The Application of Combined Visible and Ultraviolet Irradiation to Improve the Functional Characteristics of Gas Sensors Based on ZnO/SnO2 and ZnO/Au Nanorods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Modification of Materials
2.3. Characterization
3. Results and Discussion
3.1. Structural, Morphological and Compositional Characteristics
3.2. XPS Analysis
3.3. Electrical Characterization
3.4. Photoconductivity Measurements
3.5. Gas Sensor Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, Y.; Jiang, Y.; Duan, Z.; Wu, Y.; Zhao, Q.; Liu, B.; Huang, Q.; Yuan, Z.; Li, X.; Tai, H. Edge-enriched MoS2 nanosheets modified porous nanosheet-assembled hierarchical In2O3 microflowers for room temperature detection of NO2 with ultrahigh sensitivity and selectivity. J. Hazrad. Mater. 2022, 434, 128836. [Google Scholar] [CrossRef] [PubMed]
- Gao, H.; Yu, Q.; Chen, K.; Sun, P.; Liu, F.; Yan, X.; Liu, F.; Lu, G. Ultrasensitive gas sensor based on hollow tungsten trioxide-nickel oxide (WO3-NiO) nanoflowers for fast and selective xylene detection. J. Colloid Interface Sci. 2019, 535, 458–468. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.; Xi, R.; Wu, Y.; Xu, J.; Yang, Y. Synthesis of Good Electrical Conductivity of CoCe-BTC/PEDOT for Ultrahigh Selectivity of NO2 Detection. Sensors 2022, 22, 6891. [Google Scholar] [CrossRef] [PubMed]
- Perera, A.; Madhushani, K.; Punchihewa, B.T.; Kumar, A.; Gupta, R.K. MXene-Based Nanomaterials for Multifunctional Applications. Materials 2023, 16, 1138. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, K.; Wei, W.; Wang, L.; Han, W. High-performance flexible sensingdevices based on polyaniline/MXene nanocomposites. InfoMat 2019, 1, 407–416. [Google Scholar] [CrossRef] [Green Version]
- Quan, W.; Shi, J.; Luo, H.; Fan, C.; Lv, W.; Chen, X.; Zeng, M.; Yang, J.; Hu, N.; Su, Y.; et al. Fully Flexible MXene-based Gas Sensor on Paper for Highly Sensitive Room-Temperature Nitrogen Dioxide Detection. ACS Sens. 2023, 8, 103–113. [Google Scholar] [CrossRef]
- Chen, K.; Lu, H.; Li, G.; Zhang, J.; Tian, Y.; Gao, Y.; Guo, Q.; Lu, H.; Gao, J. Surface functionalization of porous In2O3 nanofibers with Zn nanoparticles for enhanced low-temperature NO2 sensing properties. Sens. Actuators B Chem. 2020, 308, 127716. [Google Scholar] [CrossRef]
- Que, M.; Lin, C.; Sun, J.; Chen, L.; Sun, X.; Sun, Y. Progress in ZnO nanosensors. Sensors 2021, 21, 5502. [Google Scholar] [CrossRef]
- Rackauskas, S.; Barbero, N.; Barolo, C.; Viscardi, G. ZnO Nanowire Application in Chemoresistive Sensing. Nanomaterials 2017, 7, 381. [Google Scholar] [CrossRef] [Green Version]
- Marikutsa, A.; Novikova, A.; Rumyantseva, M.; Khmelevsky, N.; Gaskov, A. Comparison of Au-functionalized semi-conductor metal oxides in sensitivity to VOC. Sens. Actuators B Chem. 2021, 326, 128980. [Google Scholar] [CrossRef]
- Thompson, D. Using gold nanoparticles for catalysis. Nanotoday 2007, 2, 40–43. [Google Scholar] [CrossRef]
- Xiang, D.; Liu, Z.; Wu, M.; Liu, H.; Zhang, X.; Wang, Z.; Lin, Z.W.; Li, L. Enhanced Piezo-Photoelectric Catalysis with Oriented Carrier Migration in Asymmetric Au−ZnO Nanorod Array. Small 2020, 16, 1907603. [Google Scholar] [CrossRef]
