Recent Progress of Electrochemical Sensors in Food Analysis
Abstract
:1. Introduction
2. Electrode Material
2.1. Metal Nanoparticles/Metal Oxides
2.2. Conducting Polymer
2.3. Carbon-Based Material
2.4. Metal-Organic Framework and Its Composite Materials
3. Application of Electrochemical Sensors in Food Safety
3.1. Food Additives
3.2. Pesticide Residue
3.3. Veterinary Drugs Residue
3.4. Heavy Metal
3.5. Mycotoxins
3.6. Others
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Seo, I.; Shin, H.-S. Determination of toluene and other residual solvents in various food packaging materials by gas chromatography/mass spectrometry (GC/MS). Food Sci. Biotechnol. 2010, 19, 1429–1434. [Google Scholar] [CrossRef]
- Nomura, A.; Watanabe, K.; Kobayashi, M.; Nishine, T.; Hamada, N.; Hayakawa, Y.; Mikami, H. Rapid analysis of aflatoxins in food samples using ultra high performance liquid chromatography with fluorescence detection. Shimadzu Rev. 2012, 69, 149–157. [Google Scholar]
- Wu, B.; Wang, L.; Wu, H.; Kan, K.; Zhang, G.; Xie, Y.; Tian, Y.; Li, L.; Shi, K. Templated synthesis of 3D hierarchical porous Co3O4 materials and their NH3 sensor at room temperature. Microporous Mesoporous Mater. 2016, 225, 154–163. [Google Scholar] [CrossRef]
- Miyazaki, C.M.; Pereira, T.P.; Tavares Mascagni, D.B.; de Moraes, M.L.; Ferreira, M. Monoamine oxidase B layer-by-layer film fabrication and characterization toward dopamine detection. Mater. Sci. Eng. C Mater. Biol. Appl. 2016, 58, 310–315. [Google Scholar] [CrossRef]
- Chen, X.; Wu, G.; Cai, Z.; Oyama, M.; Chen, X. Advances in enzyme-free electrochemical sensors for hydrogen peroxide, glucose, and uric acid. Microchim. Acta 2014, 181, 689–705. [Google Scholar] [CrossRef]
- Kim, J.H.; Shin, D.; Lee, J.; Baek, D.S.; Shin, T.J.; Kim, Y.T.; Jeong, H.Y.; Kwak, J.H.; Kim, H.; Joo, S.H. A general strategy to atomically dispersed precious metal catalysts for unravelling their catalytic trends for oxygen reduction reaction. ACS Nano 2020, 14, 1990–2001. [Google Scholar] [CrossRef]
- Zeng, J.; Hu, M.; Wang, W.; Chen, H.; Qin, Y. NO2-sensing properties of porous WO3 gas sensor based on anodized sputtered tungsten thin film. Sens. Actuators B Chem. 2012, 161, 447–452. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Sohrabi, M.; Jafari-Asl, M.; Rezaei, B. Selective and sensitive furazolidone biosensor based on DNA-modified TiO2-reduced graphene oxide. Appl. Surf. Sci. 2015, 356, 301–307. [Google Scholar] [CrossRef]
- Chakraborty, P.; Dhar, S.; Deka, N.; Debnath, K.; Mondal, S.P. Non-enzymatic salivary glucose detection using porous CuO nanostructures. Sens. Actuators B Chem. 2020, 302, 127134. [Google Scholar] [CrossRef]
- Wang, M.; Sun, Y.; Yang, X.; Zhao, J. Sensitive determination of Amaranth in drinks by highly dispersed CNT in graphene oxide “water” with the aid of small amounts of ionic liquid. Food Chem. 2015, 179, 318–324. [Google Scholar] [CrossRef]
- Zhang, L.; Critzer, F.; Davidson, P.M.; Zhong, Q. Formulating essential oil microemulsions as washing solutions for organic fresh produce production. Food Chem. 2014, 165, 113–118. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Shi, M.; Yue, X.; Qu, L. A novel and sensitive hexadecyltrimethyl ammonium bromide functionalized graphene supported platinum nanoparticles composite modified glassy carbon electrode for determination of sunset yellow in soft drinks. Sens. Actuators B Chem. 2015, 209, 1–8. [Google Scholar] [CrossRef]
- Wang, C.; Meng, M.X.; Tang, X.L.; Chen, K.M.; Zhang, L.; Liu, W.N.; Zhao, Y.Y. The proliferation, differentiation, and mineralization effects of puerarin on osteoblasts in vitro. Chin. J. Nat. Med. 2014, 12, 436–442. [Google Scholar] [CrossRef] [PubMed]
- Han, S. Determination of puerarin by capillary electrophoresis with chemiluminescence detection. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2009, 877, 1591–1594. [Google Scholar] [CrossRef]
- Zhang, C.; Li, L.; Hou, L.; Chen, W. Fabrication of Co3O4 nanowires assembled on the surface of hollow carbon spheres for acetone gas sensing. Sens. Actuators B Chem. 2019, 291, 130–140. [Google Scholar] [CrossRef]
- Das, R.K.; Golder, A.K. Co3O4 spinel nanoparticles decorated graphite electrode: Bio-mediated synthesis and electrochemical H2O2 sensing. Electrochim. Acta 2017, 251, 415–426. [Google Scholar] [CrossRef]
