Recent Advances in the Application of Nanozymes in Amperometric Sensors: A Review
Abstract
:1. Introduction
2. Nanozymes Used in Amperometric Sensors
2.1. Nanomaterials with POD-Like or Oxidase-Like Properties
2.2. Synthesis and Characterization of Representative Nanozymes Used in Amperometric Sensors
3. Applications of Nanozymes in Amperometric Sensors
3.1. Sensors Targeting the Detection of H2O2
3.1.1. Sensors for the Reduction of H2O2
3.1.2. Sensors for the Oxidation of H2O2
3.1.3. Sensors for the Disproportionation of H2O2
Nanozyme | pH | Oxidative or Reductive | Linear Range (mM) | Sensitivity (μA mM−1 cm−2) | Potential (V) | RSD % | LOD (μM) | Stability (°C/Day) | Sample | Ref. |
---|---|---|---|---|---|---|---|---|---|---|
Pd@SO3H-MSM | 7.4 | Reductive | 0.047–1000 μM | 0.36 | −0.04 | 2.6 | 0.014 | 30 | Living cells | [51] |
Ag-Mo2C/C | 7.4 | Reductive | 0.08 μM~4.67 | 466.2 | −0.3 v | 2.25 | 0.025 | 30 | human serum/disinfector/contact lens solution | [54] |
Ag2MoO4 nanowires | 7.0 | Reductive | 0.015–799.2 μM | / | −0.32 | < 3.5 | 5.42 nM | 4/30 | Lens cleaning solution/serum | [55] |
Ag/N-Ti3C2 | 7.0 | Reductive | 0.05–35 | 552.62 | −0.5 | 3.1 | 1.53 | / | fetal bovine serum | [56] |
RGO/nAPAMSs | 7.0 | Reductive | 0.005−4.0 | 1117.0 | −0.5 | 3.2 | 0.008 | 30 | Disinfected fetal bovine serum | [57] |
SiO2/APTMS/AuPt | 7.4 | Reductive | 5–72,000 μM | 46.7 | −0.20 | 8.09 | 2.6 | RT/7 | / | [58] |
AuPd@FexOy | 7.4 | Reductive | 50 μM ~1 | 120.7 | −0.2 | 0.63 | 3.0 | RT/20 | Living cells | [59] |
AuNPs/Cu-HHTP-NSs | 7.4 | Reductive | 50 nM–16.4 | 188.1 | −0.6 | 3.1 | 0.0056 | 28 | Living cells | [62] |
Co-NC RDSs | 7.4 | Reductive | 0.001–30 | 234.913 | −0.3 | 1.78 | 0.143 | 60 | / | [66] |
AuNFs on Fe3O4@ZIF-8-MoS2 | 7.4 | Reductive | 0.005–120 | / | −0.55 | 2.1 | 0.9 | RT/7 | H9C2 cells | [67] |
Cu2(OH)3NO3@ZnO | 7.4 | Reductive | 1 μM ~17.4 | 272 | −0.8 | 5 | 1 | 28 | Living cells | [72] |
PtNWs-PNFs/GO | 13 | Oxidative | 0.1 μM–0.01 | / | 0.65 | / | 0.0206 | RT/7 | / | [74] |
Pt/C-CeO2 | 7.4 | Oxidative | 0.01–30 | 185.4 ± 6.5 | −0.4 | 2.5 | 2 | 4/15 | Disinfectant | [77] |
NiMoO4 | 13 | Oxidative | 0.0001–1.55 | / | 0.6 | 3.4 | 0.01 | RT/30 | Tap water/river water | [80] |
Co-MOF@Nafion | 7 | Oxidative | 0.005–10 | a 501 ± 3 | 0.9 | 3.2/6.1 | / | / | Lens cleaning solutions/disinfectant | [84] |
GCE/f-MWCNT@Mn (bpy)2 (H2O)2 | 7 | Disproportionation | 0.02–0.2 | a 0.417 | 0.65 | 3.9 | 1 | Clinical sample | [86] |
3.2. Sensors Targeting the Detection of Glucose
3.3. Sensors Combining Natural Enzymes with Nanozymes
3.4. Other Sensors
4. Challenges and Perspectives
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, X.; Dong, S.; Wei, H. Recent advances on nanozyme-based electrochemical biosensors. Electroanalysis 2023, 35, 38–49. [Google Scholar]
- Ronkainen, N.J.; Halsall, H.B.; Heineman, W.R. Electrochemical biosensors. Chem. Soc. Rev. 2010, 39, 1747–1763. [Google Scholar]
- Jia, X.; Dong, S.; Wang, E. Engineering the bioelectrochemical interface using functional nanomaterials and microchip technique toward sensitive and portable electrochemical biosensors. Biosens. Bioelectron. 2016, 76, 80–90. [Google Scholar]
- Xu, Z.; Chen, X.; Dong, S. Electrochemical biosensors based on advanced bioimmobilization matrices. TrAC Trends Anal. Chem. 2006, 25, 899–908. [Google Scholar] [CrossRef]
- Matthews, C.J.; Andrews, E.S.V.; Patrick, W.M. Enzyme-based amperometric biosensors for malic acid—A review. Anal. Chim. Acta 2021, 1156, 338218. [Google Scholar]
- Sahin, B.; Kaya, T. Electrochemical amperometric biosensor applications of nanostructured metal oxides: A review. Mater. Res. Express. 2019, 6, 042003. [Google Scholar] [CrossRef]
- Liu, X.; Tong, Y.; Fang, P.P. Recent development in amperometric measurements of vesicular exocytosis. TrAC Trends Anal. Chem. 2019, 113, 13–24. [Google Scholar]
- Hu, J. The evolution of commercialized glucose sensors in China. Biosens. Bioelectron. 2009, 24, 1083–1089. [Google Scholar] [CrossRef]
- Klatman, E.L.; Jenkins, A.J.; Ahmedani, M.Y.; Ogle, G.D. Blood glucose meters and test strips: Global market and challenges to access in low-resource settings. Lancet Diabetes Endo. 2019, 7, 150–160. [Google Scholar]
- Hassan, M.H.; Vyas, C.; Grieve, B.; Bartolo, P. Recent Advances in Enzymatic and Non-Enzymatic Electrochemical Glucose Sensing. Sensors 2021, 21, 4672. [Google Scholar] [CrossRef] [PubMed]
- Nikitina, V.N.; Karastsialiova, A.R.; Karyakin, A.A. Glucose test strips with the largest linear range made via single strip modification by glucose oxidase-hexacyanoferrate-chitosan mixture. Biosens. Bioelectron. 2023, 220, 114851. [Google Scholar] [CrossRef]
- Baranwal, J.; Barse, B.; Gatto, G.; Broncova, G.; Kumar, A. Electrochemical sensors and their applications: A review. Chemosensors 2022, 10, 363. [Google Scholar] [CrossRef]
- Jacobs, C.B.; Peairs, M.J.; Venton, B.J. Review: Carbon nanotube based electrochemical sensors for biomolecules. Anal. Chim. Acta 2010, 1156, 338218. [Google Scholar]
- Zhang, W.; Ma, D.; Du, J. Prussian blue nanoparticles as peroxidase mimetics for sensitive colorimetric detection of hydrogen peroxide and glucose. Talanta 2014, 120, 362–367. [Google Scholar] [PubMed]