- Bonyani, M.; Zebarjad, S.M.; Janghorban, K.; Kim, J.-Y.; Kim, H.W.; Kim, S.S. Au-Decorated Polyaniline-ZnO Electrospun Composite Nanofiber Gas Sensors with Enhanced Response to NO2 Gas. Chemosensors 2022, 10, 388. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Zhu, M.; Ju, D. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sens. Actuators B Chem. 2014, 199, 339–345. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A review on chemiresistive ZnO gas sensors. Sens. Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Vuong, N.M.; Than, L.H.; Phan, T.H.; Hieu, H.N.; Nghia, N.V.; Tu, N. Ultra-Responsive and Highly Selective Ethanol Gas Sensor Based on Au Nanoparticles Embedded ZnO Hierarchical Structures. J. Electrochem. Soc. 2021, 168, 027503. [Google Scholar] [CrossRef]
- Espid, E.; Taghipour, F. Development of highly sensitive ZnO/In2O3 composite gas sensor activated by UV-LED. Sens. Actuators B Chem. 2017, 241, 828–839. [Google Scholar] [CrossRef]
- Wei, N.; Cui, H.; Wang, X.; Xie, X.; Wang, M.; Zhang, L.; Tian, J. Hierarchical assembly of In2O3 nanoparticles on ZnO hollow nanotubes using carbon fibers as templates: Enhanced photocatalytic and gas-sensing properties. J. Colloid Interface Sci. 2017, 498, 263–270. [Google Scholar] [CrossRef]
- Choi, S.; Park, J.; Kim, S. Synthesis of SnO2–ZnO core–shell nanofibers via a novel two-step process and their gas sensing properties. Nanotechnology 2009, 20, 46. [Google Scholar] [CrossRef]
- Li, X.; Gu, D.; Yang, Y.; Du, H.; Li, X. UV Light Activated SnO2/ZnO Nanofibers for Gas Sensing at Room Temperature. Front. Mater. 2019, 6, 158. [Google Scholar] [CrossRef] [Green Version]
- Petrov, V.V.; Bayan, E.M.; Khubezhov, S.A.; Varzarev, Y.N.; Volkova, M.G. Investigation of Rapid Gas-Sensitive Properties Degradation of ZnO–SnO2 Thin Films Grown on the Glass Substrate. Chemosensors 2020, 8, 40. [Google Scholar] [CrossRef]
- Nasriddinov, A.; Rumyantseva, M.; Marikutsa, A.; Gaskov, A.; Lee, J.H.; Kim, J.H.; Kim, J.Y.; Kim, S.S.; Kim, H.W. Sub-ppm Formaldehyde Detection by n-n TiO2@SnO2 Nanocomposites. Sensors 2019, 19, 3182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rumyantseva, M.; Gaskov, A. Light Activation of Nanocrystalline Metal Oxides for Gas Sensing: Principles, Achievements, Challenges. Nanomaterials 2021, 11, 892. [Google Scholar]
- Hassan, T.A.A. Enhancement of gas response of annealed ZnO film for hydrogen gas detection. IJP 2014, 12, 73–79. [Google Scholar] [CrossRef]
- Kim, J.-H.; Sakaguchi, I.; Hishita, S.; Ohsawa, T.; Suzuki, T.T.; Saito, N. Ru-implanted WS2 nanosheet gas sensors to enhance sensing performance towards CO gas in self-heating mode. Sens. Actuators B Chem. 2022, 370, 132454. [Google Scholar] [CrossRef]
- Li, Q.H.; Wan, Q.; Liang, Y.X.; Wang, T.H. Electronic transport through individual ZnO nanowires. Appl. Phys. Lett. 2004, 84, 4556. [Google Scholar] [CrossRef]
- Kumar, R.; Liu, X.; Zhang, J.; Kumar, M. Room-Temperature Gas Sensors Under Photoactivation: From Metal Oxides to 2D Materials. Nano-Micro Lett. 2020, 12, 164. [Google Scholar] [CrossRef]
