Determination of Elemental Composition and Content in Stream Sediments by Laser-Induced Breakdown Spectroscopy
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Description and Preparation
2.2. Experimental Device
2.3. Spectral Data Preprocessing
2.4. Building Quantitative Analysis Models
3. Results
3.1. LIBS Spectra of CRMs and Its MDS Dimensionality Reduction Visualization
3.2. Quantitative Analysis of Major Element Oxides
3.3. Quantitative Analysis of Minor and Trace Elements
3.4. Identification and Quantitative Analysis of Fluoroapatite in SS
4. Discussion
4.1. Discussion on Quantitative Analysis Results and Geological Background of CRMs
4.2. The Significance of Searching for Biominerals in SS
4.3. The Scientific Research Value of Conducting Analogical Research on the Ground
4.4. Limitations of Ground Simulation Experiments
5. Conclusions
6. Patents
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zou, C.H.; Mao, L.J.; Tan, Z.H.; Zhou, L.; Liu, L. Geochemistry of major and trace elements in sediments from the Lubei Plain, China: Constraints for paleoclimate, paleosalinity, and paleoredox environment. J. Asian Earth Sci. X 2021, 6, 100071. [Google Scholar] [CrossRef]
- Vital, H.; Stattegger, K. Major and trace elements of stream sediments from the lowermost Amazon River. Chem. Geol. 2000, 168, 151–168. [Google Scholar] [CrossRef]
- Carvalho, L.; Reis, A.T.; Soares, E.; Tavares, C.; Monteiro, R.J.R.; Figueira, P.; Henriques, B.; Vale, C.; Pereira, E. A Single Digestion Procedure for Determination of Major, Trace, and Rare Earth Elements in Sediments. Water Air Soil Pollut. 2020, 231, 1–14. [Google Scholar] [CrossRef]
- Chen, J.J.; Chakravarty, P.; Davidson, R.G.; Wren, D.G.; Locke, M.A.; Zhou, Y.; Brown, G.; Cizdziel, J.V. Simultaneous determination of mercury and organic carbon in sediment and soils using a direct mercury analyzer based on thermal decomposition–atomic absorption spectrophotometry. Anal. Chim. Acta 2015, 871, 9–17. [Google Scholar] [CrossRef]
- Cecile, G.; Alexandra, C.N. Microscale distribution of trace elements: A methodology for accessing major bearing phases in stream sediments as applied to the Loire basin (France). J. Soils Sediments 2020, 20, 498–512. [Google Scholar]
- Kearton, B.; Mattley, Y. Laser-induced breakdown spectroscopy: Sparking new applications. Nat. Photonics 2008, 2, 537–540. [Google Scholar] [CrossRef]
- Cremers, D.A.; Radziemski, L.J.; Wiley, J. Handbook of Laser-Induced Breakdown Spectroscopy; John Wiley & Sons: Hoboken, NJ, USA, 2006. [Google Scholar]
- Syed, K.H.S.; Javed, I.; Pervaiz, A.; Mayeen, U.K.; Sirajul, H.; Muhammad, N. Laser induced breakdown spectroscopy methods and applications: A comprehensive review. Radiat. Phys. Chem. 2020, 170, 108666. [Google Scholar]
