Conventional Raman, SERS and TERS Studies of DNA Compounds
Abstract
:1. Introduction
2. Raman Spectroscopy, Surface-Enhanced Raman Spectroscopy and Tip-Enhanced Raman Scattering
2.1. Conventional Raman
2.2. Surface-Enhanced Raman Scattering
2.3. Tip-Enhanced Raman Scattering
3. DNA
3.1. DNA Composition
3.2. Double-Strand DNA
- -
- B-DNA is a double helix in a right-handed step with a diameter of 2 nm and forming one major groove and one minor groove. One round of a helix (one turn) is equal to 10 base pairs and to 3.4 nm.
- -
- A-DNA appears when humidity is lower than 75%. It is, then, uncommon in normal physiological conditions. The helix is larger with a diameter of 2.3 nm, whereas one round has a length of 2.86 nm for 11 base pairs.
- -
- Z-DNA is a left-handed helix without grooves and having 12 bases pairs per round with a 4.56 nm length and a diameter of 1.8 nm. It is unstable and, thus, hard to be observed. It can be contained in bacteria, eukaryotes and viruses.
4. Raman Spectroscopy on DNA Structures
4.1. DNA Base Raman Spectrum
4.1.1. Adenine
4.1.2. Guanine
4.1.3. Cytosine
4.1.4. Thymine
4.2. Nucleosides’ Raman Spectrum
4.2.1. Deoxyguanosine and Guanosine
4.2.2. Cytidine
4.2.3. Thymidine
4.3. Nucleotides’ Raman Spectrum
4.4. Double-Stranded DNA Raman Spectrum
5. SERS
5.1. SERS on DNA Bases (Table 5)
5.1.1. Adenine
5.1.2. Guanine
5.1.3. Cytosine
5.1.4. Thymine
5.2. SERS of Nucleosides (Table 6)
5.2.1. Deoxyadenosine
5.2.2. Deoxyguanosine
5.2.3. Deoxycytosine
5.2.4. Deoxythymidine
5.3. SERS of Nucleotides
5.3.1. Deoxyadenosine with Phosphate Groups
Ag
Au
5.3.2. Deoxyguanosine with Phosphate Groups
5.3.3. Deoxycytidine with Phosphate Groups
5.3.4. Deoxythymine with Phosphate Groups
5.4. SERS Studies of Single-Strand DNA
5.5. Double-Strand DNA
5.5.1. Effect of the DNA Hybridization on the SERS Spectrum
Influence of the Incubation Time
Influence of the Concentration
5.5.2. Orientation
5.5.3. Influence of Mutation
5.5.4. Influence of the dsDNA Length
5.6. Influence of a Spacer
6. Interaction with Analyte
7. Tip-Enhanced Raman Scattering (TERS) on DNA
7.1. DNA Base TERS Spectrum
7.1.1. Adenine
7.1.2. Cytosine
7.1.3. Thymine
7.2. Single-Stranded TERS Signal
7.3. Double-Stranded DNA TERS Signal
8. Conclusions
9. Raman and SERS Bands for DNA Components
Bands (cm−1) | DNA Bases | References | |||
---|---|---|---|---|---|
Adenine | Cytosine | Guanine | Thymine | ||
310–330 | -C6N12 bending +N9R bending/Hydrogen bending | [47,92] | |||
380–390 | C2N14 bending+N9R bending/(C=O) bending mode | [48,92] | |||
414 | (N3-C2=O) + (N1-C2=O) bending mode | [49] | |||
470 | C2N1C6 bending+ N3C4C5 bending | [92] | |||
490, 500 | C2N1C5 bending+N9R-C5C4N bending/(N9-C4=C5) +S(N7-C=C4) bending modes | [48,92] | |||
540–550 | C5C4N bending-C2N1C6 bending/(C-C=C) bending | -N1C2N3 bending + C2N3C4 bending/(C-C=C) and (N3=C3-N4) bending mode | [47,49,92] | ||
558 | (C2-N3=C4) and (N1-C2-N3) bending mode | [49,92] | |||
565 | N1C2N3 bending-C2N3C4 bending | [92] | |||
608 | (C=O) in phase stretching mode | [49] | |||
617 | wag of N-H | [50] | |||
625–630 | N9R bending +C6N12 bending-N7C5C6 bending/(C-C=C) bending | [47,92] | |||
640–685 | G in-plane, ring breathing | [48,92] | |||
720–730 | A ring stretching/C-C, C-N stretching in-phase breathing | [47,70,92] | |||
735–815 | C Ring breathing | T ring breathing/coupled out-plane wag of N-H on C=C | [49,50,92] | ||
930–970 | NH2 rocking + N9C6 stretching/(N-C=N) bending mode | (N-C=N) and (N-C-N) bending modes | [47,48,92] | ||
975 | C5H bending | [92] | |||
984 | ring breathing coupled to in-plane -CH3 asymmetric stretching | [50] | |||
1116 | N1R stretching-C2N3 stretching | [92] | |||
1124 | N3C2 stretching+N9R stretching | [92] | |||
