Highly Sensitive Detection of Heavy Metal Elements Using Laser-Induced Breakdown Spectroscopy Coupled with Chelating Resin Enrichment
Abstract
:1. Introduction
2. Materials and Methods
2.1. LIBS Experimental Setup
2.2. Sample Preparation
- Weigh a certain amount of chelating resin, place it in a beaker filled with deionized water, shake it for several minutes, then remove the chelating resin;
- Add about 20 mL of the solution to be tested into the beaker, place the processed chelating resin in the beaker containing the solution to be tested, and then place the beaker on the blender to stir the solution at a certain speed so that the resin can fully absorb the heavy metal cations in the solution;
- After enrichment, remove the chelated resin particles in the beaker, place them in the air, and dry them in open air for about 10 min. After a certain treatment of the waste liquid, pour it into a waste liquid barrel.
3. Results
3.1. Optimization of Experimental Parameters
3.1.1. Optimization of Laser Fluence
3.1.2. Optimization of ICCD Delay Time
3.1.3. Effects of Resin Granule on the Spectral Intensity
3.1.4. Optimization of Enrichment Time
3.2. Quantitative Analysis
3.2.1. Calibration Model and Limit of Detection
3.2.2. Analysis of Prediction Accuracy
3.3. Natural Water Sample Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Heidari, A.; Younesi, H.; Mehraban, Z. Removal of Ni(II), Cd(II), and Pb(II) from a ternary aqueous solution by amino functionalized mesoporous and nano mesoporous silica. Chem. Eng. J. 2009, 153, 70–79. [Google Scholar] [CrossRef]
- Jarup, L. Hazards of heavy metal contamination. Br. Med. Bull. 2003, 68, 167–182. [Google Scholar] [CrossRef] [Green Version]
- Choi, D.; Gong, Y.; Nam, S.H.; Han, S.H.; Yoo, J.; Lee, Y. Laser-Induced Breakdown Spectroscopy (LIBS) Analysis of Calcium Ions Dissolved in Water Using Filter Paper Substrates: An Ideal Internal Standard for Precision Improvement. Appl. Spectrosc. 2014, 68, 198–212. [Google Scholar] [CrossRef]
- Rehan, I.; Gondal, M.A.; Almessiere, M.A.; Dakheel, R.A.; Rehan, K.; Sultana, S.; Dastageer, M.A. Nutritional and toxic elemental analysis of dry fruits using laser induced breakdown spectroscopy (LIBS) and inductively coupled plasma atomic emission spectrometry (ICP-AES). Saudi J. Biol. Sci. 2021, 28, 408–416. [Google Scholar] [CrossRef]
- Rehan, I.; Gondal, M.A.; Rehan, K. Determination of lead content in drilling fueled soil using laser induced spectral analysis and its cross validation using ICP/OES method. Talanta 2018, 182, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Voica, C.; Kovacs, M.H.; Dehelean, A.; Ristoiu, D.; Iordache, A. ICP-MS Determinations of Heavy Metals in Surface Waters From Transylvania. Rom. J. Phys. 2012, 57, 1184–1193. [Google Scholar]
- de Souza, R.M.; Meliande, A.; Da Silveira, C.; Aucelio, R.Q. Determination of Mo, Zn, Cd, Ti, NiVFe, Mn, Cr and Co in crude oil using inductively coupled plasma optical emission spectrometry and sample introduction as detergentless microemulsions. Microchem. J. 2006, 82, 137–141. [Google Scholar] [CrossRef]
- Beinrohr, E.; Manova, A.; Dzurov, J. Preconcentration of Cr (III) and total Cr in waters for flame AAS in a flow-through electrochemical/sorption cell. Fresenius J. Anal. Chem. 1996, 355, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Huang, Q.Q.; Liu, X.; Zhang, Q.; Qiao, Y.H.; Su, D.C.; Jiang, R.F.; Rui, Y.K.; Li, H.F. Application of ICP-MS and AFS to Detecting Heavy Metals in Phosphorus Fertilizers. Spectrosc. Spectr. Anal. 2014, 34, 1403–1406. [Google Scholar]