- Zhao, S.Y.; Zhao, Y.C.; Hou, Z.Y.; Wang, Z. Rapid and high-resolution visualization elements analysis of material surface based on laser-induced breakdown spectroscopy and hyperspectral imaging. Appl. Surf. Sci. 2023, 629, 157415. [Google Scholar] [CrossRef]
- Wang, H.; Xin, Y.; Fang, P.; Jia, J.; Zhang, L.; Liu, S.; Wan, X. LIBS-MLIF Method: Stromatolite Phosphorite Determination. Chemosensors 2023, 11, 301. [Google Scholar] [CrossRef]
- Harmon, R.S.; Wise, M.A.; Curry, A.C.; Mistele, J.S.; Mason, M.S.; Grimac, Z. Rapid Analysis of Muscovites on a Lithium Pegmatite Prospect by Handheld LIBS. Minerals 2023, 13, 697. [Google Scholar] [CrossRef]
- Liu, C.; Wu, Z.; Fu, X.; Liu, P.; Xin, Y.; Xiao, A.; Bai, H.; Tian, S.; Wan, S.; Liu, Y.; et al. A Martian Analogues Library (MAL) Applicable for Tianwen-1 MarSCoDe-LIBS Data Interpretation. Remote Sens. 2022, 14, 2937. [Google Scholar] [CrossRef]
- Ribes-Pleguezuelo, P.; Guilhot, D.; Gilaberte, B.M.; Beckert, E.; Eberhardt, R.; Tünnermann, A. Insights of the Qualified ExoMars Laser and Mechanical Considerations of Its Assembly Process. Instruments 2019, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- David, G.; Meslin, P.-Y.; Dehouck, E.; Gasnault, O.; Cousin, A.; Forni, O.; Berger, G.; Lasue, J.; Pinet, P.; Wiens, R.C.; et al. Laser-Induced Breakdown Spectroscopy (LIBS) characterization of granular soils: Implications for ChemCam analyses at Gale crater, Mars. Icarus 2021, 365, 114481. [Google Scholar] [CrossRef]
- Anderson, R.B.; Forni, O.; Cousin, A.; Wiens, R.C.; Clegg, S.M.; Frydenvang, J.; Gabriel, T.S.J.; Ollila, A.; Schröder, S.; Beyssac, O.; et al. Post-landing major element quantification using SuperCam laser induced breakdown spectroscopy. Spectrochim. Acta Part B At. Spectrosc. 2021, prepublish. [Google Scholar] [CrossRef]
- Harmon, R.S.; Senesi, G.S. Laser-Induced Breakdown Spectroscopy—A geochemical tool for the 21st century. Appl. Geochem. 2021, 128, 104929. [Google Scholar] [CrossRef]
- Chen, T.T.; Zhang, T.L.; Li, H. Applications of laser-induced breakdown spectroscopy (LIBS) combined with machine learning in geochemical and environmental resources exploration. TrAC Trends Anal. Chem. 2020, 133, 116113. [Google Scholar] [CrossRef]
- Harmon, R.S.; De, L.F.; Miziolek, A.; McNesby, K.; Walters, R.; French, P. Laser-Induced Breakdown Spectroscopy (LIBS)—An Emerging Field-Portable Sensor Technology for Real-Time, In-Situ Geochemical and Environmental Analysis. Geochem. Explor. Environ. Anal. 2005, 5, 21–28. [Google Scholar] [CrossRef]
- Senesi, G.S.; Harmon, R.S.; Hark, R.R. Field-portable and handheld laser-induced breakdown spectroscopy: Historical review, current status and future prospects. Spectrochim. Acta Part B At. Spectrosc. 2021, 175, 106013. [Google Scholar] [CrossRef]