1134 | (C2-N1=C6) bending mode/(C5-N7=C8) stretching mode | [47] | |||
1169 | -C6 breathing H +C2N3 stretching | [92] | |||
1180–1260 | N1C2 stretching + C2H bending + N9C8 stretching + C8N7 stretching/(C-NH2) stretching mode | G in-plane stretching mode (C2-NH2) /C8H bending + C8N7 stretching | T (stretching N3-C4, C6-N1) | [47,48,92] | |
1260–1294 | stretching C-N | [49,92] | |||
1314 | (C-N) and (C=N) stretching modes | [47] | |||
1354 | G in-plane ring mode, bending/C-N Stretching | [48,92] | |||
1330–1340 | N1C5 stretching+ C8N7 stretching | [47,92] | |||
1354 | (C8-N-H), (C8-H) bending modes + (C8-N) stretching mode | [48] | |||
1360–1365 | C8N9 stretching+C2N3 stretching | C8N9 stretching-N7C8 stretching | [92] | ||
1365–1370 | (C8-H), (C2-H) out-of-plane bending modes | C4N stretching-C5C6 stretching | Deoxy-guanine | N-H + C-H in-plane bending/Deoxy-thymine | [47,50,92] |
1376 | (C=C-H) bending mode | [49] | |||
1398 | -N1C6 stretching + C6N12 stretching | [92] | |||
1410 | (N7=C8-H) bending mode | [48] | |||
1418 | C2N3 stretching-C2(ND2) stretching | NH bending | [92] | ||
1442 | C=N Stretching Pyrimidine | [92] | |||
1484 | N1C2 stretching+N3C2 stretching | N1C2 stretching+N1C6 stretching | [92] | ||
1503 | NH bending | [92] | |||
1536 | N3C4 stretching-N1C2 stretching | C4C5 stretching-C4N9 stretching | [92] | ||
1542 | (N-H) in plane bending mode | (C=C) stretching mode | [48,49] | ||
1570–1585 | Adenine/Guanine (N3C4-C4C5 stretching) | Adenine/Guanine (N3C4-C4C5 stretching) | [92] | ||
1655–1675 | C2=O-C2N3 Stretching | C=O Stretching and coupled to N–H and C–H asymmetric bending [mainly T] | [50,92] | ||
1680 | C6=O-C5C6 Stretching | [92] |
Bands (cm−1) | Nucleosides | References | ||||
---|---|---|---|---|---|---|
Sugar | Adenosine | Cytidine | Guanosine | Thymidine | ||
294 | D-ribose | [49] | ||||
310 | D-ribose | [49] | ||||
560 | Cytosine | [49] | ||||
602 | Cytosine+ D-ribose | [49] | ||||
675–680 | G ring breathing | [54] | ||||
730–735 | ring breath | [54] | ||||
762 | Cytosine+ D-ribose | [49] | ||||
780–795 | C ring breathing | T ring breathing | [49,54] | |||
850 | N-C-N Stretching | N-C-N Stretching | [54] | |||
858 | Bending mode of (C-N1-C) | [54] | ||||
908 | NH2 Rocking | [54] | ||||
950 | NH2 Rocking | NH2 Rocking | [54] | |||
986 | Cytosine+ D-ribose | [54] | ||||
1015–1025 | (N-C), N-Sugar Stretching | (N-C), N-Sugar Stretching | (N-C), N-Sugar Stretching | (N-C), N-Sugar Stretching | [54] | |
1066 | (N-C), N-Sugar Stretching | (N-C), N-Sugar Stretching | [54] | |||
1170 | C-C Stretching | [54] | ||||
1174 | C-C Stretching | [54] | ||||
1194 | Stretching(C-N1) | [49] | ||||
1224 | stretching C5-C6, Ring- CH3 stretching | [54] | ||||
1240 | C-C stretching, Ring-CH3 Stretching | [54] | ||||
1260–1295 | C2-N3 stretching | C in-plane, C3-N9 stretching/Cytosine+ D-ribose | [49,54] | |||
1296 | Cytosine+ D-ribose | [49] | ||||
1315–1325 | C-N Stretching Imidazole | C-N Stretching Imidazole | [54] | |||
1348 | C-N Stretching | C-N Stretching | [54] | |||
1363 | C-N Stretching pyrimidine | [54] | ||||
1380 | C-N Stretching Pyrimidine | [54] | ||||
1390 | CH3 Deformation | [54] | ||||
1417 | C4-C5 Stretching | [54] | ||||
1448 | C=N Stretching Pyrimidine | [54] | ||||
1478 | C=N Stretching Pyrimidine | [54] | ||||
1480–1490 | C=N Stretching imidazole | C=N Stretching Pyrimidine | [54] | |||
1533 | NH2 Deformation | [54] | ||||
1568 | Ring Stretching Pyrimidine | [54] | ||||
1570–1580 | A, G (Ring Stretching Pyrimidine) | A, G (Ring Stretching Pyrimidine) | T Ring Stretching Pyrimidine | [54] | ||
1594 | Cytosine | [49] | ||||
1615–1620 | NH2 Deformation | NH2 Deformation | [54] | |||
1664 | C=O Stretching | C=O Stretching | [54] | |||