- TAdhikari, A.; De, S.; Rana, D.; Chattopadhyay, D. Selective sensing of dopamine by sodium cholate tailored polypyrrole-silver nanocomposite. Synth. Met. 2020, 260, 116296. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Z.; Qiao, J.; Dong, S.; Liang, Q.; Shao, S. Ultrasensitive determination of nitrite based on electrochemical platform of AuNPs deposited on PDDA-modified MXene nanosheets. Talanta 2021, 221, 121605. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, K.P.; Zhang, L.N.; Zhang, Y.C.; Shen, L. Phosphorus-doped graphene-based electrochemical sensor for sensitive detection of acetaminophen. Anal. Chim. Acta 2018, 1036, 26–32. [Google Scholar] [CrossRef]
- Zhu, M.; Ye, H.; Lai, M.; Ye, J.; Li, R.; Zhang, W.; Liang, H.; Zhu, R.; Fan, H.; Chen, S. The gold nanoparticle sensitized pRGO-MWCNTs grid modified carbon fiber microelectrode as an efficient sensor system for simultaneous detection of three dihydroxybenzoic acid isomers. Electrochim. Acta 2019, 322, 134765. [Google Scholar] [CrossRef]
- Deng, H.; Grunder, S.; Cordova, K.E.; Valente, C.; Furukawa, H.; Hmadeh, M.; Gandara, F.; Whalley, A.C.; Liu, Z.; Asahina, S. Large-pore apertures in a series of metal-organic frameworks. Science 2012, 336, 1018–1023. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Eddaoudi, M.; O’Keeffe, M.; Yaghi, O.M. Design and synthesis of an exceptionally stable and highly porous metal-organic framework. Nature 1999, 402, 276–279. [Google Scholar] [CrossRef]
- Wu, X.Q.; Feng, P.Q.; Guo, Z.; Wei, X. Water-sTable 1D double-chain Cu metal-organic framework-based electrochemical biosensor for detecting L-tyrosine. Langmuir 2020, 36, 14123–14129. [Google Scholar] [CrossRef]
- Gao, F.; Zou, J.; Zhong, W.; Tu, X.; Huang, X.; Yu, Y.; Wang, X.; Lu, L.; Bai, L. Prussian blue-carboxylated MWCNTs/ZIF-67 composite: A new electrochemical sensing platform for paracetamol detection with high sensitivity. Nanotechnology 2021, 32, 085501. [Google Scholar] [CrossRef]
- Zeng, Z.; Fang, X.; Miao, W.; Liu, Y.; Maiyalagan, T.; Mao, S. Electrochemically sensing of trichloroacetic acid with Iron(II) phthalocyanine and Zn-based metal organic framework nanocomposites. ACS Sens. 2019, 4, 1934–1942. [Google Scholar] [CrossRef] [PubMed]
- Yadav, M.; Ganesan, V.; Gupta, R.; Yadav, D.K.; Sonkar, P.K. Cobalt oxide nanocrystals anchored on graphene sheets for electrochemical determination of chloramphenicol. Microchem. J. 2019, 146, 881–887. [Google Scholar] [CrossRef]
- Gao, C.; Zhang, W.; Li, H.; Lang, L.; Xu, Z. Controllable fabrication of mesoporous MgO with various morphologies and their absorption performance for toxic pollutants in water. Cryst. Growth Des. 2008, 8, 3785–3790. [Google Scholar] [CrossRef]
- Hu, L.; Fong, C.C.; Zhang, X.; Chan, L.L.; Lam, P.K.S.; Chu, P.K.; Wong, K.Y.; Yang, M. Au nanoparticles decorated TiO2 nanotube arrays as a recyclable sensor for photoenhanced electrochemical detection of bisphenol A. Environ. Sci. Technol. 2016, 50, 4430–4438. [Google Scholar] [CrossRef]
- Huang, K.J.; Wang, L.; Li, J.; Yu, M.; Liu, Y.M. Electrochemical sensing of catechol using a glassy carbon electrode modified with a composite made from silver nanoparticles, polydopamine, and graphene. Microchim. Acta 2013, 180, 751–757. [Google Scholar] [CrossRef]
- Dong, J.; Tian, T.; Ren, L.; Zhang, Y.; Xu, J.; Cheng, X. CuO nanoparticles incorporated in hierarchical MFI zeolite as highly active electrocatalyst for non-enzymatic glucose sensing. Colloids Surf. B Biointerfaces 2015, 125, 206–212. [Google Scholar] [CrossRef]
- Demirkan, B.; Bozkurt, S.; Cellat, K.; Arıkan, K.; Yılmaz, M.; Şavk, A.; Çalımlı, M.H.; Nas, M.S.; Atalar, M.N.; Alma, M.H.; et al. Palladium supported on polypyrrole/reduced graphene oxidenanoparticles for simultaneous biosensing application of ascorbic acid, dopamine, anduric acid. Sci. Rep. 2020, 10, 2946. [Google Scholar] [CrossRef] [PubMed]
- Ramya, R.; Muthukumaran, P.; Wilson, J. Electron beam-irradiated polypyrrole decorated with Bovine serum albumin pores: Simultaneous determination of epinephrine and L-tyrosine. Biosens. Bioelectron. 2018, 108, 53–61. [Google Scholar] [CrossRef]
- Mahmoudian, M.R.; Basirun, W.J.; Sookhakian, M.; Woi, P.M.; Zalnezhad, E.; Hazarkhani, H.; Alias, Y. Synthesis and characterization of α-Fe2O3/polyaniline nanotube composite as electrochemical sensor for uric acid detection. Adv. Powder Technol. 2019, 30, 384–392. [Google Scholar] [CrossRef]
- Shalini, A.; Paulraj, P.; Pandian, K.; Anbalagan, G.; Jaisankar, V. Single pot synthesis, characterization of PPy@C composites modified electrode for the electrocatalytic determination of ascorbic acid in commercial fruit samples. Surf. Interfaces 2019, 17, 100386. [Google Scholar] [CrossRef]
- Lete, C.; Marin, M.; Anghel, E.M.; Preda, L.; Matei, C.; Lupu, S. Sinusoidal voltage electrodeposition of PEDOT-Prussian blue nanoparticles composite and its application to amperometric sensing of H2O2 in human blood. Mater. Sci. Eng. C 2019, 102, 661–669. [Google Scholar] [CrossRef] [PubMed]
