast pulse discharge. Opt. Express 2010, 18, 2573–2578. [Google Scholar] [CrossRef] [PubMed]
- Hassanimatin, M.M.; Tavassoli, S.H. Experimental investigation of effective parameters on signal enhancement in spark assisted laser induced breakdown spectroscopy. Phys. Plasmas 2018, 25, 053302–053308. [Google Scholar] [CrossRef]
- Wei, W.; Li, X.; Wu, J.; Yang, Z.; Qiu, A. Interferometric and schlieren characterization of the plasmas and shock wave dynamics during laser-triggered discharge in atmospheric air. Phys. Plasmas 2014, 21, 083112–1–7. [Google Scholar] [CrossRef]
- Vinić, M.; Ivković, M. Spatial and temporal characteristics of laser ablation combined with fast pulse discharge. IEEE Trans. Plasma Sci. 2014, 42, 2598–2599. [Google Scholar] [CrossRef]
- Aguilera, J.A.; Aragon, C. Characterization of a laser-induced plasma by spatially resolved spectroscopy of neutral atom and ion emissions. Comparison of local and spatially integrated measurements. Spectrochim. Acta B 2004, 59, 1861–1876. [Google Scholar] [CrossRef]
- Yalçin, S.; Crosley, D.R.; Smith, G.P.; Faris, G.W. Influence of ambient conditions on the laser air spark. Appl. Phys. B Lasers Opt. 1999, 68, 121–130. [Google Scholar] [CrossRef]
- Noll, R. Laser-Induced Breakdown Spectroscopy, Fundamentals and Applications, 1st ed.; Springer: Berlin/Heidelberg, Germany, 2012; pp. 7–16. [Google Scholar]
- Sherbini, A.M.; Hegazy, H.; El Sherbini, T.M. Measurement of electron density utilizing the Hα-line from laser produced plasma in air. Spectrochim. Acta Part B 2006, 61, 532–539. [Google Scholar] [CrossRef]
Element (Symbol) | Loam Soil B (µg g−1) | Loam Soil C (µg g−1) | Loam Soil D (µg g−1) |
---|---|---|---|
Cd | 84.3 ± 5.9 | 1.2 ± 0.2 | 0.520 ± 0.017 |
Cr | 52.5 ± 3.7 | 42 ± 4 | 269 ± 10 |
Pb | 107 ± 8 | 64 ± 7 | 129 ± 6 |
V | 80.6 ± 5.8 | 57 ± 8 | 127 ± 5 |
Zn | 231 ± 16 | 164 ± 20 | 104 ± 7 |
As | 49.5 ± 5.9 | 52.6 ± 2.4 | 29 ± 1.4 |
Be | 9.27 ± 0.74 | 1.3 ± 0.2 | 2.35 ± 0.06 |
Ni | 55.4 ± 3.7 | 141 ± 20 | 51.6 ± 3.7 |
Species; Transition (nm) | LIBS (20 °C) (µg g−1) | LIBS (400 °C) (µg g−1) | HV-LIBS (20 °C) (µg g−1) | HV-LIBS (400 °C) (µg g−1) | LOD Enhancement | Lower Guideline Value (µg g−1) a,b | Reference Values (µg g−1) |
---|---|---|---|---|---|---|---|
Cd II; 214.44 | 10 | 7.6 | 3.2 | 1.5 | 6.7 | 37; 25 | 1.3 [11]; 57 [21] |
Cr I; 520.60 | 8 | 2.3 | 15 | 2.2 | 3.6 | 280; 42 | 17 [7]; 8 [32] |
Pb I; 405.78 | 35 | 17 | - | - | 2.1 | 400; 220 | 20 [7]; 61 [33] |
V II; 311.07 | 24 | 10 | 19 | 6.4 | 3.7 | 78; 26 | 260 [13]; 65 [34] |
Zn I; 481.05 | 62 | 27 | - | - | 2.3 | -; 270 | 43 [13]; 31 [13] |
As I; 228.81 | LD | LD | LD | 15 | - | 22; 20 | 4 [23]; 30 [35] |
Be II; 313.04 | 0.57 | 0.25 | 0.28 | 0.14 | 4.1 | 150; 25 | 10 [36]; 0.07 [37] |
Ni II; 230.30 | 14 | 4.8 | 8 | 4.7 | 3.0 | 1 600; 100 | 8.87 [13]; 7.86 [13] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amador-Mejía, M.; Sobral, H.; Robledo-Martinez, A. Elemental Analysis of Heated Soil Samples Using Laser-Induced Breakdown Spectroscopy Assisted with High-Voltage Discharges. Chemosensors 2023, 11, 193. https://doi.org/10.3390/chemosensors11030193
Amador-Mejía M, Sobral H, Robledo-Martinez A. Elemental Analysis of Heated Soil Samples Using Laser-Induced Breakdown Spectroscopy Assisted with High-Voltage Discharges. Chemosensors. 2023; 11(3):193. https://doi.org/10.3390/chemosensors11030193
Chicago/Turabian StyleAmador-Mejía, Mitzi, Hugo Sobral, and Arturo Robledo-Martinez. 2023. "Elemental Analysis of Heated Soil Samples Using Laser-Induced Breakdown Spectroscopy Assisted with High-Voltage Discharges" Chemosensors 11, no. 3: 193. https://doi.org/10.3390/chemosensors11030193
APA StyleAmador-Mejía, M., Sobral, H., & Robledo-Martinez, A. (2023). Elemental Analysis of Heated Soil Samples Using Laser-Induced Breakdown Spectroscopy Assisted with High-Voltage Discharges. Chemosensors, 11(3), 193. https://doi.org/10.3390/chemosensors11030193