- Jiang, D.; Ni, D.; Rosenkrans, Z.T.; Huang, P.; Yan, X.; Cai, W. Nanozyme: New horizons for responsive biomedical applications. Chem. Soc. Rev. 2019, 48, 3683–3704. [Google Scholar]
- Wu, J.; Wang, X.; Wang, Q.; Lou, Q.; Li, S.; Zhu, Y.; Qin, L.; Wei, H. Nanomaterials with enzyme-like characteristic (nanozymes): Next-generation artificial enzymes (Ⅱ). Chem. Soc. Rev. 2019, 48, 1004–1076. [Google Scholar] [PubMed]
- Huang, Y.; Ren, J.; Qu, X. Nanozymes: Classification, catalytic mechanisms, activity regulation, and applications. Chem. Rev. 2019, 119, 4357–4412. [Google Scholar]
- Gao, L.; Zhuang, J.; Nie, L.; Zhang, J.; Zhang, Y.; Gu, N.; Wang, T.; Feng, J.; Yang, D.; Perrett, S.; et al. Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nat. Nanotechnol. 2007, 2, 577–583. [Google Scholar] [CrossRef]
- Zhang, W.; Hu, S.; Yin, J.J.; He, W.; Lu, W.; Ma, M.; Gu, N.; Zhang, Y. Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J. Am. Chem. Soc. 2016, 138, 5860–5865. [Google Scholar] [CrossRef]
- Dong, H.; Du, W.; Dong, J.; Che, R.; Kong, F.; Chen, W.; Ma, M.; Gu, N.; Zhang, Y. Depletable peroxidase-like activity of Fe3O4 nanozymes accompanied with separate migration of electrons and iron ions. Nat. Commun. 2022, 13, 5365. [Google Scholar]
- Ai, Y.; Hu, Z.N.; Liang, X.; Sun, H.B.; Xin, H.; Liang, Q. Recent advances in nanozymes: From matters to bioapplications. Adv. Funct. Mater. 2022, 32, 2110432. [Google Scholar] [CrossRef]
- Zou, W.; Tang, Y.; Zeng, H.; Wang, C.; Wu, Y. Porous Co3O4 nanodisks as robust peroxidase mimetics in an ultrasensitive colorimetric sensor for the rapid detection of multiple heavy metal residues in environmental water samples. J. Hazard. Mater. 2021, 417, 125994. [Google Scholar] [CrossRef]
- Tang, Y.; Hu, Y.; Yang, Y.; Liu, B.; Wu, Y. A facile colorimetric sensor for ultrasensitive and selective detection of Lead (II) in environmental and biological samples based on intrinsic peroxidase-mimic activity of WS2 nanosheets. Anal. Chim. Acta 2020, 1106, 115–125. [Google Scholar] [CrossRef]
- Zhang, Z.; Tian, Y.; Huang, P.; Wu, F.Y. Using target-specific aptamers to enhance the peroxidase-like activity of gold nanoclusters for colorimetric detection of tetracycline antibiotics. Talanta. 2020, 208, 120342. [Google Scholar] [CrossRef]
- Wang, X.; Zhong, X.; Bai, L.; Xu, J.; Gong, F.; Dong, Z.; Yang, Z.; Zeng, Z.; Liu, Z.; Cheng, L. Ultrafine Titanium Monoxide (TiO1+x) Nanorods for Enhanced Sonodynamic Therapy. J. Am. Chem. Soc. 2020, 142, 6527–6537. [Google Scholar] [CrossRef]
- Boruah, P.K.; Das, M.R. Dual responsive magnetic Fe3O4-TiO2/graphene nanocomposite as an artificial nanozyme for the colorimetric detection and photodegradation of pesticide in an aqueous medium. J. Hazard. Mater. 2020, 385, 121516. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Chen, C.; Zhang, D.; Wang, J. Bifunctionalized novel Co-V MMO nanowires: Intrinsic oxidase and peroxidase like catalytic activities for antibacterial application. Appl. Catal. B Environ. 2020, 261, 118256. [Google Scholar] [CrossRef]
- Cai, S.; Fu, Z.; Xiao, W.; Xiong, Y.; Wang, C.; Yang, R. Zero-Dimensional/Two-Dimensional AuxPd100−x Nanocomposites with Enhanced Nanozyme Catalysis for Sensitive Glucose Detection. ACS Appl. Mater. Interfaces 2020, 12, 11616–11624. [Google Scholar] [CrossRef]
- Xi, Z.; Gao, W.; Xia, X. Size Effect in Pd−Ir Core-Shell Nanoparticles as Nanozymes. ChemElectroChem 2022, 21, 2440–2444. [Google Scholar] [CrossRef]
- Lv, F.; Gong, Y.; Cao, Y.; Deng, Y.; Liang, S.; Tian, X.; Gu, H.; Yin, J.J. A convenient detection system consisting of efficient Au@PtRu nanozymes and alcohol oxidase for highly sensitive alcohol biosensing. Nanoscale Adv. 2020, 2, 1583–1589. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Zhao, X.; Gang, R.; Cao, B.; Wang, H. Doping Nitrogen into Q-Graphene by Plasma Treatment toward Peroxidase Mimics with Enhanced Catalysis. Anal. Chem. 2020, 92, 5152–5157. [Google Scholar] [CrossRef] [PubMed]
- Xin, Q.; Jia, X.; Nawaz, A.; Xie, W.; Li, L.; Gong, J.R. Mimicking peroxidase active site microenvironment by functionalized graphene quantum dots. Nano Res. 2020, 13, 1427–1433. [Google Scholar] [CrossRef]
- Zhou, Y.; Zheng, B.; Lang, L.M.; Liu, G.X.; Xia, X.H. Bioinspired Fabrication of Two-Dimensional Metal–Organic Framework-Based Nanozyme for Sensitive Colorimetric Detection of Glutathione. ACS Appl. Nano Mater. 2022, 5, 18761–18769. [Google Scholar] [CrossRef]
- Huang, L.; Sun, D.W.; Pu, H. Photosensitized Peroxidase Mimicry at the Hierarchical 0D/2D Heterojunction-Like Quasi Metal-Organic Framework Interface for Boosting Biocatalytic Disinfection. Small 2022, 18, 202200078. [Google Scholar] [CrossRef] [PubMed]
- Comotti, M.; Pina, C.D.; Matarrese, R.; Rossi, M. The Catalytic activity of “naked” gold particles. Angew. Chem. Int. Ed. 2004, 43, 5812–5815. [Google Scholar] [CrossRef]
- Chen, Q.; Li, S.; Liu, Y.; Zhang, X.; Tang, Y.; Chai, H.; Huang, Y. Size-controllable Fe-N/C single-atom nanozyme with exceptional oxidase-like activity for sensitive detection of alkaline phosphatase. Sens. Actuators B Chem. 2020, 305, 127511. [Google Scholar] [CrossRef]