- Kirchner, E.M.; Hirsch, T. Recent developments in carbon-based two-dimensional materials: Synthesis and modification aspects for electrochemical sensors. Microchim. Acta 2020, 187, 441. [Google Scholar] [CrossRef]
- Zhou, S.F.; Han, X.J.; Fan, H.L.; Huang, J.; Liu, Y.Q. Enhanced electrochemical performance for sensing Pb(II) based on graphene oxide incorporated mesoporous MnFe2O4 nanocomposites. J. Alloys Compd. 2018, 747, 447–454. [Google Scholar] [CrossRef]
- Govindasamy, M.; Chen, S.M.; Mani, V.; Devasenathipathy, R.; Umamaheswari, R.; Joseph Santhanaraj, K.; Sathiyan, A. Molybdenum disulfide nanosheets coated multiwalled carbon nanotubes composite for highly sensitive determination of chloramphenicol in food samples milk, honey and powdered milk. J. Colloid Interface Sci. 2017, 485, 129–136. [Google Scholar] [CrossRef]
- Deiminiat, B.; Rounaghi, G.H. Fabrication of a new electrochemical imprinted sensor for determination of ketamine based on modified polytyramine/sol-gel/f-MWCNTs@AuNPs nanocomposite/pencil graphite electrode. Sens. Actuators B Chem. 2018, 259, 133–141. [Google Scholar] [CrossRef]
- Ma, X.; Chen, M. Electrochemical sensor based on graphene doped gold nanoparticles modified electrode for detection of diethylstilboestrol. Sens. Actuators B Chem. 2015, 215, 445–450. [Google Scholar] [CrossRef]
- Hira, S.A.; Nallal, M.; Rajendran, K.; Song, S.; Park, S.; Lee, J.-M.; Joo, S.H.; Park, K.H. Ultrasensitive detection of hydrogen peroxide and dopamine using copolymer-grafted metal-organic framework based electrochemical sensor. Anal. Chim. Acta 2020, 1118, 26–35. [Google Scholar] [CrossRef]
- Zhang, Z.; Ji, H.; Song, Y.; Zhang, S.; Wang, M.; Jia, C.; Tian, J.Y.; He, L.; Zhang, X.; Liu, C.S. Fe(III)-based metal-organic framework-derived core-shell nanostructure: Sensitive electrochemical platform for high trace determination of heavy metal ions. Biosens. Bioelectron. 2017, 94, 358–364. [Google Scholar] [CrossRef]
- Pereira da Silva, C.T.; Veregue, F.R.; Aguiar, L.W.; Meneguin, J.G.; Moises, M.P.; Favaro, S.L.; Radovanovic, E.; Girotto, E.M.; Rinaldi, A.W. AuNp@MOF composite as electrochemical material for determination of bisphenol A and its oxidation behavior study. N. J. Chem. 2016, 40, 8872–8877. [Google Scholar] [CrossRef]
- Hatamluyi, B.; Rezayi, M.; Beheshti, H.R.; Boroushaki, M.T. Ultra-sensitive molecularly imprinted electrochemical sensor for patulin detection based on a novel assembling strategy using Au@Cu-MOF/N-GQDs. Sens. Actuators B Chem. 2020, 318, 128219. [Google Scholar] [CrossRef]
- Jahangiri-Dehaghani, F.; Zare, H.R.; Shekari, Z. Measurement of aflatoxin M1 in powder and pasteurized milk samples by using a label–free electrochemical aptasensor based on platinum nanoparticles loaded on Fe-based metal-organic frameworks. Food Chem. 2020, 310, 125820. [Google Scholar] [CrossRef]
- Chanlon, S.; Joly-Pottuz, L.; Chatelut, M.; Vittori, O.; Cretier, J.L. Determination of carmoisine, allura red and ponceau 4R in sweets and soft drinks by differential pulse polarography. J. Food Compos. Anal. 2005, 18, 503–515. [Google Scholar] [CrossRef]
- Tsai, C.F.; Kuo, C.H.; Shih, D.Y.C. Determination of 20 synthetic dyes in chili powders and syrup-preserved fruits by liquid chromatography/tandem mass spectrometry. J. Food Drug Anal. 2015, 23, 453–462. [Google Scholar] [CrossRef] [PubMed]
- El-Shahawi, M.S.; Hamza, A.; Al-Sibaai, A.A.; Bashammakh, A.S.; Al-Saidi, H.M. A new method for analysis of sunset yellow in food samples based on cloud point extraction prior to spectrophotometric determination. J. Ind. Eng. Chem. 2013, 19, 529–535. [Google Scholar] [CrossRef]
- He, B.; Yan, D. Au/ERGO nanoparticles supported on Cu-based metal-organic framework as a novel sensor for sensitive determination of nitrite. Food Control 2019, 103, 70–77. [Google Scholar] [CrossRef]
- Wang, L.; Yang, R.; Li, J.; Qu, L.; Harrington, P.d.B. High-sensitive electrochemical sensor of Sudan I based on template-directed self-assembly of graphene-ZnSe quantum dots hybrid structure. Sens. Actuators B Chem. 2015, 215, 181–187. [Google Scholar] [CrossRef]
- Liu, R.; Zhang, C.J.; Han, X.; Wu, T.H.; Liu, R.J.; Sun, Y.; Jin, S. MnO2/graphene supported on Ni foam: An advanced electrode for electrochemical detection of Pb(II). Carbon Lett. 2023, 33, 691–698. [Google Scholar] [CrossRef]
- Erady, V.; Mascarenhas, R.J.; Satpati, A.K.; Bhakta, A.K.; Mekhalif, Z.; Delhalle, J.; Dhason, A. Carbon paste modified with Bi decorated multi-walled carbon nanotubes and CTAB as a sensitive voltammetric sensor for the detection of Caffeic acid. Microchem. J. 2019, 146, 73–82. [Google Scholar] [CrossRef]