- Delgado, T.; Fortes, F.J.; Cabalín, L.M.; Laserna, J.J. The crucial role of molecular emissions on LIBS differentiation of organic compounds of interest in astrobiology under a Mars simulated atmosphere. Spectrochim. Acta Part B At. Spectrosc. 2022, 192, 106413. [Google Scholar] [CrossRef]
- Schwieterman, E.W.; Kiang, N.Y.; Parenteau, M.N.; Harman, C.E.; DasSarma, S.; Fisher, T.M.; Arney, G.N.; Hartnett, H.E.; Reinhard, C.T.; Olson, S.L.; et al. Exoplanet Biosignatures: A Review of Remotely Detectable Signs of Life. Astrobiology 2018, 18, 663–708. [Google Scholar] [CrossRef] [Green Version]
- Osterhout, J.T.; Schopf, J.W.; Kudryavtsev, A.B.; Czaja, A.D.; Williford, K.H. Deep-UV Raman Spectroscopy of Carbonaceous Precambrian Microfossils: Insights into the Search for Past Life on Mars. Astrobiology 2022, 22, 1239–1254. [Google Scholar] [CrossRef] [PubMed]
- John, A.G.; Matthew, P.G.; Sharon, A.W.; Kenneth, A.F.; Ken, H.W.; Al, C. The science process for selecting the landing site for the 2020 Mars rover. Planet. Space Sci. 2018, 164, 106–126. [Google Scholar]
- Antony, J. Chapter 4–Biosignatures—The prime targets in the search for life beyond Earth. In Water World in the Solar System; Elsevier: Amsterdam, The Netherlands, 2023; pp. 167–200. [Google Scholar]
- Jonathan, D.A.C.; Carol, R.S. Searching for stromatolites: The 3.4 Ga Strelley Pool Formation (Pilbara region, Western Australia) as a Mars analogue. Icarus 2013, 224, 413–423. [Google Scholar]
- Ning, X.R.; Selesnick, I.W.; Duval, L. Chromatogram baseline estimation and denoising using sparsity (BEADS). Chemom. Intell. Lab. Syst. 2014, 139, 156–167. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.P.; Fang, P.P.; Yan, X.R.; Zhou, Y.; Cheng, Y.; Yao, L.; Jia, J.; He, J.; Wan, X. Study on the Raman spectral characteristics of dynamic and static blood and its application in species identification. J. Photochem. Photobiol. B Biol. 2022, 232, 112478. [Google Scholar] [CrossRef]
- Fang, C.; Luo, Y.L.; Zhang, X.; Zhang, H.P.; Nolan, A.; Naidu, R. Identification and visualisation of microplastics via PCA to decode Raman spectrum matrix towards imaging. Chemosphere 2022, 286, 131736. [Google Scholar] [CrossRef]
- Dzemyda, G.; Sabaliauskas, M. Geometric multidimensional scaling: A new approach for data dimensionality reduction. Appl. Math. Comput. 2021, 409, 125561. [Google Scholar] [CrossRef]
- Wei, X.; Li, S.; Zhu, S.P.; Zheng, W.Q.; Xie, Y.; Zhou, S.L.; Hu, M.D.; Miao, Y.J.; Ma, L.K.; Wu, W.J.; et al. Terahertz spectroscopy combined with data dimensionality reduction algorithms for quantitative analysis of protein content in soybeans. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 253, 119571. [Google Scholar] [CrossRef]