1687 | NH 2 Scissoring | [54] |
Nucleosides | References | |||||
---|---|---|---|---|---|---|
Bands | Backbones | Adenosine | Cytidine | Guanosine | Thymidine | |
330 | Deoxy-adenine | [70] | ||||
499 | PO2- scissors | [93] | ||||
642 | Deoxyribose moiety in Cytosine | [94] | ||||
665–685 | G ring breathing | [83,93] | ||||
720–735 | A ring breathing | [70,93,94] | ||||
745–750 | O-P-O anti-symmetric | [83] | ||||
750–785 | C Ring breathing/deoxyribose moiety in Cytosine | T ring breathing/deoxyribose moiety in Thymine | [93,94] | |||
785–795 | O-P-O symmetric stretching | [83,93] | ||||
805–840 | O-P-O Stretching | [93,94] | ||||
880–960 | Deoxy-ribose ring/sugar vibration | [83,93,94] | ||||
1010 | Phosphate and sugar stretching mode | [70] | ||||
1018 | Deoxy- guanine (N-H deformation) | [83] | ||||
10751101 | PO2- symmetric Stretching/sugar stretching | [70,83,93,94] | ||||
1210–1260 | deoxy-adenine | Deoxy-cytosine/Ring mode [mainly] | Deoxy-Thymine, N–H deformation, C–N stretching [mainly] | [83,93,94] | ||
1292 | Deoxy-cytosine | [94] | ||||
1300,1310 | deoxy-adenine | [70,94] | ||||
1315 | Deoxy-guanine | [94] | ||||
1330–1340 | Deoxy-adenine/A ring mode | Deoxy-guanine/A ring mode | [83,93,94] | |||
1374 | Deoxy-adenine | Deoxy-cytosine | Deoxy-thymine | [94] | ||
1419 | 2’ CH2 scissors | [93] | ||||
1420 | Deoxy-adenine | [94] | ||||
1463 | 5’ CH2 scissors | [93] | ||||
1480–1490 | Ring mode (G, A)/Deoxy-adenine | Ring mode (G, A)/Deoxy-guanine | [93,94] | |||
1575–1580 | Ring mode (G, A)/Deoxy-adenine | Ring mode (G, A)/Deoxy-guanine | [93,94] | |||
1580–1585 | Deoxy-guanine | [83] | ||||
1665–1670 | C=O Stretching | C=O Stretching | [83,93] |
Bands (cm−1) | DNA Bases | References | |||
---|---|---|---|---|---|
Adenine | Cytosine | Guanine | Thymine | ||
314 | C2N1 bending—C6N1 bending | [92] | |||
326 | -C6N12 bending +N9 bending | [92] | |||
370 | C2N14 bending + N9 bending | [92] | |||
470 | C2N1C6 bending + N3C4C5 bending | [92] | |||
490 | C2N1C6 bending + N3C4C5 bending | [92] | |||
500–515 | G (C2N1C 5bending + N9R-C5C4N bending) | [92] | |||
548 | C5C4N bending-C2N1C6 bending | [92] | |||
558 | -N1C2N3 bending + C2N3C4 bending | [92] | |||
586 | N1C2N3 bending-C2N3C4 bending | [92] | |||
595–620 | C (C2=O bending + N1 bending + C4N11 bending) | [2] | |||
626 | Adenine (N9 bending +C6N12 bending-N7C5C6 bending) | [92] | |||
632 | N1C2O bending + N3C4O bending | [92] | |||
656 | Ring breathing mode (in-plane, breath six-membered ring In-phase except C4C5) | [92] | |||
690 | C5C4 bending- N3C4 bending+ N1C2O bending–N2C2O bending | [92] | |||
732 | A Ring stretching | [92] | |||
775,780 | C ring breathing | T Ring breathing/Wag of C–H on C=C | [50,92] | ||
785,800 | C Ring breathing | [92] | |||
812 | N1C2 stretching +N1Rstretching + C5C 4 stretching + N1C6 stretching + N3C4 stretching | [92] | |||
852 | -N7C5 stretching -N1C2N3 bending | [92] | |||
960 | NH2 rocking + N9C6stretching | [92] | |||
986 | C5H bending | [92] | |||
995 | Ring breathing coupled to in-plane –CH3 asymmetric stretching | [50] | |||
1020 | NH2 rocking+C6Hbending | [92] | |||
1028 | NH2rocking+N9Rstretching | [92] | |||
1118 | N1Rstretching-C2N3stretching | [92] | |||
1122 | N3C2stretching+N9Rstretching | [92] | |||
1140 | -N1Rstretching +C6Hbending | [92] | |||
1154 | -C8N7stretching+N9Rstretching-C4N3stretching | [92] | |||
1184 | -C6bendingH +C2N3stretching | [92] | |||
1190–1200 | C8N7stretching + C6N12Hbending-C1N2 stretching | C6Hbending +C4N11 | [92] | ||
1218 | =CN stretching | [50] | |||
1222 | C8Hbending+C8N7stretching | [92] | |||
1264 | N1C2stretching+C2Hbending+N9C8stretching+C8N7stretching | [92] | |||