- Nakano, K.; Okubo, K.; Tsuji, K. Preconcentration of environmental waters by agar for XRF analysis. Powder Diffr. 2009, 24, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.F.; Zhang, Q.D.; Ye, Z.X.; Liu, T. Study of cardiovascular and cerebrovascular disease in Chinese traditional medicines on Pb, Cr, Cd by AAS. Spectrosc. Spectr. Anal. 2001, 21, 865–867. [Google Scholar]
- Rusak, D.A.; Castle, B.C.; Smith, B.W.; Winefordner, J.D. Fundamentals and applications of laser-induced breakdown spectroscopy. Crit. Rev. Anal. Chem. 1997, 27, 257–290. [Google Scholar] [CrossRef]
- Arca, G.; Ciucci, A.; Palleschi, V.; Rastelli, S.; Tognoni, E. Trace element analysis in water by the laser-induced breakdown spectroscopy technique. Appl. Spectrosc. 1997, 51, 1102–1105. [Google Scholar] [CrossRef]
- Yuan, R.; Tang, Y.; Zhu, Z.; Hao, Z.; Li, J.; Yu, H.; Yu, Y.; Guo, L.; Zeng, X.; Lu, Y. Accuracy improvement of quantitative analysis for major elements in laser-induced breakdown spectroscopy using single-sample calibration. Anal. Chim. Acta 2019, 1064, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Zheng, P.C.; Zheng, S.; Wang, J.M.; Liao, X.Y.; Li, X.J.; Peng, R. Study on Grade Identification of Dendrobium by LIBS. Spectrosc. Spectr. Anal. 2020, 40, 941–944. [Google Scholar]
- Wang, L.; Xu, L.; Xu, W.Q.; Yao, G.X.; Zheng, X.F.; Cui, Z.F. Single- and Dual-Pulse Laser Induced Breakdown Spectroscopy for Aluminum in Liquid Jets. Spectrosc. Spectr. Anal. 2018, 38, 314–319. [Google Scholar]
- Rong, K.; Wang, Z.Z.; Hu, R.M.; Liu, R.W.; Deguchi, Y.; Yan, J.J.; Liu, J.P. Experimental study on mercury content in flue gas of coal-fired units based on laser-induced breakdown spectroscopy. Plasma Sci. Technol. 2020, 22, 074010. [Google Scholar]
- Diaz, D.; Hahn, D.W. Aerosol measurements with laser-induced breakdown spectroscopy and conditional analysis. Spectrochim. Acta Part B-At. Spectrosc. 2021, 179, 106107. [Google Scholar]
- Agrawal, Y.K.; Sharma, K.R. Speciation, liquid-liquid extraction, sequential separation, preconcentration, transport and ICP-AES determination of Cr(III), Mo(VI) and W(VI) with calix-crown hydroxamic acid in high purity grade materials and environmental samples. Talanta 2005, 67, 112–120. [Google Scholar] [CrossRef]
- Xiu, J.; Gao, Q.; Liu, S.; Qin, H. Quantitative Analysis of Trace Metals in Aqueous Solutions by Laser Induced Breakdown Spectroscopy Combined with Filter Paper Assisted Analyte Enrichment. J. Appl. Spectrosc. 2020, 87, 629–635. [Google Scholar] [CrossRef]
- Fang, L.; Zhao, N.J.; Ma, M.J.; Meng, D.S.; Jia, Y.; Huang, X.J.; Liu, W.Q.; Liu, J.G. Detection of heavy metals in water samples by laser-induced breakdown spectroscopy combined with annular groove graphite flakes. Plasma Sci. Technol. 2019, 21, 034002. [Google Scholar]
- Chen, Z.J.; Li, H.K.; Liu, M.; Li, R.H. Fast and sensitive trace metal analysis in aqueous solutions by laser-induced breakdown spectroscopy using wood slice substrates. Spectrochim. Acta Part B-At. Spectrosc. 2008, 63, 64–68. [Google Scholar] [CrossRef]
- Wei, J.; Zhang, T.L.; Dung, J.; Sheng, L.W.; Tang, H.S.; Yang, X.F.; Li, H. Quantitative Determination of Cr in Ink by Laser-induced Breakdown Spectroscopy(LIBS) Using ZnO as Adsorbent. Chem. Res. Chin. Univ. 2015, 31, 909–913. [Google Scholar] [CrossRef]