- Zhang, H.; Lu, H.; Xie, F.; Ma, T.; Qian, X. Combustion Regime Identification in Turbulent Non-Premixed Flames with Principal Component Analysis, Clustering and Back-Propagation Neural Network. Processes 2022, 10, 1653. [Google Scholar] [CrossRef]
- Chen, H.; Sun, Z.; Zhong, Z.; Huang, Y. Fatigue Factor Assessment and Life Prediction of Concrete Based on Bayesian Regularized BP Neural Network. Materials 2022, 15, 4491. [Google Scholar] [CrossRef]
- Di, A.G.; Hynek, B.M. Ancient ocean on Mars supported by global distribution of deltas and valleys. Nat. Geosci. 2010, 3, 459–463. [Google Scholar]
- Stack, K.M.; Grotzinger, J.P.; Lamb, M.P.; Gupta, S.; Rubin, D.M.; Kah, L.C.; Edgar, L.A.; Fey, D.M.; Hurowitz, J.A.; McBride, M.; et al. Evidence for plunging river plume deposits in the Pahrump Hills member of the Murray formation, Gale crater, Mars. Sedimentology 2018, 66, 1768–1802. [Google Scholar] [CrossRef] [Green Version]
- Tarnas, J.D.; Stack, K.M.; Parente, M.; Koeppel, A.H.D.; Mustard, J.F.; Moore, K.R.; Horgan, B.H.N.; Seelos, F.P.; Cloutis, E.A.; Kelemen, P.B.; et al. Characteristics, Origins, and Biosignature Preservation Potential of Carbonate-Bearing Rocks Within and Outside of Jezero Crater. J. Geophys. Res. Planets 2021, 126, e2021JE006898. [Google Scholar] [CrossRef] [PubMed]
- Hickman-Lewis, K.; Moore, K.R.; Hollis, J.J.R.; Tuite, M.L.; Beegle, L.W.; Bhartia, R.; Grotzinger, J.P.; Brown, A.J.; Shkolyar, S.; Cavalazzi, B.; et al. In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return. Astrobiology 2022, 22, 1143–1163. [Google Scholar] [CrossRef] [PubMed]
- Borduchi, L.C.L.; Milori, D.M.B.P.; Meyer, M.C.; Villas-Boas, P.R. Reducing matrix effects on the quantification of Ca, Mg, and Fe in soybean leaf samples using calibration-free LIBS and one-point calibration. Spectrochim. Acta Part B At. Spectrosc. 2022, 198, 106561. [Google Scholar] [CrossRef]
- Bak, E.N.; Larsen, M.G.; Jensen, S.K.; Nørnberg, P.; Moeller, R.; Finster, K. Wind-Driven Saltation: An Overlooked Challenge for Life on Mars. Astrobiology 2019, 19, 497–505. [Google Scholar] [CrossRef]
- Jakosky, B.M. Atmospheric Loss to Space and the History of Water on Mars. Annu. Rev. Earth Planet. Sci. 2021, 49, 71–93. [Google Scholar] [CrossRef]
- Fornaro, T.; Steele, A.; Brucato, J.R. Catalytic/Protective Properties of Martian Minerals and Implications for Possible Origin of Life on Mars. Life 2018, 8, 56. [Google Scholar] [CrossRef] [Green Version]
Sample Name | Geographic Location | Reference ID | SiO2 * | Al2O3 * | TFe2O3 * | TiO2 * | CaO * | MgO * | K2O * | Na2O * | Li ** | Be ** | Sr ** | Ba ** | Rb ** |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