- Li, F.; Li, N.; Xue, C.; Wang, H.; Chang, Q.; Liu, H.; Yang, J.; Hu, S. A Cu2O-CDs-Cu three component catalyst for boosting oxidase-like activity with hot electrons. Chem. Eng. J. 2020, 382, 122484. [Google Scholar] [CrossRef]
- Lin, Z.; Zhang, X.; Liu, S.; Zheng, L.; Bu, Y.; Deng, H.; Chen, R.; Peng, H.; Lin, X.; Chen, W. Colorimetric acid phosphatase sensor based on MoO3 nanozyme. Anal. Chim. Acta 2020, 1105, 162–168. [Google Scholar] [CrossRef]
- Wang, H.; Yang, W.; Wang, X.; Huang, L.; Zhang, Y.; Yao, S. A CeO2@MnO2 core–shell hollow heterojunction as glucose oxidase-like photoenzyme for photoelectrochemical sensing of glucose. Sens. Actuators B Chem. 2020, 304, 127389. [Google Scholar] [CrossRef]
- Cao, C.; Yang, N.; Su, Y.; Zhang, Z.; Wang, C.; Song, X.; Chen, P.; Wang, W.; Dong, X. Starvation, Ferroptosis, and Prodrug Therapy Synergistically Enabled by a Cytochrome c Oxidase like Nanozyme. Adv. Mater. 2022, 34, 2203236. [Google Scholar] [CrossRef]
- Zhe, Y.; Wang, J.; Zhao, Z.; Ren, G.; Du, J.; Li, K.; Lin, Y. Ascorbate oxidase-like nanozyme with high specificity for inhibition of cancer cell proliferation and online electrochemical DOPAC monitoring. Biosens. Bioelectron. 2023, 220, 114893. [Google Scholar] [CrossRef] [PubMed]
- Dong, W.; Chen, G.; Ding, M.; Cao, H.; Li, G.; Fang, M.; Shi, W. Constructing a novel strategy for one-step colorimetric glucose biosensing based on Co-Nx sites on porous carbon as oxidase mimetics. Microchem. J. 2023, 188, 108448. [Google Scholar] [CrossRef]
- Ballesteros, C.A.S.; Mercante, L.A.; Alvarenga, A.D.; Facure, M.H.M.; Schneider, R.; Correa, D.S. Recent trends in nanozymes design: From materials and structures to environmental applications. Mater. Chem. Front. 2021, 5, 7419. [Google Scholar] [CrossRef]
- Ashrafi, A.M.; Bytesnikova, Z.; Barek, J.; Richtera, L.; Adam, V. A critical comparison of natural enzymes and nanozymes in biosensing and bioassays. Biosens. Bioelectron. 2021, 192, 113494. [Google Scholar] [CrossRef]
- Yang, W.; Yang, X.; Zhu, L.; Chu, H.; Li, X.; Xu, W. Nanozymes: Activity origin, catalytic mechanism, and biological application. Coordin. Chem. Rev. 2021, 448, 214170. [Google Scholar] [CrossRef]
- Riaz, M.A.; Chen, Y. Electrodes and electrocatalysts for electrochemical hydrogen peroxide sensors: A review of design strategies. Nanoscale Horiz. 2022, 7, 463. [Google Scholar] [CrossRef]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Silica-Based Mesoporous Organic–Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45, 3216–3251. [Google Scholar] [CrossRef]
- Pal, M.; Ganesan, V. Zinc Phthalocyanine and Silver/Gold Nanoparticles Incorporated MCM-41 Type Materials as Electrode Modifiers. Langmuir 2009, 25, 13264–13272. [Google Scholar] [CrossRef]
- Xi, J.; Zhang, Y.; Wang, N.; Wang, L.; Zhang, Z.; Xiao, F.; Wang, S. Ultrafine Pd Nanoparticles Encapsulated in Microporous Co3O4 Hollow Nanospheres for In Situ Molecular Detection of Living Cells. ACS Appl. Mater. Interfaces 2015, 7, 5583–5590. [Google Scholar] [CrossRef]
- Xi, J.; Xie, C.; Zhang, Y.; Wang, L.; Xiao, J.; Duan, X.; Ren, J.; Xiao, F.; Wang, S. Palladium nanoparticles supported on mesoporous silica microspheres for enzyme-free amperometric detection of H2O2 released from living cells. ACS Appl. Mater. Interfaces 2016, 8, 22563–22573. [Google Scholar] [CrossRef]
- Gupta, R.; Singh, P.; Ganesan, V.; Koch, B.; Rastogi, P.K.; Yadav, D.K.; Sonkar, P.K. Palladium nanoparticles supported on mesoporous silica microspheres for enzyme-free amperometric detection of H2O2 released from living cells. Sens. Actuators B Chem. 2018, 276, 517–525. [Google Scholar] [CrossRef]
- Liu, G.; Wang, K.; Wang, L.; Wang, B.; Lin, Z.; Chen, X.; Hua, Y.; Zhu, W.; Li, H.; Xia, J. A Janus cobalt nanoparticles and molybdenum carbide decorated N-doped carbon for high-performance overall water splitting. J. Colloid Interface. Sci. 2021, 583, 614–625. [Google Scholar] [CrossRef] [PubMed]
- Li, B.; Liu, L.H.; Song, H.Y.; Deng, Z.P.; Huo, L.H.; Gao, S. Carbon-Doping Mesoporous β-Mo2C Aggregates for Nanomolar Electrochemical Detection of Hydrogen Peroxide. ACS Appl. Nano Mater. 2020, 3, 7499–7507. [Google Scholar] [CrossRef]
- Li, B.; Wang, X.T.; Liu, L.H.; Zhang, X.F.; Gao, Y.; Deng, Z.P.; Huo, L.H.; Gao, S. Bimetallic MOFs-derived coral-like Ag-Mo2C/C interwoven nanorods for amperometric detection of hydrogen peroxide. Microchim. Acta 2021, 188, 234. [Google Scholar] [CrossRef] [PubMed]
- Jesila, J.A.A.; Umesh, N.M.; Wang, S.F.; Govindasamy, M.; Alothman, Z.A.; Alshgari, R.A. Simple and Highly Selective Electrochemical Sensor Constructed Using Silver Molybdate Nano-Wire Modified Electrodes for the Determination of Oxidative Stress Biomarker in Blood Serum and Lens Cleaning Solution. J. Electrochem. Soc. 2020, 167, 147501. [Google Scholar] [CrossRef]
- Zhu, B.; An, D.; Bi, Z.; Liu, W.; Shan, W.; Li, Y.; Nie, G.; Xie, N.; Al-Hartomy, O.A.; Al-Ghamdi, A.; et al. Two-Dimensional Nitrogen-Doped Ti3C2 Promoted Catalysis Performance of Silver Nanozyme for Ultrasensitive Detection of Hydrogen Peroxide. ChemElectroChem 2022, 9, e202200050. [Google Scholar] [CrossRef]