- Solomatin, M.A.; Glukhova, O.E.; Fedorov, F.S.; Sommer, M.; Shunaev, V.V.; Varezhnikov, A.S.; Nasibulin, A.G.; Ushakov, N.M.; Sysoev, V.V. The UV effect on the chemiresistive response of ZnO nanostructures to isopropanol and benzene at ppm concentrations in mixture with dry and wet Air. Chemosensors 2021, 9, 181. [Google Scholar] [CrossRef]
- Ryabko, A.A.; Bobkov, A.A.; Nalimova, S.S.; Maksimov, A.I.; Levitsky, V.S.; Moshnikov, V.A.; Terukov, E.I. Gas-sensitivity of nanostructured coatings based on zinc oxide nanorods under combined activation. TEC Phys. 2022, 92, 5. [Google Scholar] [CrossRef]
- Guarnieri, M.; Balmes, J.R. Outdoor air pollution and asthma. Lancet 2014, 383, 1581–1592. [Google Scholar] [CrossRef] [Green Version]
- Barnes, P.J.; Dweik, R.A.; Gelb, A.F.; Gibson, P.G.; George, S.C.; Grasemann, H.; Pavord, I.D.; Ratjen, F.; Silkoff, P.E.; Taylor, D.R.; et al. Exhaled nitric oxide in pulmonary diseases: A comprehensive review. Chest 2010, 138, 682–692. [Google Scholar] [CrossRef]
- Korotcenkov, G.; Cho, B. Metal oxide composites in conductometric gas sensors: Achievements and challenges. Sens. Actuators B Chem. 2017, 244, 182–210. [Google Scholar] [CrossRef]
- Jun, J.H.; Yun, J.; Cho, K.; Hwang, I.-S.; Lee, J.-H.; Kim, S. Necked ZnO nanoparticle-based NO2 sensors with high and fast response. Sens. Actuators B Chem. 2009, 140, 412–417. [Google Scholar] [CrossRef]
- Fan, F.; Feng, Y.; Bai, S.; Feng, J.; Chen, A.; Li, D. Synthesis and Gas Sensing Properties to NO2 of ZnO Nanoparticles. Sens. Actuators B Chem. 2013, 185, 377–382. [Google Scholar] [CrossRef]
- Petrov, V.V.; Starnikova, A.P.; Abdullin, K.A.; Makarenko, D.P. Features of the mechanism of gas sensitivity of the zinc oxide nanorods arrays to carbon monoxide. IOP Conf. Ser. J. Phys. Conf. Ser. 2018, 1124, 022017. [Google Scholar] [CrossRef]
- Petrov, V.V.; Starnikova, A.P.; Varzarev, Y.N.; Abdullin, K.A.; Makarenko, D.P. Gas sensitive properties of ZnO nanorods formed on silicon and glass substrates. IOP Conf. Ser. Mater. Sci. Eng. 2019, 703, 012038. [Google Scholar] [CrossRef]
- Starnikova, A.; Gulyaeva, I.; Abdullin, K.; Petrov, V. Investigation of the electrophysical and gas-sensitive properties of thin nanocomposite materials based on ZnO (Sn) and ZnO (Au) nanorods NanoOstrava 2021-Nanomater. Nanotechnol. Meet. 2021, 1, 32. [Google Scholar]
- Chakrabarty, P.; Banik, M.; Gogurla, N.; Santra, S.; Ray, S.K.; Mukherjee, R. Light trapping-mediated room-temperature gas sensing by ordered ZnO nano structures decorated with plasmonic Au nanoparticles. ACS Omega 2019, 4, 12071–12080. [Google Scholar] [CrossRef] [Green Version]
- Rakshit, T.; Santra, S.; Manna, I.; Kumar, S. Enhanced sensitivity and selectivity of brush-like SnO2 nanowire/ZnO nanorod heterostructure based sensors for volatile organic compounds. RSC Adv. 2014, 4, 36749. [Google Scholar] [CrossRef]
- Su, X.; Duan, G.; Xu, Z.; Zhou, F.; Cai, W. Structure and thickness-dependent gas sensing responses to NO2 under UV irradiation for the multilayered ZnO micro/nanostructured porous, thin films. J. Colloid Interface Sci. 2017, 503, 150–158. [Google Scholar] [CrossRef]
