A Novel Highly Sensitive Chemiluminescence Enzyme Immunoassay with Signal Enhancement Using Horseradish Peroxidase-Luminol-Hydrogen Peroxide Reaction for the Quantitation of Monoclonal Antibodies Used for Cancer Immunotherapy
Abstract
:1. Introduction
2. Experimental
2.1. Instruments
2.2. Materials
2.3. Buffer Solutions
2.4. Solutions of BEV and VEGF
2.5. Enhanced Chemiluminescence Solution
2.6. CLEIA Procedures and Data Analysis
3. Results and Discussion
3.1. Strategy for CLEIA Development
3.2. Description and Optimization of CLEIA
3.2.1. Chemiluminescence Reaction
3.2.2. Effect of Concentrations of Luminol, IMP and H2O2
3.2.3. Effect of pH and Organic Solvent Content in ECS
3.2.4. Effect of ECS Volume
3.2.5. Kinetic Profile of Enhanced CL Reaction
3.3. Validation of the CLEIA
3.3.1. Sensitivity and Working Range
3.3.2. Precision and Accuracy
3.3.3. Effect of Plasma Matrix
3.4. Comparison of the Proposed CLEIA with Previous ELISA
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rini, B. Future approaches in immunotherapy. Semin. Oncol. 2014, 41, S30–S40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kirkwood, J.M.; Butterfield, L.H.; Tarhini, A.A.; Zarour, H.; Kalinski, P.; Ferrone, S. Immunotherapy of cancer in 2012. CA Cancer J. Clin. 2012, 62, 309–335. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, S.H.; Freeman, G.J.; Dranoff, G.; Sharpe, A.H. Coinhibitory pathways in immunotherapy for cancer. Ann. Rev. Immunol. 2016, 34, 539–573. [Google Scholar] [CrossRef]
- Weiner, L.M.; Surana, R.; Wang, S. Monoclonal antibodies: Versatile platforms for cancer immunotherapy. Nat. Rev. Immunol. 2010, 10, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Clarke, J.M.; Hurwitz, H.I. Targeted inhibition of VEGF receptor 2: An update on ramucirumab. Expert Opin. Biol. Ther. 2013, 13, 1187–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Karlitepe, A.; Ozalp, O.; Biray, C. New approaches for cancer immunotherapy. Tumour Biol. 2015, 36, 4075–4078. [Google Scholar] [CrossRef]
- Lobo, E.D.; Hansen, R.J.; Balthasar, J.P. Antibody pharmacokinetics and pharmacodynamics. J. Pharm. Sci. 2004, 93, 2645–2668. [Google Scholar] [CrossRef]
- Guilleminault, L.; Lemarié, E.; Heuzé-Vourc’h, N. Monoclonal antibodies: An emerging class of therapeutics in non small cell lung cancer. J. Cancer Ther. 2012, 3, 1170–1190. [Google Scholar] [CrossRef] [Green Version]
- Brennan, F.R.; Morton, L.D.; Spindeldreher, S.; Ki-essling, A.; Allenspach, R.; Hey, A.; Muller, P.Y.; Frings, W.; Sims, J. Safety and immunotoxicity assessment of immunomodulatory monoclonal antibodies. MAbs 2010, 2, 233–255. [Google Scholar] [CrossRef] [Green Version]
- Hansel, T.T.; Kropshofer, H.; Singer, T.; Mitchell, J.A.; George, A.J.T. The safety and side effects of monoclonal antibodies. Nat. Rev. Drug Discov. 2010, 9, 325–338. [Google Scholar] [CrossRef]
- Helissey, C.; Vicier, C.; Champiat, S. The development of immunotherapy in older adults: New treatments, new toxicities? J. Geriatr. Oncol. 2016, 7, 325–333. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Wang, E.Q.; Balthasar, J.P. Monoclonal antibody pharmacokinetics and pharmacodynamics. Clin. Pharmacol. Ther. 2008, 84, 548–558. [Google Scholar] [CrossRef]
- Suzuki, T.; Ishii-Watabe, A.; Tada, M.; Kobayashi, T.; Kanayasu-Toyoda, T.; Kawanishi, T.; Yamaguchi, T. Importance of neonatal FcR in regulating the serum half-life of therapeutic proteins containing the Fc domain of human IgG1: A comparative study of the affinity of monoclonal antibodies and Fc fusion proteins to human neonatal FcR. J. Immunol. 2010, 184, 1968–1976. [Google Scholar] [CrossRef] [Green Version]