- Bai, Z.; Dong, W.; Ren, Y.; Zhang, C.; Chen, Q. Preparation of nano Au and Pt alloy microspheres decorated with reduced graphene oxide for nonenzymatic hydrogen peroxide sensing. Langmuir 2018, 34, 2235–2244. [Google Scholar] [CrossRef]
- Liu, W.; Hiekel, K.; Hübner, R.; Sun, H.; Ferancova, A.; Sillanpää, M. Pt and Au bimetallic and monometallic nanostructured amperometric sensors for direct detection of hydrogen peroxide: Influences of bimetallic effect and silica support. Sens. Actuators B Chem. 2018, 255, 1325–1334. [Google Scholar] [CrossRef]
- Dai, M.; Zhu, Q.; Han, D.; Niu, L.; Wang, Z. An electrochemical sensor based on AuPd@FexOy nanozymes for a sensitive and in situ quantitative detection of hydrogen peroxide in real samples. Analyst 2022, 147, 5739–5746. [Google Scholar] [CrossRef]
- Niu, X.; Li, X.; Lyu, Z.; Pan, J.; Ding, S.; Ruan, X.; Zhu, W.; Du, D.; Lin, Y. Metal–organic framework based nanozymes: Promising materials for biochemical analysis. Chem. Commun. 2020, 56, 11338–11353. [Google Scholar] [CrossRef]
- Li, S.; Liu, X.; Chai, H.; Huang, Y. Recent advances in the construction and analytical applications of metal-organic frameworks-based nanozymes. TrAc Trends Anal. Chem. 2018, 105, 391–403. [Google Scholar] [CrossRef]
- Huang, W.; Xu, Y.; Wang, Z.; Liao, K.; Zhang, Y.; Sun, Y. Dual nanozyme based on ultrathin 2D conductive MOF nanosheets intergraded with gold nanoparticles for electrochemical biosensing of H2O2 in cancer cells. Talanta 2022, 249, 123612. [Google Scholar] [CrossRef]
- Dhakshinamoorthy, A.; Asiri, A.M.; Garcia, H. 2D Metal–Organic Frameworks as Multifunctional Materials in Heterogeneous Catalysis and Electro/Photocatalysis. Adv. Mater. 2019, 31, 1900617. [Google Scholar] [CrossRef]
- Gutiérrez-Tarriño, S.; Olloqui-Sariego, J.L.; Calvente, J.J.; Espallargas, G.M.; Rey, F.; Corma, A.; Oña-Burgos, P. Cobalt Metal–Organic Framework Based on Layered Double Nanosheets for Enhanced Electrocatalytic Water Oxidation in Neutral Media. J. Am. Chem. Soc. 2020, 142, 19198–19208. [Google Scholar] [CrossRef]
- Shang, L.; Yu, H.; Huang, X.; Bian, T.; Shi, R.; Zhao, Y.; Waterhouse, G.I.N.; Wu, L.Z.; Tung, C.H.; Zhang, T. Well-Dispersed ZIF-Derived Co,N-Co-doped Carbon Nanoframes through Mesoporous-Silica-Protected Calcination as Efficient Oxygen Reduction Electrocatalysts. Adv. Mater. 2016, 28, 1668–1674. [Google Scholar] [CrossRef]
- Wu, Z.; Sun, L.P.; Zhou, Z.; Li, Q.; Huo, L.H.; Zhao, H. Efficient nonenzymatic H2O2 biosensor based on ZIF-67 MOF derived Co nanoparticles embedded N-doped mesoporous carbon composites. Sens. Actuators B Chem. 2018, 276, 142–149. [Google Scholar] [CrossRef]
- Lu, J.; Hu, Y.; Wang, P.; Liu, P.; Chen, Z.; Sun, D. Electrochemical biosensor based on gold nanoflowers-encapsulated magnetic metal-organic framework nanozymes for drug evaluation with in- situ monitoring of H2O2 released from H9C2 cardiac cells. Sens. Actuators B Chem. 2020, 311, 127909. [Google Scholar] [CrossRef]
- Sun, D.; Luo, Z.; Lu, J.; Zhang, S.; Che, T.; Chen, Z.; Zhang, L. Electrochemical dual-aptamer-based biosensor for nonenzymatic detection of cardiac troponin I by nanohybrid electrocatalysts labeling combined with DNA nanotetrahedron structure. Biosens. Bioelectron. 2019, 134, 49–56. [Google Scholar] [CrossRef]
- Luo, Z.; Sun, D.; Tong, Y.; Zhong, Y.; Chen, Z. DNA nanotetrahedron linked dual-aptamer based voltametric aptasensor for cardiac troponin I using a magnetic metal-organic framework as a label. Microchim. Acta 2019, 186, 374. [Google Scholar] [CrossRef] [PubMed]
- Du, H.; Zhang, X.; Liu, Z.; Qu, F. A supersensitive biosensor based on MoS2 nanosheet arrays for the real-time detection of H2O2 secreted from living cells. Chem. Commun. 2019, 55, 9653–9656. [Google Scholar] [CrossRef]
- Manibalan, K.; Han, S.; Zheng, Y.; Li, H.; Lin, J.M. Latent Redox Reporter of 4-Methoxyphenol as Electrochemical Signal Proxy for Real-Time Profiling of Endogenous H2O2 in Living Cells. ACS Sens. 2019, 4, 2450–2457. [Google Scholar] [CrossRef]
- Huang, W.; Xu, Y.; Sun, Y. Functionalized Graphene Fiber Modified With MOF-Derived Rime-Like Hierarchical Nanozyme for Electrochemical Biosensing of H2O2 in Cancer Cells. Front. Chem. 2022, 10, 873187. [Google Scholar] [CrossRef] [PubMed]
- Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef]
- Zhu, D.; He, P.; Kong, H.; Yang, G.; Luan, X.; Wei, G. Biomimetic graphene-supported ultrafine platinum nanowires for colorimetric and electrochemical detection of hydrogen peroxide. J. Mater. Chem. B 2022, 10, 9216. [Google Scholar] [CrossRef] [PubMed]
- Beie, H.J.; GnÖrich, A. Oxygen gas sensors based on CeO2 thick and thin films. Sens. Actuators B Chem. 1991, 4, 393–399. [Google Scholar] [CrossRef]
- Uzunoglu, A.; Kose, D.A.; Stanciu, L.A. Synthesis of CeO2-based core/shell nanoparticles with high oxygen storage capacity. Int. Nano Lett. 2017, 7, 187–193. [Google Scholar] [CrossRef] [Green Version]
- Uzunoglu, A.; Ipekci, H.H. The use of CeO2 -modified Pt/C catalyst inks for the construction of high-performance enzyme-free H2O2 sensors. J. Electroanal. Chem. 2019, 848, 113302. [Google Scholar] [CrossRef]
- Gorte, R.J.; Shao, Z. Studies of the water-gas-shift reaction with ceria-supported precious metals. Catal. Today 2005, 104, 18–24. [Google Scholar] [CrossRef]
