Pyranine Immobilized on Aminopropyl-Modified Mesoporous Silica Film for Paraquat Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemical and Reagents
2.2. Synthesis of MSFs on FTO Glass
2.3. Modification of MSFs with APTES
2.4. Immobilization of Pyranine
2.5. Paraquat Response to Sensing Film
2.6. Analysis of Real Samples
2.7. Characterization
3. Results and Discussion
3.1. Characterization of MSF
3.2. Characterization of Aminopropyl-Modified MSFs
3.3. Immobilization and Optimization of Sensing Films
3.4. Response of Sensing Film to PQ
3.5. Reproducibility and Regeneration
3.6. Effect of Foreign Species
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paraquat Information Centre. Available online: http://paraquat.com/use (accessed on 9 February 2023).
- Bus, J.S.; Aust, S.D.; Gibson, J.E. Paraquat toxicity: Proposed mechanism of action involving lipid peroxidation. Environ. Health Perspect. 1976, 16, 139–146. [Google Scholar] [CrossRef] [PubMed]
- Peter, B.; Wartena, M.; Kampinga, H.H.; Konings, A.W. Role of lipid peroxidation and DNA damage in paraquat toxicity and the interaction of paraquat with ionizing radiation. Biochem. Pharmacol. 1992, 43, 705–715. [Google Scholar] [CrossRef]
- Tsai, W.T. A review on environmental exposure and health risks of herbicide paraquat. Toxicol. Environ. Chem. 2013, 95, 197–206. [Google Scholar] [CrossRef]
- Gao, L.; Liu, J.; Yuan, H.; Deng, X. Solid-phase microextraction combined with GC-MS for determination of diquat and paraquat residues in water. Chromatographia 2015, 78, 125–130. [Google Scholar] [CrossRef]
- Sha, O.; Wang, Y.; Chen, X.-B.; Chen, J.; Chen, L. Determination of paraquat in environmental water by ionic liquid-based liquid phase extraction with direct injection for HPLC. J. Anal. Chem. 2018, 73, 862–868. [Google Scholar] [CrossRef]
- Nasir, T.; Herzog, G.; Hébrant, M.; Despas, C.; Liu, L.; Walcarius, A. Mesoporous silica thin films for improved electrochemical detection of paraquat. ACS Sens. 2018, 3, 484–493. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhang, F.; Zhang, Z. A facile fluorescent “turn-off” method for sensing paraquat based on pyranine-paraquat interaction. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 199, 96–101. [Google Scholar] [CrossRef]
- de Borba, E.B.; Amaral, C.L.C.; Politi, M.J.; Villalobos, R.; Baptista, M.S. Photophysical and photochemical properties of pyranine/methyl viologen complexes in solution and supramolecular aggregates a switchable complex. Langmuir 2000, 16, 5900–5907. [Google Scholar] [CrossRef]
- Hakonen, A.; Hulth, S. A high-precision ratiometric fluorosensor for pH: Implementing time-dependent non-linear calibration protocols for drift compensation. Anal. Chem. Acta. 2008, 606, 63–71. [Google Scholar] [CrossRef]
- Ulrich, S.; Osypova, A.; Panzarasa, G.; Rossi, R.M.; Bruns, N.; Boesel, L.F. Pyranine-modified amphiphilic polymer conetworks as fluorescent ratiometric pH sensors. Macromol. Rapid Commun. 2019, 40, 1900360. [Google Scholar] [CrossRef]
- Nivens, D.A.; Schiza, M.V.; Angel, S.M. Multilayer sol-gel membranes for optical sensing applications: Single layer pH and dual layer CO2 and NH3 sensors. Talanta 2002, 58, 543–550. [Google Scholar] [CrossRef]