1275–1280 | -C8N7stretching-N1C6 stretching +N7C5stretching | Ring stretching+CHbreathing | [92] | ||
1306 | N1C6stretching+C5C6stretching | [92] | |||
1330–1335 | Ring breathing | C8N9stretching-N7C8stretching | [62] | ||
1349 | N–H and C–H in-plane bending | [50] | |||
1370 | C8N9stretching+C2N3stretching | [92] | |||
1384 | C2N3stretching-C2(ND2) stretching | [92] | |||
1390 | -N1C6stretching+C6N12stretching | [92] | |||
1404 | –N–H deformation | [50] | |||
1460 | C2Hbending-N1C2stretching+N3C2stretching | [92] | |||
1470–1485 | N1C6stretching + N3C4stretching | - N1C2stretching + C2N3stretching | [92] | ||
1504–1515 | -N3C4stretching-N1C2stretching | C4C5stretching-C4N9sttretching | NH bending | [92] | |
1582 | Adenine | Stretching vibration (NH2)/C4C5stretching-C5C6stretching | N3C4stretching-C4C5stretching | N3C4+N1C2stretching+C6C5stretching-N1C6stretching | [92] |
1635, 1640 | C2=Ostretching-C2N3stretching | [92] | |||
1652 | C=O stretching and coupled to N–H and C–H asymmetric bending | [92] | |||
1680 | C6=Ostretching-C5C6stretching | [92] |
Bands (cm−1) | Nucleosides | References | ||||
---|---|---|---|---|---|---|
Sugar | Adenosine | Cytidine | Guanosine | Thymidine | ||
225 | Au-N stretching | [54] | ||||
231 | Au-N stretching | [54] | ||||
243 | Au-O stretching | [54] | ||||
728–735 | A Ring breathing Pyrimidine | [54,70] | ||||
742 | A ring vibration | [62] | ||||
796 | T Ring breathing Pyrimidine | [54] | ||||
802 | C Ring breathing Pyrimidine | [54] | ||||
850 | Deoxyribose ring/sugar vibration | [14] | ||||
919 | Deoxyribose ring/Ribose,C-C stretching | NH2 Rocking | [54] | |||
949 | NH2 Rocking | [54] | ||||
954 | NH2 Rocking | [54] | ||||
1019 | N-Sugar Stretching | [54] | ||||
1032 | N-Sugar Stretching | [54] | ||||
1033 | N-Sugar Stretching | [54] | ||||
1035 | N-Sugar Stretching | [54] | ||||
1171 | C5-C6 Stretching | [54] | ||||
1179 | C5-C6 Stretching | [54] | ||||
1226 | Ring-CH3 Stretching | [54] | ||||
1233 | Ring-CH3 Stretching | [54] | ||||
1254 | C8-N9 Stretching | [54] | ||||
1293 | C2-N3 Stretching | [54] | ||||
1318 | C-N Stretching Imdazole | [54] | ||||
1320 | C6-N in-plane Stretching (ring skeleton vibration) | [62] | ||||
1330 | A ring vibration | [62] | ||||
1389 | C6-N1 Stretching Pyrimidine | [54] | ||||
1419 | C4-C5 Stretching | [54] | ||||
1450 | C=N Stretching Pyrimidine | [54] | ||||
1458 | C=N Stretching Pyrimidine | [54] | ||||
1472 | C=N Stretching Pyrimidine | [54] | ||||
1486 | C=N Stretching Imidazole | [54] | ||||
1498 | NH2 Deformation | [54] | ||||
1551 | A Ring Stretching | [54] | ||||
1572 | C Ring Stretching Pyrimidine | [54] | ||||
1574 | T Ring Stretching Pyrimidine | [54] | ||||
1577 | G Ring Stretching Pyrimidine | [54] | ||||
1594 | NH2 Deformation | [54] | ||||
1635, 1450 | C=O Stretching | C=O Stretching | C=O Stretching | [54] | ||
1657 | NH2 Scissoring | [54] |
Bands (cm−1) | Nucleosides | References | ||||
---|---|---|---|---|---|---|
Backbones | Adenosine | Cytidine | Guanosine | Thymidine | ||
326 | C-NH2 in-plane bend | [70] | ||||
650–660 | G in-plane, breath six-membered ring | [67,68] | ||||
680–690 | A out-of-plane, deformation R5 ring, R6 (torsion C4-C5-C6, wagging N3-C4-N9) | C out-of-plane, bending C5-C4, N3-C4) | Ring breathing mode | [67,68] | ||
700–710 | G in-plane, bend (ring) | T in-plane, ring breath | [68] | |||
730, 735 | A ring breath | G out-of-plane, deformation R6 (wagging N1-C2-N3) torsion NH2 | [67,68,70] | |||
735–740 | A in-plane, ring breath | [62,68] | ||||
786 | A out-of-plane, deformation R6 (w C4-C5-C6, w C8-H) | [68] | ||||
792 | C in-plane, ring breath | [68] | ||||
799 | T in-plane ring breath | [68] | ||||
850 | G in-plane, deformation, six-membered ring-, five-membered ring | [68] | ||||