- Wang, M.; Gao, Y.; Sun, Q.; Zhao, J. Ultrasensitive and simultaneous determination of the isomers of Amaranth and Ponceau 4R in foods based on new carbon nanotube/polypyrrole composites. Food Chem. 2015, 172, 873–879. [Google Scholar] [CrossRef]
- Lu, X.; Tao, L.; Li, Y.; Huang, H.; Gao, F. A highly sensitive electrochemical platform based on the bimetallic Pd@Au nanowires network for organophosphorus pesticides detection. Sens. Actuators B Chem. 2019, 284, 103–109. [Google Scholar] [CrossRef]
- Song, D.; Wang, Y.; Lu, X.; Gao, Y.; Li, Y.; Gao, F. Ag nanoparticles-decorated nitrogen-fluorine co-doped monolayer MoS2 nanosheet for highly sensitive electrochemical sensing of organophosphorus pesticides. Sens. Actuators B Chem. 2018, 267, 5–13. [Google Scholar] [CrossRef]
- Duan, D.; Ye, J.; Li, K. Ni-Co-LDH and Zn-Co Prussian blue analogue derived hierarchical NiCo2O4@ZnO/ZnCo2O4 microspheres with enhanced electrochemical sensing performance towards pentachloronitrobenzene. Sens. Actuators B-Chem. 2021, 344, 130222. [Google Scholar] [CrossRef]
- Dong, Y.; Yang, L.; Zhang, L. Simultaneous electrochemical detection of benzimidazole fungicides carbendazim and thiabendazole using a novel nanohybrid material-modified electrode. J. Agric. Food Chem. 2017, 65, 727–736. [Google Scholar] [CrossRef]
- Zhou, J.W.; Zou, X.M.; Song, S.H.; Chen, G.H. Quantum dots applied to methodology on detection of pesticide and veterinary drug residues. J. Agric. Food Chem. 2018, 66, 1307–1319. [Google Scholar] [CrossRef]
- Wang, B.; Xie, K.; Lee, K. Veterinary drug residues in animal-derived foods: Sample preparation and analytical methods. Foods 2021, 10, 555. [Google Scholar] [CrossRef]
- Dao, A.Q.; Nhi, L.T.T.; Nguyen, D.M.; Toan, T.T.T. A review on the determination of veterinary drug residues in food products. Biomed. Chromatogr. 2022, 36, e5364. [Google Scholar] [CrossRef]
- Deroco, P.B.; Rocha-Filho, R.C.; Fatibello-Filho, O. A new and simple method for the simultaneous determination of amoxicillin and nimesulide using carbon black within a dihexadecylphosphate film as electrochemical sensor. Talanta 2018, 179, 115–123. [Google Scholar] [CrossRef] [PubMed]
- Baby, J.N.; Sriram, B.; Wang, S.F.; George, M. Integration of samarium vanadate/carbon nanofiber through synergy: An electrochemical tool for sulfadiazine analysis. J. Hazard. Mater. 2021, 408, 124940. [Google Scholar] [CrossRef]
- Mendes, L.F.; Souza e Silva, A.R.; Bacil, R.P.; Pires Serrano, S.H.; Angnes, L.; Longo Cesar Paixao, T.R.; de Araujo, W.R. Forensic electrochemistry: Electrochemical study and quantification of xylazine in pharmaceutical and urine samples. Electrochim. Acta 2019, 295, 726–734. [Google Scholar] [CrossRef]
- de Lima, L.F.; de Araujo, W.R. Laser-scribed graphene on polyetherimide substrate: An electrochemical sensor platform for forensic determination of xylazine in urine and beverage samples. Microchim. Acta 2022, 189, 465. [Google Scholar] [CrossRef] [PubMed]
- Liao, F.; Wang, G.; Shi, Z.; Huang, X.; Xu, F.; Xu, Q.; Guo, L. Distributions, sources, and species of heavy metals/trace elements in shallow groundwater around the poyang lake, East China. Expo. Health 2018, 10, 211–227. [Google Scholar] [CrossRef]
- Cui, L.; Wu, J.; Ju, H. Electrochemical sensing of heavy metal ions with inorganic, organic and bio-materials. Biosens. Bioelectron. 2015, 63, 276–286. [Google Scholar] [CrossRef]
- Pujol, L.; Evrard, D.; Groenen-Serrano, K.; Freyssinier, M.; Ruffien-Cizsak, A.; Gros, P. Electrochemical sensors and devices for heavy metals assay in water: The French groups’ contribution. Front. Chem. 2014, 2, 19. [Google Scholar] [CrossRef]
- Gumpu, M.B.; Sethuraman, S.; Krishnan, U.M.; Rayappan, J.B.B. A review on detection of heavy metal ions in water—An electrochemical approach. Sens. Actuators B Chem. 2015, 213, 515–533. [Google Scholar] [CrossRef]
- Mendoza-Carranza, M.; Sepulveda-Lozada, A.; Dias-Ferreira, C.; Geissen, V. Distribution and bioconcentration of heavy metals in a tropical aquatic food web: A case study of a tropical estuarine lagoon in SE Mexico. Environ. Pollut. 2016, 210, 155–165. [Google Scholar] [CrossRef]
- Wimalawansa, S.J. The role of ions, heavy metals, fluoride, and agrochemicals: Critical evaluation of potential aetiological factors of chronic kidney disease of multifactorial origin (CKDmfo/CKDu) and recommendations for its eradication. Environ. Geochem. Health 2016, 38, 639–678. [Google Scholar] [CrossRef]