- Giuliano, K.A.; Gillies, R.J. Determination of intracellular pH of BALB/c-3T3 cells using the fluorescence of pyranine. Anal. Biochem. 1987, 167, 362–371. [Google Scholar] [CrossRef]
- Innocenzi, P.; Malfatti, L. Mesoporous thin films: Properties and applications. Chem. Soc. Rev. 2013, 42, 4198–4216. [Google Scholar] [CrossRef]
- Walcarius, A.; Sibottier, E.; Etienne, M.; Ghanbaja, J. Electrochemically assisted self-assembly of mesoporous silica thin films. Nat. Mater. 2007, 6, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Ding, L.; Li, W.; Sun, Q.; He, Y.; Su, B. Gold nanoparticles confined in vertically aligned silica nanochannels and their electrocatalytic activity toward ascorbic acid. Chem. Eur. J. 2014, 20, 12777–12780. [Google Scholar] [CrossRef] [PubMed]
- Kolberg, D.I.S.; Mack, D.; Anastassiades, M.; Hetmanski, M.T.; Fussell, R.J.; Meijer, T.; Mol, H.G.J. Development and independent laboratory validation of a simple method for the determination of paraquat and diquat in potato, cereals and pulses. Anal. Bioanal. Chem. 2012, 404, 2465–2474. [Google Scholar] [CrossRef]
- Pizzutti, T.R.; Vela, G.M.E.; Kok, A.; Scholten, J.M.; Dias, J.V.; Cardoso, C.D.; Concenço, G.; Vivian, R. Determination of paraquat and diquat: LC-MS method optimization and validation. Food Chem. 2016, 209, 248–255. [Google Scholar] [CrossRef]
- Majoul, N.; Aouida, S.; Bessaïs, B. Progress of porous silicon APTES functionalization by FTIR investigations. Appl. Surf. Sci. 2015, 331, 388–391. [Google Scholar] [CrossRef]
- Farook, A.; Kasim, H.M.; Hasnah, O. Synthesis of mesoporous silica immobilized with 3-[(mercapto or amino)propyl]trialkoxysilane by a simple one-pot reaction. Chin. J. Chem. 2010, 28, 2383–2388. [Google Scholar]
- Ribeiro, J.O.N.; Nunes, E.H.M.; Vasconcelos, D.C.L.; Vasconcelos, W.L.; Nascimento, J.F.; Grava, W.M.; Derks, P.W.J. Role of the type of grafting solvent and its removal process on APTES functionalization onto SBA-15 silica for CO2 adsorption. J. Porous Mater. 2019, 26, 1581–1591. [Google Scholar] [CrossRef]
- Hong, Y.; Cheong, B.; Cho, H. Excited-state proton transfer reaction of pyranine in aqueous sugar and alcohol solutions investigated by fluorescence spectroscopy. Bull. Korean Chem. Soc. 2017, 38, 1333–1339. [Google Scholar] [CrossRef]
- Ali, S.; Shah, M.R.; Hussain, S.; Khan, S.; Latif, A.; Ahmad, M.; Ali, M. A facile approach based on functionalized silver nanoparticles as a chemosensor for the detection of paraquat. J. Clust. Sci. 2022, 33, 413–420. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Y.; Fu, L.; Qiu, J.; Wang, Z.; Wu, A. Colorimetric detection of paraquat in aqueous and fruit juice samples based on functionalized gold nanoparticles. J. Food. Compost. Anal. 2020, 92, 103574. [Google Scholar] [CrossRef]
- Siangproh, W.; Somboonsuk, T.; Chailapakul, O.; Songsrirote, K. Novel colorimetric assay for paraquat detection on-silica bead using negatively charged silver nanoparticles. Talanta 2017, 174, 448–453. [Google Scholar] [CrossRef] [PubMed]