882 | G in-plane, NH bend | [68] | ||||
957 | G in-plane, deformation, five-membered ring (squeeze N7-C8-N9) | [68] | ||||
1023 | Amino group | [67] | ||||
1138 | G in-plane, bending C8-H, str C4-N9 rock NH2 | [68] | ||||
1212 | T in-plane, str C5-C6, bending CH3, strN3-C4, C6-N1 | [68] | ||||
1235 | G in-plane, pyrimidic character | [68] | ||||
1260 | C in-plane, str C4-N3 | [68] | ||||
1280 | C in-plane, str C2-N3 | [68] | ||||
1295 | G in-plane, str N7-C8, C2-N3, bending N1-H | [68] | ||||
1299 | Skeleton vibration | [67] | ||||
1310–1315 | C in-plane, str N1-C6+C5-C6 | in, bend N3−H, C6−H | [68] | |||
1320–1325 | ring skeleton vibration | [67,70] | ||||
1328 | G in-plane, bending C8-H, str C5-N7-C8 | [68] | ||||
1330–1345 | A in-plane, ring skeleton vibration: str C5-N7, N1-C2 bend C2-H, C8-H | [62,68,70] | ||||
1360 | T | [67] | ||||
1380 | Thymine in-plane, bend C5-Methyl | [68] | ||||
1385 | G in-plane, str C2-N3, C6-N1, C5-C6,C4-N9, C5-N7 | [68] | ||||
1402 | 2’ CH2 ciseaux | A in-plane, bending C2-H, str C8-N7, N1-C2 | [68] | |||
1463 | A in-plane, str C2-N3, N1-C6, bending C2-H, scissoring NH2 | [68] | ||||
1465–1475 | C in-plane, str C4-N3 + C2-N3 | G in-plane, str N7=C8 and C8-N9 | [68] | |||
1484 | C in-plane, str N1-C6 + str N3-C4 | [68] | ||||
1495 | T bend C6-H, N-H | [68] | ||||
1530–1535 | A in-plane, str N3-C4, N1-C6, C5-N7, N7-C8, scissoring NH2 | G in-plane, str C=C, str N3-C4 | [68] |
Bands (cm−1) | Nucleosides | References | ||||
---|---|---|---|---|---|---|
Backbones | Adenosine | Cytidine | Guanosine | Thymidine | ||
510 | G ring breathing | [39] | ||||
595–560 | C ring deformation (C2=O bending +N1R bending +C4N11bending) | [39,95] | ||||
650–685 | G ring breathing | [52,62,65,79] | ||||
720–740 | A in-plane, ring breathing | T ring breathing/deoxythymine (mainly T) | [39,67,71,74] | |||
775,780 | C ring breathing | [72] | ||||
785–795 | P skeleton stretching | C in-plane, ring breathing Pyrimidine [mainly C] | T Ring breathing (Pyrimidine) | [39,67,72,73,95] | ||
800–815 | O-P-O symmetric stretching, backbone vibration | [39] | ||||
919 | Deoxyribose ring (C-C stretching) | [39] | ||||
958 | Ribose-Phosphate | [39] | ||||
1020–1025 | C (NH2 rocking+C6H bending adsorbed on the surface) | [67,95] | ||||
1028 | Ribose + C | -N9R5 stretching-N1C2N3 bending | [39] | |||
1075/1085 | P- symmetric. Stretch, backbone | [39] | ||||
1087/1089 | V (P) stretching vibration of phosphodioxy moiety | [39,74,95] | ||||
1155- 1175 | Deoxyadenine | [39] | ||||
1179 | Desoxythymine | [39] | ||||
1212 | T in-plane, C5-C6 stretching, CH3 bending, N3-C4, C6-N1 stretching | [39] | ||||
1240/1266 | C Ring stretching | T Ring stretching | [39,74,95] | |||
1299 | C (skeleton vibration) | [67] | ||||
1325–1335 | A ring mode | G (ring in-plane, bending C8-H, stretching C5-N7-C8) | [39,74] | |||
1360 | T breathing mode vibration | [67] | ||||
1387 | Desoxyadenine | Desoxyguanine | Desoxythymine | [39] | ||
1435–1440 | Backbone (CH2 deformation) | Deoxythymine | [72] | |||
1485 | A ring mode (mainly G) | G ring mode (mainly G) | [39] | |||
1500–1510 | A ring mode (mainly G) | G ring mode (mainly G) | [39] | |||
1570–1580 | A ring mode | G ring mode | [39,72,73] | |||
1640–1645 | C (C=O Stretching) | T (C=O Stretching) (mainly T) | [39,73] |
Bands (cm−1) | Nucleosides | References | ||||
---|---|---|---|---|---|---|
Backbones | Adenosine | Cytidine | Guanine | Thymidine | ||
500–505 | G ring deformation | [39,76] | ||||
595–625 | C ring deformation | [39,76] | ||||
630 | Adenine | [71] | ||||
665/680 | G ring breathing | [39,76] | ||||
730–740 | A ring breathing | [39,76] | ||||
785–790 | C ring breathing (Mainly C) | T ring breathing (mainly C) | [39,76] | |||