- Lu, G.; Xu, J.; Sun, J.; Yu, Y.; Zhang, Y.; Liu, F. UV-enhanced room temperature NO2 sensor using ZnO nanorods modified with SnO2 nanoparticles. Sens. Actuators B Chem. 2012, 162, 82–88. [Google Scholar] [CrossRef]
- Chinh, N.D.; Hien, T.T.; Do Van, L.; Hieu, N.M.; Quang, N.D.; Lee, S.M.; Kim, C.; Kim, D. Adsorption/desorption kinetics of nitric oxide on zinc oxide nano film sensor enhanced by light irradiation and gold-nanoparticles decoration. Sens. Actuators B Chem. 2019, 281, 262–272. [Google Scholar] [CrossRef]
- Gonzalez, O.; Roso, S.; Vilanova, X.; Llobet, E. Enhanced detection of nitrogen dioxide via combined heating and pulsed UV operation of indium oxide nano-octahedra. Beilstein J. Nanotechnol. 2016, 7, 1507–1518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pollack, I.B.; Lerner, B.M.; Ryerson, T.B. Evaluation of ultraviolet light-emitting diodes for detection of atmospheric NO2 by photolysis-chemiluminescence. J. Atmos. Chem. 2010, 65, 111–125. [Google Scholar] [CrossRef]
- Starnikova, A.P.; Gulyaeva, I.A.; Abdullin, K.A.; Petrov, V.V. Study of gas-sensitive properties of materials based on ZnO nanorods to nitrogen dioxide (IV). PHENMA 2021, 33–34. [Google Scholar]
- Abdullin, K.A.; Bakranov, N.B.; Ismailov, D.V.; Kalkozova, J.K.; Kumekov, S.E.; Podrezova, L.V.; Cicero, G. Composite Materials Based on Nanostructured Zinc Oxide. Semiconductors 2014, 48, 471–475. [Google Scholar] [CrossRef]
- Gritsenko, L.V.; Abdullin, K.A.; Gabdullin, M.T.; Kalkozova, Z.K.; Kumekov, S.E.; Mukash, Z.O.; Sazonov, A.Y.; Terukov, E.I. Effect of thermal annealing on properties of polycrystalline ZnO thin films. J. Cryst. Growth 2017, 457, 164–170. [Google Scholar] [CrossRef]
- Petrov, V.V.; Varzarev, Y.N.; Abdullin, K.A. Temperature Dependence of Electrical Properties of ZnO Nanorods Array. IOP Conf. Ser. Mater. Sci. Eng. 2019, 703, 012040. [Google Scholar] [CrossRef]
- Petrov, V.V.; Sysoev, V.V.; Starnikova, A.P.; Volkova, M.G.; Kalazhokov, Z.K.; Storozhenko, V.Y.; Khubezhov, S.A.; Bayan, E.M. Synthesis, Characterization and Gas Sensing Study of ZnO-SnO2 Nanocomposite Thin Films. Chemosensors 2021, 9, 124. [Google Scholar] [CrossRef]
- Shalimova, K.V. Physics of Semiconductors (Moscow: Energeia); Energoatomizdat: Moscow, Russia, 1976; Volume 2. [Google Scholar]
- Starnikova, A.P.; Nesterenko, A.V.; Petrov, A.V.; Varzarev, Y.N.; Petrov, V.V. Research of the photoconductivity char-acteristics of thin films of complex oxides formed on non-transparent substrates. LFPM-2021 2021, 2, 125–126. [Google Scholar]
- Petrov, V.V.; Ivanishcheva, A.P.; Volkova, M.G.; Storozhenko, V.Y.; Gulyaeva, I.A.; Pankov, I.V.; Bayan, E.M. High Gas Sensitivity to Nitrogen Dioxide of Nanocomposite ZnO-SnO2 Films Activated by a Surface Electric Field. Nanomaterials 2022, 12, 2025. [Google Scholar] [CrossRef]
- Miller, D.J.; Biesinger, M.C.; McIntyre, N.S. The interface of atomic layer deposited ZrO2 on Si/SiO2 from an alkoxide zirconium precursor and ethanol: A transmission electron microscopy focused study. Surf. Interface Anal. 2002, 33, 299. [Google Scholar] [CrossRef]