- Ng, C.M.; Stefanich, E.; Anand, B.S.; Fielder, P.J.; Vaickus, L. Pharmacokinetics/pharmacodynamics of nondepleting anti-CD4 monoclonal antibody (TRX1) in healthy human volunteers. Pharm. Res. 2006, 23, 95–103. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, N.; Tsukamoto, Y.; Sallas, W.M.; Lowe, P.J. A mechanism-based binding model for the population pharmacokinetics and pharmacodynamics of omalizumab. Br. J. Clin. Pharmacol. 2007, 63, 548–561. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Abuqayyas, L.; Dai, L.; Balthasar, J.P.; Qu, J. High-throughput method development for sensitive, accurate, and reproducible quantification of therapeutic monoclonal antibodies in tissues using orthogonal array optimization and nano liquid chromatography/selected reaction monitoring mass spectrometry. Anal. Chem. 2012, 84, 4373–4382. [Google Scholar] [CrossRef] [Green Version]
- Bronsema, K.J.; Bischoff, R.; Pijnappel, W.W.M.P.; van der Ploeg, A.T.; van de Merbel, N.C. Absolute quantification of the total and antidrug antibody-bound concentrations of recombinant human α-glucosidase in human plasma using protein G extraction and LC-MS/MS. Anal. Chem. 2015, 87, 4394–4401. [Google Scholar] [CrossRef] [PubMed]
- An, B.; Zhang, M.; Johnson, R.W.; Qu, J. Surfactant-aided precipitation/on-pellet-digestion (sod) procedure provides robust and rapid sample preparation for reproducible, accurate and sensitive LC/MS quantification of therapeutic protein in plasma and tissues. Anal. Chem. 2015, 87, 4023–4029. [Google Scholar] [CrossRef]
- Shen, Y.; Zhang, G.; Yang, J.; Qiu, Y.; McCauley, T.; Pan, L.; Wu, J. Online 2D-LC-MS/MS assay to quantify therapeutic protein in human serum in the presence of pre-existing antidrug antibodies. Anal. Chem. 2015, 87, 8555–8563. [Google Scholar] [CrossRef] [PubMed]
- Wegler, C.; Gaugaz, F.Z.; Andersson, T.B.; Wiśniewski, J.R.; Busch, D.; Gröer, C.; Oswald, S.; Norén, A.; Weiss, F.; Hammer, H.S.; et al. Variability in mass spectrometry-based quantification of clinically relevant drug transporters and drug metabolizing enzymes. Mol. Pharm. 2017, 14, 3142–3151. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Damen, C.W.; Derissen, E.J.; Schellens, J.H.; Rosing, H.; Beijnen, J.H. The bioanalysis of the monoclonal antibody trastuzumab by high-performance liquid chromatography with fluorescence detection after immuno-affinity purification from human serum. J. Pharm. Biomed. Anal. 2009, 50, 861–866. [Google Scholar] [CrossRef] [PubMed]
- Todoroki, K.; Nakano, T.; Eda, Y.; Ohyama, K.; Hayashi, H.; Tsuji, D.; Min, J.Z.; Inoue, K.; Iwamoto, N.; Kawakami, A.; et al. Bioanalysis of bevacizumab and infliximab by high-temperature reversed-phase liquid chromatography with fluorescence detection after immunoaffinity magnetic purification. Anal. Chim. Acta 2016, 916, 112–119. [Google Scholar] [CrossRef] [PubMed]
- Darwish, I.A. Immunoassay methods and their applications in pharmaceutical analysis: Basic methodology and recent advances. Int. J. Biomed. Sci. 2006, 2, 217–235. [Google Scholar]
- Beer, P.M.; Wong, S.J.; Hammad, A.M.; Falk, N.S.; O’Malley, M.R.; Khan, S. Vitreous levels of unbound bevacizumab and unbound vascular endothelial growth factor in two patients. Retina 2006, 26, 871–876. [Google Scholar] [CrossRef]
- AlRabiaha, H.; Hamidaddin, M.A.; Darwish, I.A. Automated flow fluorescent noncompetitive immunoassay for measurement of human plasma levels of monoclonal antibodies used for immunotherapy of cancers with KinExA™ 3200 biosensor. Talanta 2019, 192, 331–338. [Google Scholar] [CrossRef]
- Somru BioScience Inc. Cetuximab (Erbitux®) PK ELISA, Catalog SBA-100-007-015. Available online: http://www.deltaclon.com/pdf/somru/SBA-100-007-015.pdf (accessed on 24 February 2023).