- Srivastava, S.; Agrawal, S.B.; Mondal, M.K. A review on progress of heavy metal removal using adsorbents of microbial and plant origin. Environ. Sci. Pollut. Res. 2015, 22, 15386–15415. [Google Scholar] [CrossRef] [PubMed]
- Bansod, B.; Kumar, T.; Thakur, R.; Rana, S.; Singh, I. A review on various electrochemical techniques for heavy metal ions detection with different sensing platforms. Biosens. Bioelectron. 2017, 94, 443–455. [Google Scholar] [CrossRef] [PubMed]
- Beltran, B.; Leal, L.O.; Ferrer, L.; Cerda, V. Determination of lead by atomic fluorescence spectrometry using an automated extraction/pre-concentration flow system. J. Anal. At. Spectrom. 2015, 30, 1072–1079. [Google Scholar] [CrossRef]
- Khan, F.S.A.; Mubarak, N.M.; Tan, Y.H.; Khalid, M.; Karri, R.R.; Walvekar, R.; Abdullah, E.C.; Nizamuddin, S.; Mazari, S.A. A comprehensive review on magnetic carbon nanotubes and carbon nanotube-based buckypaper for removal of heavy metals and dyes. J. Hazard. Mater. 2021, 413, 125375. [Google Scholar] [CrossRef]
- Dash, S.R.; Sekhar, S.; Golder, A.K. Synthesis of highly structured spherical Ag@Pt core-shell NPs using bio-analytes for electrocatalytic Pb(II) sensing. Sens. Actuators B Chem. 2020, 314, 128062. [Google Scholar] [CrossRef]
- Xue, Y.; Ma, L.; Zhang, L.; Zhao, W.; Li, Z.; Li, Q. A green, rapid and efficient dual-sensors for highly selective and sensitive detection of cation (Hg2+) and anion (S2−) ions based on CMS/AgNPs composites. Polymers 2020, 12, 113. [Google Scholar] [CrossRef]
- Ting, S.L.; Ee, S.J.; Ananthanarayanan, A.; Leong, K.C.; Chen, P. Graphene quantum dots functionalized gold nanoparticles for sensitive electrochemical detection of heavy metal ions. Electrochim. Acta 2015, 172, 7–11. [Google Scholar] [CrossRef]
- Wang, N.; Lin, M.; Dai, H.; Ma, H. Functionalized gold nanoparticles/reduced graphene oxide nanocomposites for ultrasensitive electrochemical sensing of mercury ions based on thymine-mercury-thymine structure. Biosens. Bioelectron. 2016, 79, 320–326. [Google Scholar] [CrossRef]
- Shan, H.; Li, X.; Liu, L.; Song, D.; Wang, Z. Recent advances in nanocomposite-based electrochemical aptasensors for the detection of toxins. J. Mater. Chem. B 2020, 8, 5808–5825. [Google Scholar] [CrossRef]
- Chen, X.; Wu, H.; Tang, X.; Zhang, Z.; Li, P. Recent advances in electrochemical aensors for mycotoxin detection in food. Electroanalysis 2023, 35, e202100223. [Google Scholar] [CrossRef]
- Hui, Y.; Bini, W.; Ren, R.; Zhao, A.; Zhang, F.; Song, S.; He, Y. An electrochemical aptasensor based on DNA-AuNPs-HRP nanoprobes and exonuclease-assisted signal amplification for detection of aflatoxin B-1. Food Control 2020, 109, 106902. [Google Scholar] [CrossRef]
- Tang, J.; Huang, Y.; Cheng, Y.; Huang, L.; Zhuang, J.; Tang, D. Two-dimensional MoS2 as a nano-binder for ssDNA: Ultrasensitive aptamer based amperometric detection of Ochratoxin A. Microchim. Acta 2018, 185, 162. [Google Scholar] [CrossRef] [PubMed]
- Elshafey, R.; Siaj, M.; Zourob, M. In vitro selection, characterization, and biosensing application of high-affinity cylindrospermopsin-targeting aptamers. Anal. Chem. 2014, 86, 9196–9203. [Google Scholar] [CrossRef] [PubMed]
- Ramalingam, S.; Chand, R.; Singh, C.B.; Singh, A. Phosphorene-gold nanocomposite based microfluidic aptasensor for the detection of okadaic acid. Biosens. Bioelectron. 2019, 135, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Ottolenghi, A. Interaction of ascorbic acid and mitochondrial lipides. Arch. Biochem. Biophys. 1959, 79, 355–363. [Google Scholar] [CrossRef]
- Atacan, K.; Ozacar, M. Construction of a non-enzymatic electrochemical sensor based on CuO/g-C3N4 composite for selective detection of hydrogen peroxide. Mater. Chem. Phys. 2021, 266, 124527. [Google Scholar] [CrossRef]
- Xing, L.; Zhang, W.; Fu, L.; Lorenzo, J.M.; Hao, Y. Fabrication and application of electrochemical sensor for analyzing hydrogen peroxide in food system and biological samples. Food Chem. 2022, 385, 132555. [Google Scholar] [CrossRef]
- Urhan, B.K.; Demir, U.; Ozer, T.O.; Dogan, H.O. Electrochemical fabrication of Ni nanoparticles-decorated electrochemically reduced graphene oxide composite electrode for non-enzymatic glucose detection. Thin Solid Films 2020, 693, 137695. [Google Scholar] [CrossRef]
- Xiong, W.; Qu, Q.; Liu, S. Self-assembly of ultra-small gold nanoparticles on an indium tin oxide electrode for the enzyme-free detection of hydrogen peroxide. Microchim. Acta 2014, 181, 983–989. [Google Scholar] [CrossRef]
- Chen, A.; Ostrom, C. Palladium-based nanomaterials: Synthesis and electrochemical applications. Chem. Rev. 2015, 115, 11999–12044. [Google Scholar] [CrossRef]