814 | O-P-O symmetric stretching | [39] | ||||
919 | ribose ring (C-C stretching) | [39] | ||||
958 | Ribose-Phosphate | [39] | ||||
1010–1035 | Deoxy-phosphate backbone (P-O-P) | [60] | ||||
1090 | P symmetric stretching | [39,76] | ||||
1178 | T | [39,76] | ||||
1212 | T (in-plane, str C5-C6, bending CH3, strN3-C4, C6-N1) | [39] | ||||
1247/1264 | C+G (Ring stretching) [mainly C] | C+G (Ring stretching) [mainly C] | [39,76] | |||
1320–1330 | A+G ring modes | A+G ring modes | [39,76] | |||
1354 | Guanosine | [76] | ||||
1378 | Thymine | [76] | ||||
1415–1425 | Backbone | [39,76] | ||||
1485–1490 | G+A, ring modes (C=N stretching) [mainly G] | G+A, ring modes (C=N stretching) [mainly G] | [39,76] | |||
1506 | G+A, ring modes [mainly G] | G+A, ring modes [mainly G] | [39] | |||
1509 | A, v(pyrimidine) | [76] | ||||
1528 | C ring | [76] | ||||
1575 | Ring mode (A, G) | Ring mode (A, G) | [39,76] | |||
1628 | C (C=O Stretching) | [76] | ||||
1650–1655 | T+C (C=O stretching) | T+C (C=O stretching) | [39,76] | |||
1684 | T (C=O stretching) | [76] | ||||
1721 | G (C=O stretching) | [39] |
Author Contributions
Funding
Conflicts of Interest
References
- Campolongo, M.J.; Tan, S.J.; Xu, J.; Luo, D. DNA Nanomedicine: Engineering DNA as a Polymer for Therapeutic and Diagnostic Applications. Adv. Drug Deliv. Rev. 2010, 62, 606–616. [Google Scholar] [CrossRef]
- Goris, J.; Konstantinidis, K.T.; Klappenbach, J.A.; Coenye, T.; Vandamme, P.; Tiedje, J.M. DNA–DNA Hybridization Values and Their Relationship to Whole-Genome Sequence Similarities. Int. J. Syst. Evol. Microbiol. 2007, 57, 81–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chee, M.; Yang, R.; Hubbell, E.; Berno, A.; Huang, X.C.; Stern, D.; Winkler, J.; Lockhart, D.J.; Morris, M.S.; Fodor, S.P.A. Accessing Genetic Information with High-Density DNA Arrays. Science 1996, 274, 610–614. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Molecular Biology of the Cell; Garland Science: New York, NY, USA, 2002. [Google Scholar]
- Dey, B.; Thukral, S.; Krishnan, S.; Chakrobarty, M.; Gupta, S.; Manghani, C.; Rani, V. DNA–Protein Interactions: Methods for Detection and Analysis. Mol. Cell Biochem. 2012, 365, 279–299. [Google Scholar] [CrossRef]
- Rauf, S.; Gooding, J.J.; Akhtar, K.; Ghauri, M.A.; Rahman, M.; Anwar, M.A.; Khalid, A.M. Electrochemical Approach of Anticancer Drugs–DNA Interaction. J. Pharm. Biomed. Anal. 2005, 37, 205–217. [Google Scholar] [CrossRef] [PubMed]
- Hassibi, A.; Vikalo, H.; Riechmann, J.L.; Hassibi, B. Real-Time DNA Microarray Analysis. Nucleic Acids Res. 2009, 37, e132. [Google Scholar] [CrossRef] [Green Version]
- Mavragani, I.V.; Nikitaki, Z.; Kalospyros, S.A.; Georgakilas, A.G. Ionizing Radiation and Complex DNA Damage: From Prediction to Detection Challenges and Biological Significance. Cancers 2019, 11, 1789. [Google Scholar] [CrossRef] [Green Version]
- Gorgannezhad, L.; Umer, M.; Islam, M.N.; Nguyen, N.-T.; Shiddiky, M.J.A. Circulating Tumor DNA and Liquid Biopsy: Opportunities, Challenges, and Recent Advances in Detection Technologies. Lab Chip 2018, 18, 1174–1196. [Google Scholar] [CrossRef]
- Dunbar, S.A.; Zee, C.A.V.; Oliver, K.G.; Karem, K.L.; Jacobson, J.W. Quantitative, Multiplexed Detection of Bacterial Pathogens: DNA and Protein Applications of the Luminex LabMAPTM System. J. Microbiol. Methods 2003, 53, 245–252. [Google Scholar] [CrossRef]
- Gerion, D.; Chen, F.; Kannan, B.; Fu, A.; Parak, W.J.; Chen, D.J.; Majumdar, A.; Alivisatos, A.P. Room-Temperature Single-Nucleotide Polymorphism and Multiallele DNA Detection Using Fluorescent Nanocrystals and Microarrays. Available online: https://pubs.acs.org/doi/abs/10.1021/ac034482j (accessed on 6 September 2021).