CCSS1 | the Yangtze River in Wuhan | GBW07309 | 64.89 | 10.58 | 4.86 | 0.92 | 5.35 | 2.39 | 1.99 | 1.44 | 430 | 1.8 | 30 | 80 | 166 |
CCSS2 | Namco, Tibet | GBW07377 | 63.48 | 14.10 | 5.16 | 0.61 | 0.83 | 3.78 | 2.35 | 3.04 | 460 | 2.6 | 38 | 154 | 78 |
CCSS3 | Skarn type copper deposit area in Tongling City, Anhui Province | GBW07305a | 69.33 | 13.40 | 5.27 | 0.77 | 0.77 | 1.29 | 2.59 | 0.64 | 681 | 2.5 | 42 | 129 | 78 |
CCSS4 | Lead-zinc mining area in Kaiyuan City, Liaoning Province | GBW07307a | 68.3 | 11.02 | 4.18 | 0.68 | 2.96 | 2.50 | 1.83 | 2.27 | 437 | 1.6 | 37 | 63 | 236 |
CCSS5 | Acidic volcanic rock area in Fengshun County, Guangdong Province | GBW07308a | 73.58 | 13.25 | 3.70 | 0.48 | 0.17 | 0.47 | 4.31 | 0.38 | 620 | 3.5 | 22 | 232 | 52 |
CCSS6 | Carbonate Region of Yishan County, Guangxi Province | GBW07310 | 88.89 | 2.84 | 3.86 | 0.21 | 0.7 | 0.12 | 0.13 | 0.04 | 42 | 0.9 | 13 | 9.2 | 25 |
CCSS7 | Shizhuyuan Polymetallic Mining Area in Chenxian County, Hunan Province | GBW07311 | 76.25 | 10.37 | 4.39 | 0.35 | 0.47 | 0.62 | 3.28 | 0.46 | 260 | 26 | 71 | 408 | 29 |
CCSS8 | Polymetallic mining area in Yangchun City, Guangdong Province | GBW07312 | 77.29 | 9.30 | 4.88 | 0.25 | 1.16 | 0.47 | 2.91 | 0.44 | 206 | 8.2 | 39 | 270 | 24 |
CCSS9 | Huokeqi Polymetallic Mining Area, Inner Mongolia | GBW07358 | 69.4 | 11.06 | 7.00 | 0.53 | 2.96 | 1.70 | 2.35 | 1.40 | 455 | 2.2 | 20.7 | 96 | 171 |
CCSS10 | Langshan Old Metamorphic Rock Region, Inner Mongolia | GBW07359 | 74.33 | 11.65 | 1.79 | 0.24 | 2.85 | 0.71 | 2.96 | 2.85 | 600 | 3.6 | 40 | 118 | 253 |
CCSS11 | Xiaoxilin Lead Zinc Mining Area in Yichun City, Heilongjiang Province | GBW07360 | 61.96 | 12.94 | 3.80 | 0.49 | 2.08 | 1.29 | 3.17 | 2.09 | 623 | 2.9 | 23.6 | 139 | 156 |
CCSS12 | Granite District in Mudanjiang City, Heilongjiang Province | GBW07361 | 77.42 | 11.44 | 1.86 | 0.25 | 0.85 | 0.18 | 3.89 | 2.53 | 1054 | 1.6 | 8.1 | 81 | 167 |
CCSS13 | Ping’an County, Qinghai Province | GBW07363 | 54.17 | 13.94 | 7.84 | 0.89 | 4.66 | 5.36 | 2.35 | 1.33 | 360 | 1.3 | 19.4 | 39 | 251 |
CCSS14 | Xiaorequanzi Copper Mine Area in Turpan City, Xinjiang | GBW07364 | 63.12 | 13.08 | 4.80 | 0.55 | 2.01 | 4.09 | 3.15 | 2.44 | 727 | 1.5 | 16.2 | 53 | 355 |
CCSS15 | Yinshan Polymetallic Mining Area in Dexing County, Jiangxi Province | GBW07366 | 64.35 | 13.61 | 7.05 | 0.75 | 1.25 | 1.64 | 0.41 | 2.76 | 590 | 2.4 | 38 | 130 | 13 |
CCSS16 | Yuzhuangzi Village, Tanggu District, Tianjin City—Haihe River Basin | GBW07390 | 56.47 | 14.45 | 5.76 | 0.66 | 5.65 | 2.66 | 2.68 | 1.55 | 558 | 2.4 | 45 | 111 | 202 |
CCFS1 | Xinhe Town, Hanchuan City, Hubei Province—Hanshui River Basin | GBW07387 | 62.79 | 14.85 | 5.92 | 0.82 | 2.10 | 2.16 | 2.65 | 1.44 | 800 | 2.5 | 44 | 114 | 136 |