- Niu, G.H.; Shi, Q.; Xu, M.J.; Lai, H.J.; Lin, Q.Y.; Liu, K.P.; Duan, Y.X. Dehydrated Carbon Coupled with Laser-Induced Breakdown Spectrometry (LIBS) for the Determination of Heavy Metals in Solutions. Appl. Spectrosc. 2015, 69, 1190. [Google Scholar] [CrossRef]
- Teran, E.J.; Montes, M.L.; Rodriguez, C.; Martino, L.; Quiroga, M.; Landa, R.; Sanchez, R.; Pace, D. Assessment of sorption capability of montmorillonite clay for lead removal from water using laser-induced breakdown spectroscopy and atomic absorption spectroscopy. Microchem. J. 2019, 144, 159–165. [Google Scholar] [CrossRef]
- Huang, J.S.; Lin, K.C. Laser-induced Breakdown Spectroscopy of Liquid Droplets Based on Plasma-induced Current Correlation. J. Chin. Chem. Soc. 2014, 61, 175–186. [Google Scholar] [CrossRef]
- Song, C.; Zhang, Y.W.; Gao, X. Detection of Heavy Metal Elements in the Mixture Solution with Laser Induced Breakdown Spectroscopychi. Spectrosc. Spectr. Anal. 2017, 37, 1885–1889. [Google Scholar]
- Tian, H.W.; Jiao, L.Z.; Dong, D.M. Rapid determination of trace cadmium in drinking water using laser-induced breakdown spectroscopy coupled with chelating resin enrichment. Sci. Rep. 2019, 9, 10443. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.Y.; Zhao, N.J.; Ma, M.J.; Fang, L.; Yu, Y.; Meng, D.S.; Gu, Y.H.; Jia, Y.; Liu, J.G.; Liu, W.Q. Study on Detection Sensitivity of Heavy Metal in Water Based on LIBS Combined with Electrode Enrichment Method. Spectrosc. Spectr. Anal. 2017, 37, 884–888. [Google Scholar]
- Niu, S.; Zheng, L.J.; Khan, A.Q.; Zeng, H.P. Laser-Induced Breakdown Spectroscopic (LIBS) Analysis of Trace Heavy Metals Enriched by Al2O3 Nanoparticles. Appl. Spectrosc. 2019, 73, 380–386. [Google Scholar] [CrossRef]
- Yaroshchyk, P.; Morrison, R.; Body, D.; Chadwick, B.L. Quantitative determination of wear metals in engine oils using LIBS: The use of paper substrates and a comparison between single- and double-pulse LIBS. Spectrochim. Acta Part B-At. Spectrosc. 2005, 60, 1482–1485. [Google Scholar] [CrossRef]
- Chen, C.H.; Niu, G.H.; Shi, Q.; Lin, Q.Y.; Duan, Y.X. Laser-induced breakdown spectroscopy technique for quantitative analysis of aqueous solution using matrix conversion based on plant fiber spunlaced nonwovens. Appl. Opt. 2015, 54, 8318–8325. [Google Scholar] [CrossRef]
- Hu, L.; Zhao, N.J.; Liu, W.Q.; Meng, D.H.; Fang, L.; Wang, Y.; Yu, Y.; Ma, M.J. Quantitative Analysis of Heavy Metals in Water Based on LIBS with an Automatic Device for Sample Preparation. Plasma Sci. Technol. 2015, 17, 699–703. [Google Scholar]
- Xiu, J.S.; Zhong, S.L.; Hou, H.M.; Lu, Y.; Zheng, R.E. Quantitative Determination of Manganese in Aqueous Solutions and Seawater by Laser-Induced Breakdown Spectroscopy (LIBS) Using Paper Substrates. Appl. Spectrosc. 2014, 68, 1039–1045. [Google Scholar] [CrossRef]
- Lin, Q.Y.; Bian, F.; Wei, Z.M.; Wang, S.; Duan, Y.X. A hydrogel-based solidification method for the direct analysis of liquid samples by laser-induced breakdown spectroscopy. J. Anal. At. Spectrom. 2017, 32, 1412–1419. [Google Scholar] [CrossRef]
- Zhu, D.H.; Chen, J.P.; Lu, J.; Ni, X.W. Laser-induced breakdown spectroscopy for determination of trace metals in aqueous solution using bamboo charcoal as a solid-phase extraction adsorbent. Anal. Methods 2012, 4, 819–823. [Google Scholar] [CrossRef]
- Suyanto, H.; Utomo, A.P.; Manurung, M.; Suharta, W.G. Application of activated zeolite to quantitative analysis of Pb liquid sample using commercial laser-induced breakdown spectroscopy (LIBS). J. Phys. 2017, 817, 012044. [Google Scholar] [CrossRef]