- Emlen, W.; Jarusiripipat, P.; Burdick, G. A New ELISA for the Detection of Double-Stranded DNA Antibodies. J. Immunol. Methods 1990, 132, 91–101. [Google Scholar] [CrossRef]
- Wood, B.R. The Importance of Hydration and DNA Conformation in Interpreting Infrared Spectra of Cells and Tissues. Chem. Soc. Rev. 2016, 45, 1980–1998. [Google Scholar] [CrossRef] [PubMed]
- Mahajan, S.; Richardson, J.; Brown, T.; Bartlett, P.N. SERS-Melting: A New Method for Discriminating Mutations in DNA Sequences. Available online: https://pubs.acs.org/doi/abs/10.1021/ja805517q (accessed on 13 April 2021).
- Sun, L.; Yu, C.; Irudayaraj, J. Surface-Enhanced Raman Scattering Based Nonfluorescent Probe for Multiplex DNA Detection. Available online: https://pubs.acs.org/doi/abs/10.1021/ac070078z (accessed on 6 September 2021).
- Singh, R. CV Raman and the Discovery of the Raman Effect. Phys. Perspect. 2002, 4, 399–420. [Google Scholar] [CrossRef]
- Peticolas, W.L. Raman Spectroscopy of DNA and Proteins. Methods Enzymol. 1995, 246, 389–416. [Google Scholar] [CrossRef]
- Thomas, G.J.; Wang, A.H.J. Laser Raman Spectroscopy of Nucleic Acids. In Nucleic Acids and Molecular Biology; Eckstein, F., Lilley, D.M.J., Eds.; Springer: Berlin/Heidelberg, Germany, 1988; Volume 2. [Google Scholar] [CrossRef]
- Duguid, J.G.; Bloomfield, V.A.; Benevides, J.M.; Thomas, G.J. DNA Melting Investigated by Differential Scanning Calorimetry and Raman Spectroscopy. Biophys. J. 1996, 71, 3350–3360. [Google Scholar] [CrossRef] [Green Version]
- Nishimura, Y.; Tsuboi, M.; Nakano, T.; Higuchi, S.; Sato, T.; Shida, T.; Uesugi, S.; Ohtsuka, E.; Ikehara, M. Raman Diagnosis of Nucleic Acid Structure: Sugar-Puckering and Glycosidic Conformation in the Guanosine Moiety. Nucleic Acids Res. 1983, 11, 1579–1588. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis, D.I.; Goodacre, R. Metabolic Fingerprinting in Disease Diagnosis: Biomedical Applications of Infrared and Raman Spectroscopy. Analyst 2006, 131, 875–885. [Google Scholar] [CrossRef]
- Buric, M.P.; Chen, K.P.; Falk, J.; Woodruff, S.D. Improved Sensitivity Gas Detection by Spontaneous Raman Scattering. Appl. Opt. AO 2009, 48, 4424–4429. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fleischmann, M.; Hendra, P.J.; McQuillan, A.J. Raman Spectra of Pyridine Adsorbed at a Silver Electrode. Chem. Phys. Lett. 1974, 26, 163–166. [Google Scholar] [CrossRef]
- McQuillan, A.J. The Discovery of Surface-Enhanced Raman Scattering. Notes Rec. R. Soc. 2009, 63, 105–109. [Google Scholar] [CrossRef] [Green Version]
- Jeanmaire, D.L.; Van Duyne, R.P. Surface Raman Spectroelectrochemistry: Part I. Heterocyclic, Aromatic, and Aliphatic Amines Adsorbed on the Anodized Silver Electrode. J. Electroanal. Chem. Interfacial Electrochem. 1977, 84, 1–20. [Google Scholar] [CrossRef]
- Li, Y.; Qi, X.; Lei, C.; Yue, Q.; Zhang, S. Simultaneous SERS Detection and Imaging of Two Biomarkers on the Cancer Cell Surface by Self-Assembly of Branched DNA–Gold Nanoaggregates. Chem. Commun. 2014, 50, 9907–9909. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Colas, F. Propriétés optiques et thermoplasmoniques de réseaux de nanocylindres: Applications à la détection de molécules et de micro-objets. Phdthesis. Ph.D. Thesis, Université Sorbonne Paris Cité, Paris, France, 2017. [Google Scholar]
- Yoshida, K.; Itoh, T.; Biju, V.; Ishikawa, M.; Ozaki, Y. Experimental Evaluation of the Twofold Electromagnetic Enhancement Theory of Surface-Enhanced Resonance Raman Scattering. Phys. Rev. B 2009, 79, 085419. [Google Scholar] [CrossRef]
- Ding, S.-Y.; You, E.-M.; Tian, Z.-Q.; Moskovits, M. Electromagnetic Theories of Surface-Enhanced Raman Spectroscopy. Chem. Soc. Rev. 2017, 46, 4042–4076. [Google Scholar] [CrossRef]
- Albrecht, A.C. On the Theory of Raman Intensities. J. Chem. Phys. 2004, 34, 1476. [Google Scholar] [CrossRef]