CCFS2 | Wuyao Village, Chuzhou City, Anhui Province—Huaihe River Basin | GBW07388 | 67.33 | 14.49 | 5.52 | 0.77 | 1.09 | 1.34 | 2.07 | 1.26 | 574 | 2.4 | 40 | 108 | 115 |
CCFS3 | Songhuang Village, Binzhou City, Shandong Province—Yellow River Basin | GBW07389 | 59.68 | 12.62 | 4.73 | 0.62 | 6.91 | 2.24 | 2.40 | 1.62 | 511 | 2.1 | 39 | 100 | 201 |
CCFS4 | Loess in Luochuan County, Shaanxi Province | GBW07408 | 58.61 | 11.92 | 4.48 | 0.63 | 8.27 | 2.38 | 2.42 | 1.72 | 480 | 1.9 | 35 | 96 | 236 |
CCS1 | the Yellow River in Rizhao City | GBW07451 | 68.23 | 13.89 | 4.06 | 0.63 | 1.09 | 1.47 | 2.97 | 2.84 | 749 | 2.1 | 36 | 108 | 202 |
CCS2 | Mudflat of in the East China Sea, Xiangshan | GBW07452 | 59.8 | 13.92 | 5.54 | 0.83 | 4.21 | 2.61 | 2.64 | 1.91 | 441 | 2.3 | 50 | 123 | 154 |
CCS3 | Saline-alkali soil in Hangjinhou Banner, Inner Mongolia | GBW07447 | 60.4 | 10.56 | 3.63 | 0.53 | 6.8 | 2.58 | 2.11 | 3.05 | 459 | 1.7 | 32 | 86 | 242 |
CCS4 | Saline-alkali soil in Shanshan County, Xinjiang | GBW07449 | 47.28 | 10.39 | 4.12 | 0.55 | 6.48 | 2.98 | 1.99 | 8.99 | 356 | 1.3 | 27 | 63 | 435 |
CCS5 | Calcareous soil in Shihezi City, Xinjiang | GBW07450 | 60.3 | 11.96 | 4.07 | 0.62 | 7.4 | 2.04 | 2.43 | 2.02 | 510 | 1.6 | 28 | 85 | 205 |
CCS6 | Mudflat in the South China Sea, Yangjiang City | GBW07453 | 69.11 | 13.58 | 4.97 | 0.75 | 0.34 | 1.16 | 2.48 | 0.83 | 340 | 2.7 | 55 | 139 | 55 |
CCS7 | Qibaoshan skarn copper polymetallic mining area, Hunan Province | GBW07405 | 52.57 | 21.58 | 12.62 | 1.05 | 0.10 | 0.61 | 1.50 | 0.12 | 296 | 2 | 56 | 117 | 42 |
CCS8 | Basalt laterite in Xuwen County, Guangdong Province | GBW07407 | 32.69 | 29.26 | 18.76 | 3.37 | 0.16 | 0.26 | 0.20 | 0.08 | 180 | 2.8 | 19.5 | 16 | 26 |
Sample Name | CCSS1 (%) | SP (%) | SiO2 * | Al2O3 * | TFe2O3 * | TiO2 * | CaO * | MgO * | K2O * | Na2O * | F ** | P ** |
---|---|---|---|---|---|---|---|---|---|---|---|---|
SPCCSS1 | 100 | 0 | 64.89 | 10.58 | 4.86 | 0.92 | 5.35 | 2.39 | 1.99 | 1.44 | 494 | 670 |
SPCCSS2 | 95 | 5 | 61.88 | 10.08 | 4.66 | 0.88 | 7.29 | 2.64 | 1.90 | 1.37 | 558 | 1299 |
SPCCSS3 | 90 | 10 | 58.87 | 9.59 | 4.47 | 0.83 | 9.22 | 2.88 | 1.81 | 1.31 | 621 | 1929 |
SPCCSS4 | 85 | 15 | 55.86 | 9.09 | 4.27 | 0.79 | 11.16 | 3.13 | 1.71 | 1.24 | 685 | 2558 |
SPCCSS5 | 80 | 20 | 52.86 | 8.59 | 4.08 | 0.74 | 13.09 | 3.38 | 1.62 | 1.17 | 748 | 3188 |
SPCCSS6 | 75 | 25 | 49.85 | 8.10 | 3.88 | 0.70 | 15.03 | 3.63 | 1.53 | 1.11 | 812 | 3817 |
SPCCSS7 | 70 | 30 | 46.84 | 7.60 | 3.68 | 0.65 | 16.96 | 3.87 | 1.44 | 1.04 | 875 | 4447 |
SPCCSS8 | 65 | 35 | 43.83 | 7.10 | 3.49 | 0.61 | 18.90 | 4.12 | 1.35 | 0.97 | 939 | 5076 |
SPCCSS9 | 60 | 40 | 40.82 | 6.60 | 3.29 | 0.56 | 20.83 | 4.37 | 1.25 | 0.91 | 1002 | 5706 |