- Uzunoglu, A.; Stanciu, L.A. Novel CeO2–CuO-decorated enzymatic lactate biosensors operating in low oxygen environments. Anal. Chim. Acta 2016, 909, 121–128. [Google Scholar] [CrossRef] [Green Version]
- Karami, C.; Taher, M.A. A novel enzyme-less amperometric sensor for hydrogen peroxide based on nickel molybdate nanoparticles. J. Electroanal. Chem. 2019, 847, 113219. [Google Scholar] [CrossRef]
- Unnikrishnan, B.; Umasankar, Y.; Chen, S.M.; Ti, C.C. Indirect determination of water and hydrogen peroxide oxidation by oxygen evolution studies using multiwalled carbon nanotube-nickel oxide film as electrocatalyst. Int. J. Electrochem. Sci. 2012, 7, 3047–3058. [Google Scholar]
- Zhao, C.; Shao, C.; Li, M.; Jiao, K. Flow-injection analysis of glucose without enzyme based on electrocatalytic oxidation of glucose at a nickel electrode. Talanta 2007, 71, 1769–1773. [Google Scholar] [CrossRef] [PubMed]
- Mai, L.Q.; Yang, F.; Zhao, Y.L.; Xu, X.; Xu, L.; Luo, Y.Z. Hierarchical MnMoO4/CoMoO4 heterostructured nanowires with enhanced supercapacitor performance. Nat. Commun. 2011, 2, 381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Portorreal-Bottier, A.; Gutiérrez-Tarriñõ, S.G.; Calvente, J.J.; Andreu, R.; Roldán, E.; Oña-Burgos, P.; Olloqui-Sariego, J.L. Enzyme-like activity of cobalt-MOF nanosheets for hydrogen peroxide electrochemical sensing. Sens. Actuators B Chem. 2022, 368, 132129. [Google Scholar] [CrossRef]
- Vainshtein, B.K.; Melik-Adamyan, W.R.; Barynin, V.V.; Vagin, A.A.; Grebenko, A.I. Three-dimensional structure of the enzyme catalase. Nature 1981, 293, 411–412. [Google Scholar] [CrossRef]
- Saravanan, N.; Mayuri, P.; Huang, S.T.; Kumar, A.S. In-situ electrochemical immobilization of [Mn(bpy)2(H2O)2] 2+ complex on MWCNT modified electrode and its electrocatalytic H2O2 oxidation and reduction reactions: A Mn-Pseudocatalase enzyme bio-mimicking electron- transfer functional model. J. Electroanal. Chem. 2018, 812, 10–21. [Google Scholar] [CrossRef]
- Sukhrobov, P.; Numonov, S.; Liu, J.; Luo, J.; Mamat, X.; Li, Y.; Wågberg, T.; Hu, G. Rapid Microwave-Assisted Synthesis of Copper Decorated Carbon Black Nanocomposite for Non-Enzyme Glucose Sensing in Human blood. J. Electrochem. Soc. 2019, 166, B1238–B1244. [Google Scholar] [CrossRef]
- Dilmac, Y.; Guler, M. Fabrication of non-enzymatic glucose sensor dependent upon Au nanoparticles deposited on carboxylated graphene oxide. J. Electroanal. Chem. 2020, 864, 114091. [Google Scholar] [CrossRef]
- Hayat, A.; Mane, S.K.B.; Shaishta, N.; Khan, J.; Hayat, A.; Keyum, G.; Uddin, I.; Raziq, F.; Khan, M.; Manjunatha, G. Nikel Oxide Nano-Particles on 3D Nickel Foam Substrate as a Non-Enzymatic Glucose Sensor. J. Electrochem. Soc. 2019, 166, B1602–B1611. [Google Scholar] [CrossRef]
- Vivekananth, R.; Babu, R.S.; Prasanna, K.; Lee, C.W.; Kalaivani, R.A. Non-enzymatic glucose sensing platform using self assembled cobalt oxide/graphene nanocomposites immobilized graphite modified electrode. J. Mater. Sci. Mater. Electron. 2018, 29, 6763–6770. [Google Scholar] [CrossRef]
- Sridara, T.; Upan, J.; Saianand, G.; Tuantranont, A.; Karuwan, C.; Jakmunee, J. Non-Enzymatic Amperometric Glucose Sensor Based on Carbon Nanodots and Copper Oxide Nanocomposites Electrode. Sensors 2020, 20, 808. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, F.; Liu, T.; Xie, L.; Sun, X.; Luo, Y. Metallic nickel nitride nanosheet: An efficient catalyst electrode for sensitive and selective non-enzymatic glucose sensing. Sens. Actuators B Chem. 2018, 255, 2794–2799. [Google Scholar] [CrossRef]
- Pal, N.; Banerjee, S.; Bhaumik, A. A facile route for the syntheses of Ni(OH)2 and NiO nanostructures as potential candidates for non-enzymatic glucose sensor. J. Colloid Interface Sci. 2018, 516, 121–127. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.C.; Kim, K.B.; Gurudatt, N.G.; Hussain, K.K.; Choi, C.S.; Park, D.S.; Shim, Y.B. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens. Bioelectron. 2019, 130, 48–54. [Google Scholar] [CrossRef]
- Pei, Y.; Hu, M.; Tu, F.; Tang, X.; Huang, W.; Chen, S.; Li, Z.; Xia, Y. Ultra-rapid fabrication of highly surface-roughened nanoporous gold film from AuSn alloy with improved performance for nonenzymatic glucose sensing. Biosens. Bioelectron. 2018, 117, 758–765. [Google Scholar] [CrossRef] [PubMed]
- Praveen, R.; Ramaraj, R. Facile synthesis of hetero-nanostructured cuprous oxide-gold composite material for sensitive enzymeless glucose detection. J. Electroanal. Chem. 2019, 851, 13454. [Google Scholar] [CrossRef]
- Marie, M.; Manoharan, A.; Kuchuk, A.; Ang, S.; Manasreh, M.O. Vertically grown zinc oxide nanorods functionalized with ferric oxide for in vivo and non-enzymatic glucose detection. Nanotechnology 2018, 29, 115501. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Zhu, X.; Ju, Y.; Ma, B.; Zhao, C.; Liu, H. Electrocatalytic oxidation of glucose on bronze for monitoring of saliva glucose using a smart toothbrush. Sens. Actuators B Chem. 2019, 285, 56–61. [Google Scholar] [CrossRef]
- Kailasa, S.; Reddy, R.K.K.; Reddy, M.S.B.; Rani, B.G.; Maseed, H.; Sathyavathi, R.; Rao, K.V. High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor. J. Mater. Sci. Mater. Electron. 2020, 31, 2926–2937. [Google Scholar] [CrossRef]