- Paulraj, P.; Umar, A.; Rajendran, K.; Manikandan, A.; Kumar, R.; Manikandan, E.; Pandian, K.; Mahnashi, M.H.; Alsaiari, M.A.; Ibrahim, A.A. Solid-state synthesis of Ag-doped PANI nanocomposites for their end-use as an electrochemical sensor for hydrogen peroxide and dopamine. Electrochim. Acta 2020, 363, 137158. [Google Scholar] [CrossRef]
- Gan, T.; Sun, J.; Meng, W.; Song, L. Electrochemical sensor based on graphene and mesoporous TiO2 for the simultaneous determination of trace colourants in food. Food Chem. 2013, 141, 3731–3737. [Google Scholar] [CrossRef] [PubMed]
- Yue, X.; Luo, X.; Zhou, Z.; Bai, Y. Selective electrochemical determination of tertiary butylhydroquinone in edible oils based on an in-situ assembly molecularly imprinted polymer sensor. Food Chem. 2019, 289, 84–94. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Yang, R.; He, J.; Zhang, Y.; Yuan, Y.; Yue, T. Au nanoparticles functionalized covalent-organic-framework-based electrochemical sensor for sensitive detection of ractopamine. Foods 2023, 12, 842. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Lv, R.; Li, Y.; Du, T.; Chen, L.; Zhang, Y. Simple and sensitive electrochemical detection of sunset yellow and Sudan I in food based on AuNPs/Zr-MOF-Graphene. Food Control 2023, 145, 109491. [Google Scholar] [CrossRef]
- Nehru, R.; Chen, C.-W.; Dong, C.-D. In-situ growth of MoS2 nanosheets on g-C3N4 nanotube: A novel electrochemical sensing platform for vanillin determination in food samples. Carbon 2023, 208, 410–420. [Google Scholar] [CrossRef]
- Ganesan, S.; Sivam, S.; Elancheziyan, M.; Senthilkumar, S.; Ramakrishan, S.G.; Soundappan, T. Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters. Environ. Pollut. 2022, 293, 118556. [Google Scholar] [CrossRef]
- Vaz, F.C.; Silva, T.A.; Fatibello-Filho, O.; Assumpção, M.H.M.T.; Vicentini, F.C. A novel carbon nanosphere-based sensor used for herbicide detection. Environ. Technol. Innov. 2021, 22, 101529. [Google Scholar] [CrossRef]
- Gerent, G.G.; Santana, E.R.; Martins, E.C.; Spinelli, A. A non-mercury electrode for the voltammetric determination of butralin in foods. Food Chem. 2021, 343, 128419. [Google Scholar] [CrossRef]
- Gopi, P.K.; Mutharani, B.; Chen, S.M.; Chen, T.-W.; Eldesoky, G.E.; Ali, M.A. Electrochemical sensing base for hazardous herbicide aclonifen using gadolinium niobate (GdNbO4) nanoparticles-actual river water and soil sample analysis. Ecotoxicol. Environ. Saf. 2021, 207, 111285. [Google Scholar] [CrossRef]
- Sriram, B.; Baby, J.N.; Hsu, Y.F.; Wang, S.F.; Benadict Joseph, X.; George, M. MnCo2O4 microflowers anchored on P-doped g-C3N4 nanosheets as an electrocatalyst for voltammetric determination of the antibiotic drug sulfadiazine. ACS Appl. Electron. Mater. 2021, 3, 3915–3926. [Google Scholar] [CrossRef]
- Fatima, T.; Husain, S.; Narang, J.; Khanuja, M.; Shetti, N.P.; Reddy, K.R. Novel tungsten disulfide (WS2) nanosheets for photocatalytic degradation and electrochemical detection of pharmaceutical pollutants. J. Water Process Eng. 2022, 47, 102717. [Google Scholar] [CrossRef]
- Karimian, N.; Fakhri, H.; Amidi, S.; Hajian, A.; Arduini, F.; Bagheri, H. A novel sensing layer based on metal–organic framework UiO-66 modified with TiO2-graphene oxide: Application to rapid, sensitive and simultaneous determination of paraoxon and chlorpyrifos. N. J. Chem. 2019, 43, 2600–2609. [Google Scholar] [CrossRef]
- Chen, Y.; He, K.; Sun, F.; Wei, D.; Li, H. Efficient electrochemical sensor based on multi-walled carbon nanotubes/gold nanocomposite for detection of dichlorvos pesticide in agricultural food. Int. J. Electrochem. Sci. 2021, 16, 210321. [Google Scholar] [CrossRef]
- Sun, J.; Gan, T.; Meng, W.; Shi, Z.; Zhang, Z.; Liu, Y. Determination of oxytetracycline in food using a disposable montmorillonite and acetylene black modified microelectrode. Anal. Lett. 2015, 48, 100–115. [Google Scholar] [CrossRef]
- Besharati, M.; Hamedi, J.; Hosseinkhani, S.; Saber, R. A novel electrochemical biosensor based on TetX2 monooxygenase immobilized on a nano-porous glassy carbon electrode for tetracycline residue detection. Bioelectrochemistry 2019, 128, 66–73. [Google Scholar] [CrossRef]
- Yang, Y.; Yan, W.; Guo, Y.; Wang, X.; Zhang, F.; Yu, L. Sensitive and selective electrochemical aptasensor via diazonium-coupling reaction for label-free determination of oxytetracycline in milk samples. Sens. Actuators Rep. 2020, 2, 100009. [Google Scholar] [CrossRef]
- de Faria, L.V.; Lisboa, T.P.; Alves, G.F.; de Farias, D.M.; Matos, M.A.C.; Muñoz, R.A.A. Electrochemical study of different sensors for simple and fast quantification of ciprofloxacin in pharmaceutical formulations and bovine milk. Electroanalysis 2020, 32, 2266–2272. [Google Scholar] [CrossRef]