- Du, F.; Sun, L.; Zen, Q.; Tan, W.; Chaen, Z.; Ruan, G.; Li, J. A highly sensitive and selective “on-off-on” fluorescent sensor based on nitrogen doped graphene quantum dots for the detection of Hg2+ and paraquat. Sens. Actuators B Chem. 2019, 288, 96–103. [Google Scholar] [CrossRef]
- Durán, G.M.; Contento, A.M.; Ríos, A. Use of CdSe/ZnS quantum dots for sensitive detection and quantification of paraquat in water samples. Anal. Chim. Acta. 2013, 801, 84–90. [Google Scholar] [CrossRef]
- Tu, J.; Xiao, L.; Jiang, Y.; He, Q.; Sun, S.; Xu, Y. Near-infrared fluorescent turn-on detection of paraquat using an assembly of squaraine and surfactants. Sens. Actuators B Chem. 2015, 215, 382–387. [Google Scholar] [CrossRef]
- Maya, F.; Estels, J.M.; Cerdà, V. Improved spectrophotometric determination of paraquat in drinking waters exploiting a multisyringe liquid core waveguide system. Talanta 2011, 85, 588–595. [Google Scholar] [CrossRef]
Tested Species | % Error * |
---|---|
Cu2+ | 1.08 |
Fe2+ | 0.53 |
Zn2+ | 1.34 |
K+ | 0.31 |
Carbaryl | 0.55 |
Sample | PQ Added (ppm) | PQ Found (ppm) a | %Recovery | %RSD |
---|---|---|---|---|
Tap water | 0 | ND b | - | - |
Tap water | 10.0 | 9.90 ± 0.16 | 99.0 | 1.6 |
Sugarcane peel | 0 | ND | - | - |
Sugarcane peel | 10.0 | 10.10 ± 0.51 | 101.0 | 5.0 |
Sensor Material | Detection Technique | Linear Range (µM) | Limit of Detection (µM) | Reference |
---|---|---|---|---|
Imidacloprid stabilized silver nanoparticles | Colorimetry | 20–180 | 6.3 | [23] |
Gold nanoparticles modified with 3-mercaptopropanesulfonate | Colorimetry | 0.004–1.9 | 0.004 | [24] |
Citrate coated AgNPs | Colorimetry | 0.2–194 | 0.19 | [25] |
Nitrogen doped graphene quantum dots/Hg2+ | Fluorescence | 0.2–7.8 | 0.074 | [26] |
CdSe/ZnS quantum dots | Fluorescence (quenching) | 3.8 × 10−5–0.2 | 0.012 | [27] |
Squaraine | Fluorescence | 0–140 | 0.372 | [28] |
Ascorbic acid in basic medium | Colorimetry (multisyringe flow injection analysis) | 0.02–1.0 | 0.003 | [29] |
Pyr-APTES-MSF | Fluorescence (quenching) | 3.9–39 | 3.5 | this work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sombatsri, S.; Deekamwong, K.; Khemthong, P.; Prayoonpokarach, S. Pyranine Immobilized on Aminopropyl-Modified Mesoporous Silica Film for Paraquat Detection. Chemosensors 2023, 11, 249. https://doi.org/10.3390/chemosensors11040249
Sombatsri S, Deekamwong K, Khemthong P, Prayoonpokarach S. Pyranine Immobilized on Aminopropyl-Modified Mesoporous Silica Film for Paraquat Detection. Chemosensors. 2023; 11(4):249. https://doi.org/10.3390/chemosensors11040249
Chicago/Turabian StyleSombatsri, Sudarat, Krittanun Deekamwong, Pongtanawat Khemthong, and Sanchai Prayoonpokarach. 2023. "Pyranine Immobilized on Aminopropyl-Modified Mesoporous Silica Film for Paraquat Detection" Chemosensors 11, no. 4: 249. https://doi.org/10.3390/chemosensors11040249
APA StyleSombatsri, S., Deekamwong, K., Khemthong, P., & Prayoonpokarach, S. (2023). Pyranine Immobilized on Aminopropyl-Modified Mesoporous Silica Film for Paraquat Detection. Chemosensors, 11(4), 249. https://doi.org/10.3390/chemosensors11040249