- Ma, M.J.; Fang, L.; Zhao, N.J.; Huang, X.J.; Meng, D.S.; Pan, C.C.; Liu, J.G.; Liu, W.Q. Simultaneous detection of heavy metals in solutions by electrodeposition assisted laser induced breakdown spectroscopy. J. Laser Appl. 2022, 34, 012021. [Google Scholar] [CrossRef]
Element | Enrichment of Basal | LOD (mg/L) | Reference |
---|---|---|---|
Cr | CH-90 chelating resin | 0.148 | This study |
Vegetable fiber | 0.700 | [32] | |
Graphite | 0.520 | [33] | |
Cu | CH-90 chelating resin | 0.150 | This study |
Filter paper | 0.290 | [34] | |
Hydrogels | 4.690 | [35] | |
Pb | CH-90 chelating resin | 0.149 | This study |
Bamboo charcoal | 8.500 | [36] | |
Zeolite | 5.860 | [37] | |
Ni | CH-90 chelating resin | 0.240 | This study |
Aluminum slice | 10.490 | [38] |
Element | Additive Concentration (mg/L) | Predicted Concentration (mg/L) | RE (%) |
---|---|---|---|
Cr | 2.00 | 2.11 | 5.50 |
4.00 | 3.72 | 7.00 | |
5.00 | 4.48 | 10.4 | |
Cu | 4.00 | 4.14 | 3.50 |
8.00 | 8.15 | 1.88 | |
10.0 | 9.65 | 3.50 | |
Pb | 4.00 | 3.95 | 1.25 |
8.00 | 8.32 | 4.00 | |
10.00 | 9.78 | 2.20 | |
Ni | 2.00 | 1.85 | 7.50 |
4.00 | 4.37 | 9.25 | |
5.00 | 5.37 | 7.40 |
Natural Water | Element | Spiked Concentration (mg/L) | Observed Concentration (mg/L) | Recovery (%) |
---|---|---|---|---|
Liangfengya spring water | Cr | 10.0 | 9.53 | 95.30 |
8.00 | 7.98 | 99.75 | ||
5.00 | 4.88 | 97.60 | ||
Tushan Lake water | 10.0 | 9.52 | 95.20 | |
8.00 | 7.48 | 93.50 | ||
5.00 | 4.88 | 97.60 | ||
Liangfengya spring water | Cu | 10.0 | 10.3 | 103.0 |
8.00 | 8.66 | 108.3 | ||
5.00 | 4.61 | 92.20 | ||
Tushan Lake water | 10.0 | 10.2 | 102.0 | |
8.00 | 7.51 | 93.88 | ||
5.00 | 5.36 | 107.0 | ||
Liangfengya spring water | Pb | 10.00 | 10.66 | 106.57 |
8.00 | 8.26 | 103.28 | ||
5.00 | 4.89 | 97.72 | ||
Tushan Lake water | 10.00 | 10.89 | 108.99 | |
8.00 | 8.55 | 106.93 | ||
5.00 | 4.63 | 92.52 | ||
Liangfengya spring water | Ni | 10.00 | 9.99 | 99.86 |
8.00 | 8.18 | 102.19 | ||
5.00 | 5.09 | 101.87 | ||
Tushan Lake water | 10.00 | 9.80 | 98.01 | |
8.00 | 8.51 | 106.38 | ||
5.00 | 4.98 | 99.69 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Li, G.; Zheng, P.; Shata, S.; Qazi, H.I.A.; Lu, J.; Liu, S.; Tian, H.; Dong, D. Highly Sensitive Detection of Heavy Metal Elements Using Laser-Induced Breakdown Spectroscopy Coupled with Chelating Resin Enrichment. Chemosensors 2023, 11, 228. https://doi.org/10.3390/chemosensors11040228
Wang J, Li G, Zheng P, Shata S, Qazi HIA, Lu J, Liu S, Tian H, Dong D. Highly Sensitive Detection of Heavy Metal Elements Using Laser-Induced Breakdown Spectroscopy Coupled with Chelating Resin Enrichment. Chemosensors. 2023; 11(4):228. https://doi.org/10.3390/chemosensors11040228
Chicago/Turabian StyleWang, Jinmei, Gang Li, Peichao Zheng, Sahar Shata, Hafiz Imran Ahmad Qazi, Jianshu Lu, Shaojian Liu, Hongwu Tian, and Daming Dong. 2023. "Highly Sensitive Detection of Heavy Metal Elements Using Laser-Induced Breakdown Spectroscopy Coupled with Chelating Resin Enrichment" Chemosensors 11, no. 4: 228. https://doi.org/10.3390/chemosensors11040228
APA StyleWang, J., Li, G., Zheng, P., Shata, S., Qazi, H. I. A., Lu, J., Liu, S., Tian, H., & Dong, D. (2023). Highly Sensitive Detection of Heavy Metal Elements Using Laser-Induced Breakdown Spectroscopy Coupled with Chelating Resin Enrichment. Chemosensors, 11(4), 228. https://doi.org/10.3390/chemosensors11040228