- Liu, Q.; Jiang, Z.; Tang, Y.; Yang, X.; Wei, M.; Zhang, M. A facile synthesis of a 3D high-index Au NCs@CuO supported on reduced graphene oxide for glucose sensing. Sens. Actuators B Chem. 2018, 255, 454–462. [Google Scholar] [CrossRef]
- Wang, L.; Hou, C.; Yu, H.; Zhang, Q.; Li, Y.; Wang, H. Metal Organic Framework-Derived Nickel/Cobalt-Based Nanohybrids for Sensing Non-Enzymatic Glucose. ChemElectroChem. 2020, 7, 4446–4452. [Google Scholar] [CrossRef]
- Song, D.; Wang, L.; Qu, Y.; Wang, B.; Li, Y.; Miao, X.; Yang, Y.; Duan, C. A High-Performance Three-Dimensional Hierarchical Structure MOF-Derived NiCo LDH Nanosheets for Non-Enzymatic Glucose Detection. J. Electrochem. Soc. 2019, 166, B1681–B1688. [Google Scholar] [CrossRef]
- Asadian, E.; Shahrokhian, S.; Zad, A.I. Highly sensitive nonenzymetic glucose sensing platform based on MOF- derived NiCo LDH nanosheets/graphene nanoribbons composite. J. Electroanal. Chem. 2018, 808, 114–123. [Google Scholar] [CrossRef]
- Bao, J.; Qi, Y.; Huo, D.; Hou, J.; Geng, X.; Samalo, M.; Liu, Z.; Luo, H.; Yang, M.; Hou, C. A Sensitive and Selective Non-Enzymatic Glucose Sensor based on AuNPs/CuO NWs-MoS2 Modified Electrode. J. Electrochem. Soc. 2019, 166, B1179–B1185. [Google Scholar] [CrossRef]
- Pu, F.; Miao, H.; Lu, W.; Zhang, X.; Yang, Z.; Kong, C. High-performance non-enzymatic glucose sensor based on flower-like Cu2O-Cu-Au ternary nanocomposites. Appl. Surf. Sci. 2022, 581, 152389. [Google Scholar] [CrossRef]
- Colozza, N.; Kehe, K.; Dionisi, G.; Popp, T.; Tsoutsoulopoulos, A.; Steinritz, D.; Moscone, D.; Arduini, F. A wearable origami-like paper-based electrochemical biosensor for sulfur mustard detection. Biosens. Bioelectron. 2019, 129, 15–23. [Google Scholar] [CrossRef]
- Bilgi, M.; Ayranci, E. Development of amperometric biosensors using screen-printed carbon electrodes modified with conducting polymer and nanomaterials for the analysis of ethanol, methanol and their mixtures. J. Electroanal. Chem. 2018, 823, 588–592. [Google Scholar] [CrossRef]
- Arduini, F.; Cinti, S.; Caratelli, V.; Amendola, L.; Palleschi, G.; Moscone, D. Origami multiple paper-based electrochemical biosensors for pesticide detection. Biosens. Bioelectron. 2019, 126, 346–354. [Google Scholar] [CrossRef]
- Hemanth, S.; Halder, A.; Caviglia, C.; Chi, Q.; Keller, S.S. 3D Carbon Microelectrodes with Bio-Functionalized Graphene for Electrochemical Biosens. Biosensors 2018, 8, 70. [Google Scholar] [CrossRef] [Green Version]
- Kafi, A.K.M.; Alim, S.; Jose, R.; Yusoff, M.M. Fabrication of a glucose oxidase/multiporous tin-oxide nanofiber film on Prussian blue–modified gold electrode for biosensing. J. Electrochem. Soc. 2019, 852, 113550. [Google Scholar] [CrossRef]
- Fang, Y.; Wang, S.; Liu, Y.; Xu, Z.; Zhang, K.; Guo, Y. Development of Cu nanoflowers modified the flexible needle-type microelectrode and its application in continuous monitoring glucose in vivo. Biosens. Biosens. 2018, 110, 44–51. [Google Scholar] [CrossRef]
- Yang, Q.; Yang, C.; Wang, Q.; Yang, F.; Song, C.; Yang, H. Electrochemical Biosensor Based on Nano TiO2 Loaded with Highly Dispersed Photoreduced Nano Platinum. J. Electrochem. Soc. 2018, 165, 2018. [Google Scholar] [CrossRef]
- Smutok, O.; Kavetskyy, T.; Prokopiv, T.; Serkiz, R.; Wojnarowska-Nowak, R.; Šauša, O.; Novák, I.; Berek, D.; Melman, A.; Gonchar, M. New micro/nanocomposite with peroxidase-like activity in construction of oxidases-based amperometric biosensors for ethanol and glucose analysis. Anal. Chim. Acta 2021, 1143, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Xuan, X.; Yoon, H.S.; Park, J.Y. A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate. Biosens. Bioelectron. 2018, 109, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Sharma, S.; Cass, A.E.G.; Antiochia, R. Microneedle-based biosensor for minimally-invasive lactate detection. Biosens. Bioelectron. 2019, 123, 152–159. [Google Scholar] [CrossRef] [Green Version]
- Wen, S.H.; Zhong, X.L.; Wu, Y.D.; Liang, R.P.; Zhang, L.; Qiu, J.D. Colorimetric Assay Conversion to Highly Sensitive Electrochemical Assay for Bimodal Detection of Arsenate Based on Cobalt Oxyhydroxide Nanozyme via Arsenate Absorption. Anal. Chem. 2019, 91, 6487–6497. [Google Scholar] [CrossRef]
- Liu, L.; Du, J.; Liu, W.E.; Guo, Y.; Wu, G.; Qi, W.; Lu, X. Enhanced His@AuNCs oxidase-like activity by reduced graphene oxide and its application for colorimetric and electrochemical detection of nitrite. Anal. Bioanal. Chem. 2019, 411, 2189–2200. [Google Scholar] [CrossRef]
- Koo, K.M.; Dey, S.; Trau, M. A Sample-to-Targeted Gene Analysis Biochip for Nanofluidic Manipulation of Solid-Phase Circulating Tumor Nucleic Acid Amplification in Liquid Biopsies. ACS Sens. 2018, 3, 2597–2603. [Google Scholar] [CrossRef]
- Bhattacharjee, R.; Tanaka, S.; Moriam, S.; Masud, M.K.; Lin, J.; Alshehri, S.M.; Ahamad, T.; Salunkhe, R.R.; Nguyen, N.T.; Yamauchi, Y.; et al. Porous nanozymes: The peroxidase-mimetic activity of mesoporous iron oxide for the colorimetric and electrochemical detection of global DNA methylation. J. Mater. Chem. B 2018, 6, 4783. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Wang, D.; Sun, L.H.; Zhang, L.C.; Lu, Z.S.; Xue, P.; Wang, F.; Xia, Q.Y.; Bao, S.J. BC@DNA-Mn3(PO4)2 Nanozyme for Real-Time Detection of Superoxide from Living Cells. Anal. Chem. 2020, 92, 15927–15935. [Google Scholar] [CrossRef]