- Surya, S.G.; Khatoon, S.; Lahcen, A.A.; Nguyen, A.T.H.; Dzantiev, B.B.; Tarannum, N. A chitosan gold nanoparticles molecularly imprinted polymer based ciprofloxacin sensor. RSC Adv. 2020, 10, 12823–12832. [Google Scholar] [CrossRef]
- Eswaran, M.; Tsai, P.C.; Wu, M.T.; Ponnusamy, V.K. Novel nano-engineered environmental sensor based on polymelamine/graphitic-carbon nitride nanohybrid material for sensitive and simultaneous monitoring of toxic heavy metals. J. Hazard. Mater. 2021, 418, 126267. [Google Scholar] [CrossRef]
- Berrabah, S.E.; Benchettara, A.; Smaili, F.; Tabti, S.; Benchettara, A. Electrodeposition of zinc hydroxide on carbon graphite electrode for electrochemical determination of trace copper in water samples using square wave anodic stripping voltammetry. Mater. Chem. Phys. 2022, 278, 125670. [Google Scholar] [CrossRef]
- Bodkhe, G.A.; Hedau, B.S.; Deshmukh, M.A.; Patil, H.K.; Shirsat, S.M.; Phase, D.M. Selective and sensitive detection of lead Pb(II) ions: Au/SWNT nanocomposite-embedded MOF-199. J. Mater. Sci. 2021, 56, 474–487. [Google Scholar] [CrossRef]
- Lu, Z.; Zhao, W.; Wu, L.; He, J.; Dai, W.; Zhou, C. Tunable electrochemical of electrosynthesized layer-by-layer multilayer films based on multi-walled carbon nanotubes and metal-organic framework as high-performance electrochemical sensor for simultaneous determination cadmium and lead. Sens. Actuators B Chem. 2021, 326, 128957. [Google Scholar] [CrossRef]
- Kokab, T.; Shah, A.; Iftikhar, F.J.; Nisar, J.; Akhter, M.S.; Khan, S.B. Amino acid-fabricated glassy carbon electrode for efficient simultaneous sensing of Zinc(II), Cadmium(II), Copper(II), and Mercury(II) Ions. ACS Omega 2019, 4, 22057–22068. [Google Scholar] [CrossRef]
- Akhtar, M.; Tahir, A.; Zulfiqar, S.; Hanif, F.; Warsi, M.F.; Agboola, P.O. Ternary hybrid of polyaniline-alanine-reduced graphene oxide for electrochemical sensing of heavy metal ions. Synth. Met. 2020, 265, 116410. [Google Scholar] [CrossRef]
- Shukla, S.; Haldorai, Y.; Khan, I.; Kang, S.-M.; Kwak, C.H.; Gandhi, S. Bioreceptor-free, sensitive and rapid electrochemical detection of patulin fungal toxin, using a reduced graphene oxide@SnO2 nanocomposite. Mater. Sci. Eng. C 2020, 113, 110916. [Google Scholar] [CrossRef]
- Riberi, W.I.; Tarditto, L.V.; Zon, M.A.; Arévalo, F.J.; Fernández, H. Development of an electrochemical immunosensor to determine zearalenone in maize using carbon screen printed electrodes modified with multi-walled carbon nanotubes/polyethyleneimine dispersions. Sens. Actuators B Chem. 2018, 254, 1271–1277. [Google Scholar] [CrossRef]
- Singh, A.K.; Dhiman, T.K.; Lakshmi, G.B.V.S.; Solanki, P.R. Dimanganese trioxide (Mn2O3) based label-free electrochemical biosensor for detection of Aflatoxin-B1. Bioelectrochemistry 2021, 137, 107684. [Google Scholar] [CrossRef]
- He, B.; Lu, X. An electrochemical aptasensor based on tetrahedral DNA nanostructures as a signal probe carrier platform for sensitive detection of patulin. Anal. Chim. Acta 2020, 1138, 123–131. [Google Scholar] [CrossRef]
- Li, W.; Diao, K.; Qiu, D.; Zeng, Y.; Tang, K.; Zhu, Y. A highly-sensitive and selective antibody-like sensor based on molecularly imprinted poly(L-arginine) on COOH-MWCNTs for electrochemical recognition and detection of deoxynivalenol. Food Chem. 2021, 350, 129229. [Google Scholar] [CrossRef]
- Wang, L.; Jin, H.; Wei, M.; Ren, W.; Zhang, Y.; Jiang, L. A DNAzyme-assisted triple-amplified electrochemical aptasensor for ultra-sensitive detection of T-2 toxin. Sens. Actuators B Chem. 2021, 328, 129063. [Google Scholar] [CrossRef]
- Jalalian, S.H.; Ramezani, M.; Danesh, N.M.; Alibolandi, M.; Abnous, K.; Taghdisi, S.M. A novel electrochemical aptasensor for detection of aflatoxin M1 based on target-induced immobilization of gold nanoparticles on the surface of electrode. Biosens. Bioelectron. 2018, 117, 487–492. [Google Scholar] [CrossRef] [PubMed]
Nanomaterials | Sensors | Sample | Analytes | LOD | Ref. |
---|---|---|---|---|---|
Metal nanoparticles /metal oxides | Co3O4@rGO/GCE | Packaged milk, milk powder, honey samples | Chloramphenicol | 0.55 μM | [26] |
MgO/GCE | Water | Cd(II), Pb(II) | 0.062 μM, 0.24 μM | [27] | |
TiO2/Au NTAs/GCE | Natural Water | Bisphenol A | 6.2 nM | [28] | |
AgNPs-Pdop@Gr nanocomposite/GCE | Catechol-spiked water | Catechol | 0.10 μM | [29] | |
meso-MFI-CuO/GCE | Blood serum | Glucose | 0.37 μM | [30] | |
Conducting polymer | rGO/Pd@PPy NPs/GCE | Serum | Ascorbic acid, dopamine, uric acid | 0.049 μM, 0.056 μM, 0.047 μM | [31] |