SPCCSS10 | 55 | 45 | 37.81 | 6.11 | 3.10 | 0.52 | 22.77 | 4.61 | 1.16 | 0.84 | 1066 | 6335 |
SPCCSS11 | 50 | 50 | 34.81 | 5.61 | 2.90 | 0.48 | 24.71 | 4.86 | 1.07 | 0.78 | 1130 | 6965 |
SPCCSS12 | 45 | 55 | 31.80 | 5.11 | 2.70 | 0.43 | 26.64 | 5.11 | 0.98 | 0.71 | 1193 | 7594 |
SPCCSS13 | 40 | 60 | 28.79 | 4.62 | 2.51 | 0.39 | 28.58 | 5.35 | 0.89 | 0.64 | 1257 | 8223 |
SPCCSS14 | 35 | 65 | 25.78 | 4.12 | 2.31 | 0.34 | 30.51 | 5.60 | 0.79 | 0.58 | 1320 | 8853 |
SPCCSS15 | 30 | 70 | 22.77 | 3.62 | 2.12 | 0.30 | 32.45 | 5.85 | 0.70 | 0.51 | 1384 | 9482 |
SPCCSS16 | 25 | 75 | 19.76 | 3.13 | 1.92 | 0.25 | 34.38 | 6.10 | 0.61 | 0.44 | 1447 | 10,112 |
SPCCSS17 | 20 | 80 | 16.75 | 2.63 | 1.72 | 0.21 | 36.32 | 6.34 | 0.52 | 0.38 | 1511 | 10,741 |
SPCCSS18 | 15 | 85 | 13.75 | 2.13 | 1.53 | 0.16 | 38.25 | 6.59 | 0.43 | 0.31 | 1574 | 11,371 |
SPCCSS19 | 10 | 90 | 10.74 | 1.63 | 1.33 | 0.12 | 40.19 | 6.84 | 0.33 | 0.24 | 1638 | 12,000 |
SPCCSS20 | 5 | 95 | 7.73 | 1.14 | 1.14 | 0.07 | 42.12 | 7.08 | 0.24 | 0.18 | 1701 | 12,630 |
SPCCSS21 | 0 | 100 | 4.72 | 0.64 | 0.94 | 0.03 | 44.06 | 7.33 | 0.15 | 0.11 | 1765 | 13,259 |
Element | Analysis Method |
---|---|
SiO2 | GR XRF VOL |
Al2O3 | VOL ICPES XRF ICPMS |
TFe2O3 | ICPES COL XRF VOL INAA |
Ti | XRF ICPES COL ICPMS |
CaO | ICPES XRF VOL AAS |
MgO | ICPES VOL XRF AAS ICPMS |
K2O | ICPES AAS XRF INAA |
Na2O | ICPES AAS XRF INAA |
F | ISE |
P | XRF ICPES COL ICPMS |
Ba | ICPMS XRF INAA |
Be | ICPES ICPMS |
Li | ICPES ICPMS AAS |
Rb | XRF ICPMS ICPES AAS INAA |
Sr | XRF ICPMS ICPES |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Yan, X.; Xin, Y.; Fang, P.; Wang, Y.; Liu, S.; Jia, J.; Zhang, L.; Wan, X. Determination of Elemental Composition and Content in Stream Sediments by Laser-Induced Breakdown Spectroscopy. Chemosensors 2023, 11, 377. https://doi.org/10.3390/chemosensors11070377
Wang H, Yan X, Xin Y, Fang P, Wang Y, Liu S, Jia J, Zhang L, Wan X. Determination of Elemental Composition and Content in Stream Sediments by Laser-Induced Breakdown Spectroscopy. Chemosensors. 2023; 11(7):377. https://doi.org/10.3390/chemosensors11070377
Chicago/Turabian StyleWang, Hongpeng, Xinru Yan, Yingjian Xin, Peipei Fang, Yian Wang, Sicong Liu, Jianjun Jia, Liang Zhang, and Xiong Wan. 2023. "Determination of Elemental Composition and Content in Stream Sediments by Laser-Induced Breakdown Spectroscopy" Chemosensors 11, no. 7: 377. https://doi.org/10.3390/chemosensors11070377
APA StyleWang, H., Yan, X., Xin, Y., Fang, P., Wang, Y., Liu, S., Jia, J., Zhang, L., & Wan, X. (2023). Determination of Elemental Composition and Content in Stream Sediments by Laser-Induced Breakdown Spectroscopy. Chemosensors, 11(7), 377. https://doi.org/10.3390/chemosensors11070377