- Boriachek, K.; Masud, M.F.; Palma, C.; Phan, H.P.; Yamuchi, Y.; Hossain, M.S.; Nguyen, N.T.; Salomon, C.; Shiddiky, M.J.A. Avoiding Pre-Isolation Step in Exosome Analysis: Direct Isolation and Sensitive Detection of Exosomes Using Gold-Loaded Nanoporous Ferric Oxide Nanozymes. Anal. Chem. 2019, 91, 3827–3834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; He, G.; Liu, H.; Yin, H.; Gao, F.; Chen, J.; Zhang, S.; Yang, B. Electrochemical immunosensor based on AuBP@Pt nanostructure and AuPd-PDA nanozyme for ultrasensitive detection of APOE4. RSC Adv. 2020, 10, 7912. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Li, Y.; Feng, J.; Gao, Z.; Lv, H.; Ren, X.; Wei, Q. Facile synthesis of MoS2 @Cu2O-Pt nanohybrid as enzyme-mimetic label for the detection of the Hepatitis B surface antigen. Biosens. Bioelectron. 2018, 100, 512–518. [Google Scholar] [CrossRef] [PubMed]
- Lu, N.; Yan, X.; Gu, Y.; Zhang, T.; Liu, Y.; Song, Y.; Xu, Z.; Xing, Y.; Li, X.; Zhang, Z.; et al. Cobalt-decorated 3D hybrid nanozyme: A catalytic amplification platform with intrinsic oxidase-like activity. Electrochim. Acta 2021, 395, 139197. [Google Scholar] [CrossRef]
- Xiao, J.; Hu, X.; Wang, K.; Zou, Y.; Gyimah, E.; Yakubu, S.; Zhang, Z. A novel signal amplification strategy based on the competitive reaction between 2D Cu-TCPP(Fe) and polyethyleneimine (PEI) in the application of an enzyme-free and ultrasensitive electrochemical immunosensor for sulfonamide detection. Biosens. Bioelectron. 2020, 150, 111883. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Zhang, W.; Peng, M.; Ren, G.; Guan, L.; Li, K.; Lin, Y. ZIF-67 as a Template Generating and Tuning “Raisin Pudding”-Type Nanozymes with Multiple Enzyme-like Activities: Toward Online Electrochemical Detection of 3,4-Dihydroxyphenylacetic Acid in Living Brains. ACS Appl. Mater. Interfaces 2020, 12, 29631–29640. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yu, C.; Yang, B.; Liu, Z.; Xia, P.; Wang, Q. Target-catalyzed hairpin assembly and metal-organic frameworks mediated nonenzymatic co-reaction for multiple signal amplification detection of miR- 122 in human serum. Biosens. Bioelectron. 2018, 102, 307–315. [Google Scholar] [CrossRef]
- Ren, G.; Dong, F.; Zhao, Z.; Li, K.; Lin, Y. Structure Defect Tuning of Metal−Organic Frameworks as a Nanozyme Regulatory Strategy for Selective Online Electrochemical Analysis of Uric Acid. ACS Appl. Mater. Interfaces 2021, 13, 52987–52997. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhang, H.; Li, Y.; Yu, X.; Cai, Y.; Sha, X.; Wang, S.; Zhan, Z.; Xu, J.; Liu, L. AI powered electrochemical multi-component detection of insulin and glucose in serum. Biosens. Bioelectron. 2021, 186, 113291. [Google Scholar] [CrossRef]
- Giordano, G.F.; Freitas, V.M.S.; Schleder, G.R.; Santhiago, M.; Gobbi, A.L.; Lima, R.S. Bifunctional metal meshes acting as a semipermeable membrane and electrode for sensitive electrochemical determination of volatile compounds. ACS Appl. Mater. Interfaces 2021, 13, 35914–35923. [Google Scholar] [CrossRef]
- Zhu, X.; Lin, L.; Wu, R.; Zhu, Y.; Sheng, Y.; Nie, P.; Liu, P.; Xu, L.; Wen, Y. Portable wireless intelligent sensing of ultra-trace phytoregulator α-naphthalene acetic acid using self-assembled phosphorene/Ti3-C2-MXene nanohybrid with high ambient stability on laser induced porous graphene as nanozyme flexible electrode. Biosens. Bioelectron. 2021, 179, 113062. [Google Scholar] [CrossRef] [PubMed]
- Schroeder, V.; Evans, E.D.; Wu, Y.C.M.; Voll, C.C.A.; McDonald, B.R.; Savagatrup, S.; Swager, T.M. Chemiresistive sensor array and machine learning classification of food. ACS Sens. 2019, 4, 2101–2108. [Google Scholar] [CrossRef] [PubMed]
- Dykstra, G.; Reynolds, B.; Smith, R.; Zhou, K.; Liu, Y. Electropolymerized molecularly imprinted polymer synthesis guided by an integrated data-driven framework for cortisol detection. ACS Appl. Mater. Interfaces 2022, 14, 25972–25983. [Google Scholar] [CrossRef] [PubMed]
- Paul, A.; Dhamu, V.N.; Muthukumar, S.; Prasad, S. E.P.A.S.S: Electroanalytical pillbox assessment sensor system, a case study using metformin hydrochloride. Anal. Chem. 2022, 94, 10617–10625. [Google Scholar] [CrossRef]
- Kalasin, S.; Sangnuang, P.; Surareungchai, W. Lab-on-Eyeglasses to monitor kidneys and strengthen vulnerable populations in pandemics: Machine learning in predicting serum creatinine using tear creatinine. Anal. Chem. 2021, 93, 10661–10671. [Google Scholar] [CrossRef]
- Wang, B.; Li, W.; Lu, Q.; Zhang, Y.; Yu, H.; Huang, L.; Wang, T.; Liang, X.; Liu, F.; Liu, F.; et al. Machine learning-assisted development of sensitive electrode materials for mixed potential-type NO2 gas sensors. ACS Appl. Mater. Interfaces 2021, 13, 50121–50131. [Google Scholar] [CrossRef]
Methods | Purpose |
---|---|
EDX (energy-dispersive X-ray spectroscopy) | Elemental composition |
XRD (X-ray powder diffraction) | Crystalline structure and phase information |