- Darwish, I.A.; Al-Shehri, M.M.; El-Gendy, M.A. Development of new ELISA with high sensitivity and selectivity for bioanalysis of bevacizumab: A monoclonal antibody used for cancer immunotherapy. Curr. Anal. Chem. 2018, 14, 174–181. [Google Scholar] [CrossRef]
- Al-Shehri, M.M.; El-Gendy, M.A.; Darwish, I.A. Development of specific new ELISA for bioanalysis of cetuximab: A monoclonal antibody used for cancer immunotherapy. Curr. Pharm. Anal. 2018, 14, 519–525. [Google Scholar] [CrossRef]
- Suárez, I.; Salmerón-García, A.; Cabeza, J.; Capitán-Vallvey, L.F.; Navas, N. Development and use of specific ELISA methods for quantifying the biological activity of bevacizumab, cetuximab and trastuzumab in stability studies. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2016, 1032, 155–164. [Google Scholar] [CrossRef]
- Abcam Plc. Infliximab ELISA Kit, Catalog ab237647. Available online: https://www.abcam.com/infliximab-elisa-kit-ab237647.html (accessed on 15 December 2022).
- Cézé, N.; Ternant, D.; Piller, F.; Degenne, D.; Azzopardi, N.; Dorval, E.; Watier, H.; Lecomte, T.; Paintaud, G. An enzyme-linked immunosorbent assay for therapeutic drug monitoring of cetuximab. Ther. Drug Monit. 2009, 31, 597–601. [Google Scholar] [CrossRef]
- Noda, K.; Matsuda, K.; Yagishita, S.; Maeda, K.; Akiyama, Y.; Terada-Hirashima, J.; Matsushita, H.; Iwata, S.; Yamashita, K.; Atarashi, Y.; et al. A novel highly quantitative and reproducible assay for the detection of anti-SARS-CoV-2 IgG and IgM antibodies. Sci. Rep. 2021, 11, 5198. [Google Scholar] [CrossRef] [PubMed]
- Cinquanta, L.; Fontana, D.E.; Bizzaro, N. Chemiluminescent immunoassay technology: What does it change in autoantibody detection? Autoimmun. Highlights 2017, 8, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Cai, H.H.; Chen, X. Monoclonal antibodies for cancer therapy approved by FDA. MOJ Immunol. 2016, 4, 11–12. [Google Scholar] [CrossRef] [Green Version]
- Carter, P.J.; Presta, L.G. Humanized Antibodies and Methods for Making Them. U.S. Patent 6,054,297, 25 April 2000. Available online: https://www.fda.gov/ohrms/dockets/dailys/04/sep04/090304/04e-0402-app0001-01-vol1.pdf (accessed on 25 February 2023).
- Generics and Biosimilars Initiative, Building Trust in Cost-Effective Treatments. Available online: http://gabionline.net/Biosimilars/General/Biosimilars-of-cetuximab (accessed on 25 February 2023).
- Collin, M. Immune checkpoint inhibitors: The battle of giants. Pharm. Pat. Anal. 2017, 6, 137–139. [Google Scholar] [CrossRef] [PubMed]
- Genentech, Inc. About Avastin: Proposed Mechanism of Action. Available online: https://www.avastin-hcp.com/about-avastin/proposed-moa.html (accessed on 25 February 2023).