- Strohmeier, B.R. An ESCA method for determining the oxide thickness on aluminum alloys. Surf. Interface Anal. 1990, 15, 51. [Google Scholar] [CrossRef]
- Jablonski, A.; Powell, C.J. Relationships between electron inelastic mean free paths, effective attenuation lengths, and mean escape depths. J. Electron Spectrosc. Relat. Phenom. 1999, 100, 137–160. [Google Scholar] [CrossRef]
- Fedorov, F.; Vasilkov, M.; Lashkov, A.; Varezhnikov, A.; Fuchs, D.; Kübel, C.; Bruns, M.; Sommer, M.; Sysoev, V. Toward new gas-analytical multisensor chips based on titanium oxide nanotube array. Sci. Rep. 2017, 7, 9732. [Google Scholar] [CrossRef] [Green Version]
- Wei, M.; Li, C.F.; Deng, X.R.; Deng, H. Surface work function of transparent conductive ZnO films. Energy Procedia 2012, 16, 76–80. [Google Scholar] [CrossRef] [Green Version]
- Mishra, Y.; Chakravadhanula, V.; Hrkac, V.; Jebril, S.; Agarwal, D.; Mohapatra, S.; Avasthi, D.; Kienle, L.; Adelung, R. Crystal growth behaviour in Au-ZnO nanocomposite under different annealing environments and photoswitchability. Appl. Phys. 2012, 112, 064308. [Google Scholar] [CrossRef]
- Alosfur, F.K.M.; Ridha, N.J. Synthesis, and characterization of ZnO/SnO2 nanorods coreshell arrays for high performance gas sensors. Appl. Phys. A 2021, 127, 203. [Google Scholar] [CrossRef]
- Sahm, T.; Gurlo, A.; Barsan, N.; Weimar, U. Basics of oxygen and SnO2 interaction; work function change and conductivity measurements. Sens. Actuators B Chem. 2006, 118, 78–83. [Google Scholar] [CrossRef]
- Gurlo, A. Insights into the Mechanism of Gas Sensor Operation. In Metal Oxide Nanomaterials for Chemical Sensors; Carpenter, M.A., Mathur, S., Kolmakov, A., Eds.; Springer: New York, NY, USA, 2013; pp. 3–34. [Google Scholar]
- Zheng, L.; Xie, J.; Liu, X.; Yang, C.; Zheng, W.; Zhang, J. Unveiling the Electronic Interaction in ZnO/PtO/Pt Nanoarrays for Catalytic Detection of Triethylamine with Ultrahigh Sensitivity. ACS Appl. Mater. Interfaces 2020, 12, 46267–46276. [Google Scholar] [CrossRef]
- Ma, T.; Zheng, L.; Zhao, Y.; Xu, Y.; Zhang, J.; Liu, X. Highly Porous Double-Shelled Hollow Hematite Nanoparticles for Gas Sensing. ACS Appl. Nano Mater. 2019, 2, 2347–2357. [Google Scholar]
- Kołodziejczak-Radzimska, A.; Jesionowski, T. Zinc Oxide—From Synthesis to Application: A Review. Materials 2014, 7, 2833–2881. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hsiao, C.; Luo, L. A Rapid Process for Fabricating Gas Sensors. Sensors 2014, 14, 12219–12232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobs, C.B.; Maksov, A.B.; Muckley, E.S.; Collins, L.; Mahjouri-Samani, M.; Ievlev, A.; Rouleau, C.M.; Moon, J.W.; Graham, D.E.; Sumpter, B.G.; et al. UV-activated ZnO flms on a fexible substrate for room temperature O2 and H2O sensing. Sci. Rep. 2017, 7, 6053. [Google Scholar] [CrossRef]
- Joshi, N.; da Silva, L.F.; Shimizu, F.M.; Mastelaro, V.R.; M’Peko, J.C.; Lin, L.; Oliveira, O.N. UV-assisted chemiresistors made with gold-modifed ZnO nanorods to detect ozone gas at room temperature. Microchim. Acta 2019, 186, 418. [Google Scholar] [CrossRef]