FT-IR | Confirming the existence of covalent bonds, and the recognition of functional groups |
SAED (selected area electron diffraction) | Crystal structure |
TEM | Morphology |
SEM | Surface properties and morphology |
UV-VIS | Confirming the existence of covalent bonds |
Cyclic voltammetry | Electrocatalytic activity |
XPS (X-ray photoelectron spectroscopy) | Surface chemical composition and the valence state of elements |
Nanozyme | Linear Range (mM) | LOD (μM) | Sensitivity (μA mM−1 cm−2) | RSD (%) | Stability (°C/day) | Potential(V) | Sample | Ref. |
---|---|---|---|---|---|---|---|---|
Cu/DCB | 0.5–7000 μM | 0.1 | 1595 | / | RT/30 D | 0.5 | serum | [87] |
GO-COOAu | 0.02–4.58 | 6 | 20.218 | 4.5 | 4/30 D | 0.35 | serum | [88] |
NiO | 0.0554–0.9 | 1 | a 12.5 | 1.5 | 20 D | 0.38 | / | [89] |
Co3O4 /graphene | 16 μm–1.3 | 0.5 | a 2477 | / | RT/60 | 0.58 | urine | [90] |
PDDA/CuO-C-dot | 0.5–2, 2–5 | 0.2 mM | 110, 63.3 | 2.6 | RT/12 | 0.5 | serum | [91] |
Ni3N NS/Ti | 0.2 μM–1.5 mM | 0.06 | 7688 | 4.7 | RT/30 | 0.55 | serum | [92] |
Ni(OH)2 nano and NiO nanorods | 0.1–156, 0.01–83 | 70 and 8.1 | 12.09, 24.0 | / | / | 0.52 | serum | [93] |
Au/Ni | 10 μM–20 | 5.84 | 0.96 μA/mM | CV = 2.93% | 18 D | 0.4 | human blood | [94] |
HNPG/AuSn | 2 μM–8.11 | 0.36 | 4374.6 | 3.9 | 4/42 D | 0.1 | serum | [95] |
Cu2O-Au NCMs | 5 μM–2.385 | 0.76 | a 1630 | / | / | 0.5 | orange juice | [96] |
ZnO NRs/Fe2O3 /nafion | a 5.56–22.2 mg/dL | 0.95 mM | a 0.00289 | / | / | 0.7 | / | [97] |
Bronze | 0–320 μM | 6.64 | 482 | 10% | RT/5 | 0.65 | saliva | [98] |
PANINS@rGO | 1–4000 μM | 0.03 | 3448.27 | 0.96 | / | / | / | [99] |
RGO-AuNCs@CuO | 0.1 μM–3 | 0.03 | / | 1.2–2.9 | 4/60 | 0.31 | serum | [100] |
NiCo/C | 0.5 μM–4.38 | 0.2 | 265.53 | 2.21–2.69 | 30 D | 0.5 | serum | [101] |
CC@CCH MOF LDH | 0.001–2 | 0.11 | 4310 | / | / | 0.55 | / | [102] |
NiCo NSs/GNR-GC | 5 μM–0.8, 1–10 | 0.6 | 344 | / | RT/21 | 0.6 | serum | [103] |
AuNPs/CuO NWs-MoS2 | 0.5 μM–5.67 | 0.5 | 872.71 | 4.71 | 24 D | 0.6 | serum | [104] |
Cu2O-Cu-Au | 0–4.5 | 1.71 | 1082 | / | 7 | 0.6 | serum | [105] |
Target | Natural Enzyme | Nanozyme | Stability (°C/Day) | Sample | Reference |
---|---|---|---|---|---|
Sulfur mustard (SM) | ChOx | PBNPs | RT/24 h | SM in aerosol phase | [106] |
Ethanol, methanol, and their mixtures | ADH/AOx | MWCNTs/AuNPs/PNR | / | Commercial alcoholic drink | [107] |
Organophosphorus insecticides, phenoxy-acid herbicides, and triazine herbicides | butyrylcholinesterase, alkaline phosphatase, and tyrosinase | Carbon black/PB NPs | / | Real-life river water | [108] |
Glucose | GOx | Reduced graphene | 4/7 | Serum | [109] |
Glucose | GOx | PB film | 4/30 | / | [110] |
Glucose | GOx | Cu Nanoflower | 37/14 | Rat skin of cervical dorsal | [111] |
Lactate | LOx | Pt/TiO2 | / | Serum | [112] |
Ethanol/Glucose | AOx/GOx | CF-H-Au | / | Grape must/wine | [113] |
Glucose | GOx | AuPtNP | 4/8 | Human sweat | [114] |
Lactate | LOx | Au-MWCNTs/polyMB | 4/30 | Artificial interstitial fluid/human serum | [115] |
Target | Nanozyme | Linear Range | LOD | Stability (°C/day) | Sample Type | Ref. |
---|---|---|---|---|---|---|
Arsenate | CoOOH nanoflakes | 0.1–200 ppb | 56.1 ppt | 4/30 | Pond slit/paddy soil | [116] |
Nitrite | His@AuNCs/RGO | 2.5–5700 uM | 0.7 uM | / | Sausage | [117] |
PC genes | superparamagnetic iron oxide particles | / | 50 copies | / | Patient urine and serum | [118] |
DNA methylation | MIO | / | 10% methylation | / | Colorectal cell line sample | [119] |
Superoxide | BC@DNA-Mn3(PO4)2 | 34.7 nM–7 uM | 5.87 nM | / | A549 cells human nonsmall lung cancer cell line | [120] |
Exosomes | Au-NPFe2O3NC | 103–107 exosomes/mL | 103 exosomes/mL | / | Placental choriocarcinoma cell culture media | [121] |
APOE4 | AuPd-PDA | 0.05–2000 ng mL−1 | 15.4 pg mL−1 | 4/7 | Goat serum | [122] |
Hepatitis B surface antigen | MoS2@Cu2O-Pt | 0.5 pg/mL–200 ng/mL | 0.15 pg/mL | 4/28 | Serum | [123] |
Sopamine | Co@NCNTs/NC | 30 nM–710 uM | 9 nM | RT/30 | Serum/artificial cerebrospinal fluid | [124] |
SAs | Cu-TCPP(Fe) | 1.186–28.051 ng/mL | 0.395 ng/mL | 4/15 | Real water | [125] |
DOPAC | ZIF-67/Cu0.76Co2.24O4 | 0.5–20 uM | 0.15 uM | / | Rats’ brain microdialysate | [126] |
miR-122 | PdNPs@Fe-MOFs | 0.01 fM–10 pM | 0.003 fM | / | Serum | [127] |
Uric acid | ZIF-L-Co-10 mg Cys | 200 nM–50 uM | 67 nM | 30 | Rat striatum | [128] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tong, L.; Wu, L.; Su, E.; Li, Y.; Gu, N. Recent Advances in the Application of Nanozymes in Amperometric Sensors: A Review. Chemosensors 2023, 11, 233. https://doi.org/10.3390/chemosensors11040233
Tong L, Wu L, Su E, Li Y, Gu N. Recent Advances in the Application of Nanozymes in Amperometric Sensors: A Review. Chemosensors. 2023; 11(4):233. https://doi.org/10.3390/chemosensors11040233
Chicago/Turabian StyleTong, Liu, Lina Wu, Enben Su, Yan Li, and Ning Gu. 2023. "Recent Advances in the Application of Nanozymes in Amperometric Sensors: A Review" Chemosensors 11, no. 4: 233. https://doi.org/10.3390/chemosensors11040233
APA StyleTong, L., Wu, L., Su, E., Li, Y., & Gu, N. (2023). Recent Advances in the Application of Nanozymes in Amperometric Sensors: A Review. Chemosensors, 11(4), 233. https://doi.org/10.3390/chemosensors11040233