- Dudal, S.; Baltrukonis, D.; Crisino, R.; Goyal, M.J.; Joyce, A.; Österlund, K.; Smeraglia, J.; Taniguchi, Y.; Yang, J. Assay formats: Recommendation for best practices and harmonization from the global bioanalysis consortium harmonization team. AAPS J. 2014, 16, 194–205. [Google Scholar] [CrossRef] [Green Version]
- Chen, G.; Jin, M.; Du, P.; Zhang, C.; Cui, X.; Zhang, X.; Wang, J.; Jin, F.; She, Y.; Shao, H.; et al. A review of enhancers for chemiluminescence enzyme immunoassay. Food Agric. Immunol. 2017, 28, 315–327. [Google Scholar] [CrossRef] [Green Version]
- Karatani, H. Luminol–hydrogen peroxide–horseradish peroxidase chemiluminescence intensification by kosmotrope ammonium sulfate. Anal. Sci. 2022, 38, 613–621. [Google Scholar] [CrossRef]
- Yang, L.; Jin, M.; Du, P.; Chen, G.; Zhang, C.; Wang, J.; Jin, F.; Shao, H.; She, Y.; Wang, S.; et al. Study on enhancement principle and stabilization for the luminol-H2O2-HRP chemiluminescence system. PLoS ONE 2015, 10, e0131193. [Google Scholar] [CrossRef]
- Dong, B.; Fan, Q.; Li, M.; Huan, Y.; Feng, G.; Shan, H.; Fei, Q. Determination of tyrosine by sodium fluorescein-enhanced ABEI–H2O2–horseradish peroxidase chemiluminescence. J. Anal. Sci. Technol. 2021, 21, 16. [Google Scholar] [CrossRef]
- Dotsikas, Y.; Loukas, Y.L. Employment of 4-(1-imidazolyl)phenol as a luminol signal enhancer in a competitive-type chemiluminescence immunoassay and its comparison with the conventional antigen–horseradish peroxidase conjugate-based assay. Anal. Chim. Acta 2004, 509, 103–109. [Google Scholar] [CrossRef]
- Dotsikas, Y.; Yannis, L.L. Effect of the luminol signal enhancer selection on the curve parameters of an immunoassay and the chemiluminescence intensity and kinetics. Talanta 2007, 71, 906–910. [Google Scholar] [CrossRef]
- García Campaña, A.M.; Baeyens, W.R.G. Chemiluminescence in Analytical Chemistry; Marcel Dekker: New York, NY, USA, 2001; p. 177. [Google Scholar]
- The International Council for Harmonization (ICH). Q2(R1) on Validation of Analytical Procedure; ICH: Geneva, Switzerland, 2022. [Google Scholar]
- Bender, J.L.; Adamson, P.C.; Reid, J.M.; Xu, L.; Baruchel, S.; Shaked, Y.; Kerbel, R.S.; Cooney-Qualter, E.M.; Stempak, D.; Chen, H.X.; et al. Phase I trial and pharmacokinetic study of bevacizumab in pediatric patients with refractory solid tumors: A children’s oncology group study. J. Clin. Oncol. 2008, 26, 399–405. [Google Scholar] [CrossRef] [PubMed]
- Findlay, J.W.; Smith, W.C.; Lee, J.W.; Nordblom, G.D.; Das, I.; DeSilva, B.S.; Khan, M.N.; Bowsher, R.R. Validation of immunoassays for bioanalysis: A pharmaceutical industry perspective. J. Pharm. Biomed. Anal. 2000, 21, 1249–1273. [Google Scholar] [CrossRef] [PubMed]
Parameter/Condition | Optimum Value |
---|---|
Antigen protein | VEGF |
Antigen concentration (μg mL−1) | 1 |
Coating time (h)/temperature (°C) | 0.5/37 |
Blocking with BSA: time (h)/temperature (°C) | 0.5/37 |