- Chizhov, A.; Kutukov, P.; Gulin, A.; Astafiev, A.; Rumyantseva, M. UV-Activated NO2 Gas Sensing by Nanocrystalline ZnO:Mechanistic Insights from Mass Spectrometry Investigations. Chemosensors 2022, 10, 147. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Li, G.; Liu, J.; Liang, Q.; Wang, H.; Zhu, Y.; Gao, J.; Lu, H. In2O3–ZnO nanotubes for the sensitive and selective detection of ppb-level NO2 under UV irradiation at room temperature. Sens. Actuators B 2022, 355, 131322. [Google Scholar] [CrossRef]
- Trocino, S.; Frontera, P.; Donato, A.; Bucassa, C.; Scarpino, L.A.; Antonucci, P.; Neri, G. Gas sensing properties under UV radiation of In2O3 nanostructures processed by electro-spinning. Mater. Chem. Phys. 2014, 147, 35–41. [Google Scholar] [CrossRef]
- Cui, J.; Shi, L.; Xie, T.; Wang, D.; Lin, Y. UV-lightillumination room temperature HCHO gas-sensing mechanism of ZnO with different nanostructures. Sens. Actuators B Chem. 2016, 227, 220–226. [Google Scholar] [CrossRef]
- da Silva, L.F.; M’Peko, J.C.; Catto, A.C.; Bernardini, S.; Mastelaro, V.R.; Aguir, K.; Ribeiro, C.; Longo, E. UV-enhanced ozone gas sensing response of ZnO-SnO2 heterojunctions at room temperature. Sens. Actuators B Chem. 2017, 240, 573–579. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Xie, G.; Xu, M.; Su, Y.; Tai, H.; Du, H.; Jiang, Y. Visible light-assisted room temperature gas sensing with ZnO- Ag heterostructure nanoparticles. Sens. Actuators B Chem. 2018, 259, 269–281. [Google Scholar] [CrossRef]
- Zou, A.L.; Qiu, Y.; Yu, J.J.; Yin, B.; Cao, G.Y.; Zhang, H.Q.; Hu, L.Z. Ethanol sensing with Au-modified ZnO microwires. Sens. Actuators B Chem. 2006, 227, 65. [Google Scholar] [CrossRef]
- Drozdowska, K.; Welearegay, T.; Osterlund, L.; Smulko, J. Combined chemoresistive and insitu FTIR spectroscopy study of nanoporous NiO films for light-activated nitrogen dioxide and acetone gas sensing. Sens. Actuators B Chem. 2022, 353, 131125. [Google Scholar] [CrossRef]
- Sun, J.; Liu, F.; Zhong, T.; Xu, J.; Zhang, Y.; Lu, G. Effects of UV Light Illumination on the Gas Sensing Properties of ZnO-SnO2 Thick Film Sensor. Sens. Lett. 2011, 9, 824–827. [Google Scholar] [CrossRef]
- Zou, Z.; Qiu, Y.; Xu, J.; Guo, P.; Luo, Y.; Wang, C. Enhanced formaldehyde photoelectric response on ZnO film illuminated with visible light. J. Alloys Compd. 2017, 695, 2117–2123. [Google Scholar] [CrossRef]
- Gulyaev, A.M.; Sarach, O.B.; Kotov, V.A.; Vanin, A.A.; Anufriev, Y.V.; Konovalov, A.V. Light-enhanced sensitivity of SnO2-x gas sensors. Semiconductors 2008, 42, 726–730. [Google Scholar] [CrossRef]
- Sayago, I.; Santos, J.P.; Sánchez-Vicente, C. The Effect of Rare Earths on the Response of Photo UV-Activate ZnO Gas. Sensors 2022, 22, 8150. [Google Scholar] [CrossRef]
Operating Temperature and Concentration of NO2 | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
50 °C | 100 °C | 150 °C | |||||||||||
Material Gas Sensor | 0.5 ppm | 1 ppm | 5 ppm | 10 ppm | 0.5 ppm | 1 ppm | 5 ppm | 10 ppm | 0.5 ppm | 1 ppm | 5 ppm | 10 ppm | |
ZnO/Au(1) | S | 1.5 519 | 1.9 632 | 2.2 741 | 3 1087 | 4.3 744 | 6.4 722 | 7.5 820 | 9 931 | 2.5 92 | 4.7 289 | 6 232 | 6.5 256 |