EB-Ppy-BSA/GCE | Tea and chicken | Epinephrine, L-tyrosine | 7.1 nM, 8.8 nM | [32] | |
α-Fe2O3/PAn NTs/GCE | Human urine | Uric acid | 0.038 µM | [33] | |
PPy@Cellulose /GCE | Commercial fruit | Ascorbic acid | 0.75 μM | [34] | |
Pt/PEDOT-PBNPs/GCE | Human blood samples | H2O2 | 1.4 μM | [35] | |
Carbon-based materials | FeCo@pyrolysis carbon-Surface engineering /GCE | Soil, groundwater, industrial effluent | Cr(VI) | 0.15 μM | [36] |
MnFe2O4/GO/GCE | Water sample | Pb2+ | 0.088 μM | [37] | |
MoS2/f-MWCNTs/GCE | Milk, powdered milk, and honey samples | Chloramphenicol | 0.015 μM | [38] | |
Polytyramine/sol-gel/f-MWCNT@AuNPs MIP/PGE | Urine and plasma | Ketamine | 0.70 nM | [39] | |
Graphene /Nano-Au/GCE | Beef, fish, and milk powder | Diethylstilboestrol | 9.8 nM | [40] | |
Metal-organic framework-based materials | UiO-66-NH2@P(ANI-co-ANA)/GCE | Milk and human urine | H2O2, dopamine | 0.60 μM, 0.30 μM | [41] |
Fe-MOF@ mesoporous Fe3O4@mC/GCE | River water and human serum | Pb2+, As3+ | 2.3 pM, 6.7 pM | [42] | |
AuNp@MOF/CPE | No | Bisphenol A | 0.038 nM | [43] | |
Au@Cu-MOF/N-GQDs/GCE | Apple juices | Patulin | 4.5 pM | [44] | |
PtNP/MIL–101(Fe)/GCE | Powder and pasteurized milk | Aflatoxin M1 | 6.1 pM | [45] |
Food Safety | Working Electrode | Analyte | Sample | LOD | Ref. |
---|---|---|---|---|---|
Food additives | GN/TiO2-CPE | Sunset yellow, tartrazine | Candy, royal jelly, ice cream, solid custard Jelly powder, juice powder, soft drink | 6.0 nM, 8.0 nM | [92] |
MIP/PdAuNPs/ERGO/GCE | TBHQ | Edible oils | 0.27 μM | [93] | |
AuNPs@COFs/GCE | Ractopamine | Pork and chicken | 0.12 μM | [94] | |
AuNPs/Zr-MOF-Graphene/GCE | Sunset yellow and Sudan I | Soft drink and chili powder | 0.1 μM, 0.1 μM | [95] | |
g-C3N4 NTs@MoS2/GCE | Vanillin | Vanilla ice cream | 4 nM | [96] | |
KSC@MoO3/GCE | Hydroquinone and catechol | Environmental waters | 0.063 μM, 0.059 μM | [97] | |
Pesticide residue | CB-CTS-ECH/GCE | Herbicide | Environmental water | 1.4 μM | [98] |
Co-Ag BMNPs-PVP/GCE | Butralin | Honey and apple jam | 32 nM | [99] | |
Gadolinium niobate/GCE | Aclonifen | River water and soil | 1.2 nM | [100] | |
MnCo2O4/P-CN/GCE | Sulfadiazine | Water and urine | 3.0 nM | [101] | |
WS2 nanosheets modified paper electrode | Nitrofurantoin | - | 0.060 μM | [102] | |
TGO@UiO-66/GCE | Paraoxon and Chlorpyrifos | Vegetable and Water | 0.2 nM, 1.0 nM | [103] | |
Au@MWCNTs/GCE | Dichlorvos | - | 0.0050 μM | [104] | |
Veterinary drugs residue | montmorillonite–acetylene black/CPME | Oxytetracycline | Fish shrimp | 0.087 μM | [105] |
PEI/TetX2/NP/GCE | Tetracycline | Milk | 18 nM | [106] | |
apt/act/4-CP/GCE | Oxytetracycline | Milk | 43 nM | [107] | |
RGO/GCE | Ciprofloxacin | Pharmaceutical Formulations and Bovine Milk | 0.1 μM | [108] | |
Ch-AuMIP/GCE | Ciprofloxacin | Tap water, mineral water, milk | 0.21 µM | [109] | |
Heavy metal | ASPE-Poly (melamine)/g-C3N4 | Pb2+, Cd2+ | Water | 80 nM; 0.020 μM | [110] |
Gr/Zn/Zn(OH)2/GCE | Cu2+ | Water | 90.3 × nM | [111] | |
Au/SWNTs@MOF-199/GCE | Pb2+ | - | 25 pM | [112] | |
MWCNTs−COOH/UiO-66-NH2/MWCNTs−COOH/GCE | Pb2+, Cd2+ | Seawater, rainwater, air conditioning condensate | 0.34 µM, 0.80 µM | [113] | |
Amino acid/GCE | Zn2+, Cd2+, Cu2+, Hg2+ | Water | 8.9 pM, 5.8 pM, 3.0 pM, 5.9 pM | [114] | |
rGO-Alanine-PANI/GCE | Cd2+, Pb2+, Cu2+ | Water | 0.030 nM, 0.045 nM, 0.063 nM | [115] | |
Mycotoxins | rGO@SnO2/GCE | Patulin fungal toxin | Apple juice | 0.66 nM | [116] |
Au@Cu-MOF/N-GQDs/GCE | Patulin | Apple juice | 0.45 pM | [44] | |
Zearalenone-pAb/AuNPs/MWCNT/PEI/CSPE | Zearalenone | Maize | 0.47 pM | [117] | |
Mn2O3/GCE | Aflatoxin-B1 | Corn extract | 1.7 pM | [118] | |
Fe3O4NPs/rGO /GCE | Patulin | Apple juice | 0.20 pM | [119] | |
P-Arg-MIP on COOH-MWCNTs/GCE | Deoxynivalenol | Wheat flour | 0.07 μM | [120] | |
AuNPs/MnO2@GO | T-2 toxin | Beer | 0.23 fM | [121] | |
CS-modified AuNPs/SPGE | Aflatoxin M1 | Milk and serum | 2.7 pM | [122] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Xia, L.; Li, G. Recent Progress of Electrochemical Sensors in Food Analysis. Chemosensors 2023, 11, 478. https://doi.org/10.3390/chemosensors11090478
Shi Z, Xia L, Li G. Recent Progress of Electrochemical Sensors in Food Analysis. Chemosensors. 2023; 11(9):478. https://doi.org/10.3390/chemosensors11090478
Chicago/Turabian StyleShi, Zhaoxia, Ling Xia, and Gongke Li. 2023. "Recent Progress of Electrochemical Sensors in Food Analysis" Chemosensors 11, no. 9: 478. https://doi.org/10.3390/chemosensors11090478
APA StyleShi, Z., Xia, L., & Li, G. (2023). Recent Progress of Electrochemical Sensors in Food Analysis. Chemosensors, 11(9), 478. https://doi.org/10.3390/chemosensors11090478