Binding of mAb: time (h)/temperature (°C) | 0.5/37 |
Enzyme-IgG conjugate | HRP-IgG |
Dilution of HRP-IgG (fold) | 5000 |
Binding of HRP-IgG: time (h)/temperature (°C) | 0.5/25 |
pH of Buffer Solution | pH of ECS Solutions |
---|---|
6 | 6 |
6.5 | 6.5 |
7 | 7 |
7.6 | 7.6 |
8 | 8 |
8.5 | 8.5 |
9 | 9 |
9.5 | 9.5 |
10 | 10 |
10.6 | 10.6 |
11 | 11 |
Parameter/Condition | Optimum Value |
---|---|
Luminol concentration (mM) | 0.1 |
H2O2 concentration (mM) | 2 |
IMP concentration (mM) | 0.2 |
pH of ECS (pH unit) | 8.5 |
Concentration of DMF in ECS (%, v/v) | 2 |
Volume of ECS (µL/well) | 200 |
CL development time (s) | 60 |
CL measurement wavelength (nm) | 425 |
Parameter | Value |
---|---|
Working range (pg mL−1) | 10–400 |
Intercept | 28.4 |
Standard deviation of intercept | 14.68 |
Slope | 5.2 |
Standard deviation of slope | 1.4 |
Correlation coefficient (r) | 0.9982 |
LOD (pg mL−1) | 9.3 |
LOQ (pg mL−1) | 28.2 |
Intra-Assay Precision | Inter-Assay Precision | ||||
---|---|---|---|---|---|
Spiked Concentration (pg mL−1) | Measured Concentration (pg mL−1) | Recovery (% ± RSD) | Spiked Concentration (pg mL−1) | Measured Concentration (pg mL−1) | Recovery (% ± RSD) |
25 | 25.9 | 103.5 ± 5.2 | 25 | 26.4 | 105.4 ± 6.1 |
50 | 50.9 | 101.8 ± 3.8 | 50 | 48.4 | 96.8 ± 5.7 |
100 | 97.6 | 97.6 ± 3.4 | 100 | 95.7 | 95.7 ± 4.8 |
200 | 192.4 | 96.2 ± 3.5 | 200 | 209.6 | 104.8 ± 4.2 |
300 | 313.2 | 104.4 ± 4.9 | 300 | 318.6 | 106.2 ± 5.4 |
Mean | 100.7 ± 3.6 | Mean | 101.8 ± 5.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Darwish, I.A.; Alzoman, N.Z.; Khalil, N.N. A Novel Highly Sensitive Chemiluminescence Enzyme Immunoassay with Signal Enhancement Using Horseradish Peroxidase-Luminol-Hydrogen Peroxide Reaction for the Quantitation of Monoclonal Antibodies Used for Cancer Immunotherapy. Chemosensors 2023, 11, 245. https://doi.org/10.3390/chemosensors11040245
Darwish IA, Alzoman NZ, Khalil NN. A Novel Highly Sensitive Chemiluminescence Enzyme Immunoassay with Signal Enhancement Using Horseradish Peroxidase-Luminol-Hydrogen Peroxide Reaction for the Quantitation of Monoclonal Antibodies Used for Cancer Immunotherapy. Chemosensors. 2023; 11(4):245. https://doi.org/10.3390/chemosensors11040245
Chicago/Turabian StyleDarwish, Ibrahim A., Nourah Z. Alzoman, and Nehal N. Khalil. 2023. "A Novel Highly Sensitive Chemiluminescence Enzyme Immunoassay with Signal Enhancement Using Horseradish Peroxidase-Luminol-Hydrogen Peroxide Reaction for the Quantitation of Monoclonal Antibodies Used for Cancer Immunotherapy" Chemosensors 11, no. 4: 245. https://doi.org/10.3390/chemosensors11040245
APA StyleDarwish, I. A., Alzoman, N. Z., & Khalil, N. N. (2023). A Novel Highly Sensitive Chemiluminescence Enzyme Immunoassay with Signal Enhancement Using Horseradish Peroxidase-Luminol-Hydrogen Peroxide Reaction for the Quantitation of Monoclonal Antibodies Used for Cancer Immunotherapy. Chemosensors, 11(4), 245. https://doi.org/10.3390/chemosensors11040245