tres | |||||||||||||
ZnO/Au(2) | S | 1.3 508 | 1.6 1127 | 1.7 1071 | 2.5 1522 | 1.5 243 | 2.2 422 | 3.6 495 | 4 520 | 1.7 234 | 3.8 416 | 5 390 | 6.7 330 |
tres | |||||||||||||
ZnO/SnO2(1) | S | 1.4 507 | 1.8 510 | 1.5 684 | 2 584 | 3 851 | 8.5 919 | 11.5 1147 | 13 957 | 2.4 550 | 4.8 658 | 6 815 | 6.3 564 |
tres | |||||||||||||
ZnO/SnO2(2) | S | 1.7 395 | 2.3 527 | 3 771 | 3.3 696 | 2.7 1045 | 5 1182 | 8 1123 | 12 1185 | 2 389 | 7.6 435 | 7.7 475 | 9.8 553 |
tres |
Material | Analyte | Operating Temperature, °C | Response | UV Wavelength | Response Time | Reference |
---|---|---|---|---|---|---|
ZnO nanofiber | 100 ppm HCHO | RT | 12.6 | 365 nm | 32 s | [71] |
ZnO-SnO2 | 20 ppb Ozone | RT | 8 | 325 nm | 13 s | [72] |
ZnO-Ag nanoparticles | 5 ppm NO2 | RT | 1.55 | 470 nm | 150 s | [73] |
Au-modified ZnO nanowires | 120 ppm ethanol | 15 | ∼1.9 | 370 nm | - | [74] |
ZnO/Au NP | 2 ppm NO2 | RT | 0.2 | 400 nm | 100 s | [38] |
nanoporous NiO films | 4 ppm NO2 | 150 | 1 | 275 nm | 600 s | [75] |
ZnO/SnO2 | 10 ppm EtOH | 250 | 10 | 380 nm | - | [76] |
ZnO (ball milling) | 100 ppm FA | RT | 2.33 | 400 nm | - | [77] |
SnO2-x | 4.5 ppm EtOH | 155 | 0.29 | 450 nm | - | [78] |
ZnO-NP/Tb | 0.1 ppm NO2 | RT | 54 | (UV) | 120 s | [79] |
In2O3 | 1 ppm NO2 | RT | 60 | 400 nm | 15 min | [43] |
Polyvinylpyrrolidone/In2O3 | 0.5 ppm NO2 | RT | 1.8 | 325 nm | 500 s | [70] |
In2O3–ZnO | 0.5 ppm NO2 | RT | 3170 | 365 nm | 65 | [69] |
ZnO-Au NRs | 0.5 ppm NO2 | 50 | 4.3 | 400 nm | 744 s | This work |
ZnO-Au NRs | 5 ppm NO2 | 100 | 7.5 | 400 nm | 820 s | This work |
ZnO-Sn NRs | 0.5 ppm NO2 | 50 | 3 | 400 nm | 851 s | This work |
ZnO-Sn NRs | 5 ppm NO2 | 100 | 11.5 | 400 nm | 1147 s | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ivanishcheva, A.P.; Sysoev, V.V.; Abdullin, K.A.; Nesterenko, A.V.; Khubezhov, S.A.; Petrov, V.V. The Application of Combined Visible and Ultraviolet Irradiation to Improve the Functional Characteristics of Gas Sensors Based on ZnO/SnO2 and ZnO/Au Nanorods. Chemosensors 2023, 11, 200. https://doi.org/10.3390/chemosensors11030200
Ivanishcheva AP, Sysoev VV, Abdullin KA, Nesterenko AV, Khubezhov SA, Petrov VV. The Application of Combined Visible and Ultraviolet Irradiation to Improve the Functional Characteristics of Gas Sensors Based on ZnO/SnO2 and ZnO/Au Nanorods. Chemosensors. 2023; 11(3):200. https://doi.org/10.3390/chemosensors11030200
Chicago/Turabian StyleIvanishcheva, Alexandra P., Victor V. Sysoev, Khabibulla A. Abdullin, Andrey V. Nesterenko, Soslan A. Khubezhov, and Victor V. Petrov. 2023. "The Application of Combined Visible and Ultraviolet Irradiation to Improve the Functional Characteristics of Gas Sensors Based on ZnO/SnO2 and ZnO/Au Nanorods" Chemosensors 11, no. 3: 200. https://doi.org/10.3390/chemosensors11030200
APA StyleIvanishcheva, A. P., Sysoev, V. V., Abdullin, K. A., Nesterenko, A. V., Khubezhov, S. A., & Petrov, V. V. (2023). The Application of Combined Visible and Ultraviolet Irradiation to Improve the Functional Characteristics of Gas Sensors Based on ZnO/SnO2 and ZnO/Au Nanorods. Chemosensors, 11(3), 200. https://doi.org/10.3390/chemosensors11030200