- Guillot, N.; De La Chapelle, M.L. Lithographied nanostructures as nanosensors. J. Nanophotonics 2012, 6, 064506. [Google Scholar] [CrossRef]
- Edely, M.; Delorme, N.; Siniscalco, D.; Bardeau, J.-F. Alternative strategy based on scanning probe lithography for patterning complex metallic nanostrutures on rigid or flexible substrates. Adv. Mater. Technol. 2018, 3, 1800134. [Google Scholar] [CrossRef]
- Azziz, A.; Safar, W.; Xiang, Y.; Edely, M.; de la Chapelle, M.L. Sensing performances of commercial SERS substrates. J. Mol. Struct. 2022, 1248, 131519. [Google Scholar] [CrossRef]
- Li, X.; Keshavarz, M.; Kassanos, P.; Kidy, Z.; Roddan, A.; Yeatman, E.; Thompson, A.J. SERS Detection of Breast Cancer-Derived Exosomes Using a Nanostructured Pt-Black Template. Adv. Sens. Res. 2023, 2, 2200039. [Google Scholar] [CrossRef]
- Cottat, M.; Yasukuni, R.; Homma, Y.; Lidgi-Guigui, N.; Varin-Blank, N.; de la Chapelle, M.L.; Le Roy, C. Phosphorylation impact on spleen tyrosine kinase conformation by surface enhanced Raman spectroscopy. Sci. Rep. 2017, 7, 39766. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Su, S.; Xu, T.; Zhong, Y.; Zapien, J.A.; Li, J.; Fan, C.; Lee, S.-T. Silicon Nanowires-Based Highly-Efficient SERS-Active Platform for Ultrasensitive DNA Detection. Nano Today 2011, 6, 122–130. [Google Scholar] [CrossRef]
- He, Z.; Han, Z.; Kizer, M.; Linhardt, R.J.; Wang, X.; Sinyukov, A.M.; Wang, J.; Deckert, V.; Sokolov, A.V.; Hu, J.; et al. Tip-Enhanced Raman Imaging of Single-Stranded DNA with Single Base Resolution. J. Am. Chem. Soc. 2018, 141, 753–757. [Google Scholar] [CrossRef] [PubMed]
- Pashaee, F.; Tabatabaei, M.; Caetano, F.A.; Ferguson, S.S.G.; Lagugné-Labarthet, F. Tip-Enhanced Raman Spectroscopy: Plasmid-Free vs. Plasmid-Embedded DNA. Analyst 2016, 141, 3251–3258. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Rico, E.; Alvarez-Puebla, R.A.; Guerrini, L. Direct Surface-Enhanced Raman Scattering (SERS) Spectroscopy of Nucleic Acids: From Fundamental Studies to Real-Life Applications. Chem. Soc. Rev. 2018, 47, 4909–4923. [Google Scholar] [CrossRef]
- Deckert-Gaudig, T.; Deckert, V. Tip-Enhanced Raman Scattering ( TERS ) and High-Resolution Bio Nano-Analysis—A Comparison. Phys. Chem. Chem. Phys. 2010, 12, 12040–12049. [Google Scholar] [CrossRef]
- Bailo, E.; Deckert, V. Tip-Enhanced Raman Scattering. Chem. Soc. Rev. 2008, 37, 921–930. [Google Scholar] [CrossRef]
- Dahm, R. Friedrich Miescher and the Discovery of DNA. Dev. Biol. 2005, 278, 274–288. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Patejko, M.; Struck-Lewicka, W.; Siluk, D.; Waszczuk-Jankowska, M.; Markuszewski, M.J. Urinary Nucleosides and Deoxynucleosides. Adv. Clin. Chem. 2018, 83, 1–51. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.D.; Crick, F.H.C. The structure of DNA. Cold Spring Harb. Symp. Quant. Biol. 1953, 18, 123–131. [Google Scholar] [CrossRef]
- Ussery, D.W. DNA Structure: A-, B- and Z-DNA Helix Families. Encycl. Life Sci. 2002, 1, e003122. [Google Scholar]
- Laigle, A.; Chinsky, L.; Turpin, P.-Y.; Liquier, J.; Taillandier, E. Spécificité des interactions DNA-peptides et DNA-histones en spectroscopie de résonance Raman dans l’ultraviolet. Biochimie 1982, 63, 831–833. [Google Scholar] [CrossRef]
- Mathlouthi, M.; Seuvre, A.M.; Koenig, J.L. Ft.-ir and Laser-Raman Spectra of Adenine and Adenosine. Carbohydr. Res. 1984, 131, 1–15. [Google Scholar] [CrossRef]
- Mathlouthi, M.; Seuvre, A.M.; Koenig, J.L. F.T.-I.R. and Laser-Raman Spectra of Guanine and Guanosine. Carbohydr. Res. 1986, 146, 15–27. [Google Scholar] [CrossRef] [PubMed]
- Mathlouthi, M.; Seuvre, A.M.; Koenig, J.L. F.T.-I.R. and Laser-Raman Spectra of Cytosine and Cytidine. Carbohydr. Res. 1986, 146, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Li, Q.; Tao, W.; Yu, B.; Du, Y. Quantitative Analysis of Thymine with Surface-Enhanced Raman Spectroscopy and Partial Least Squares (PLS) Regression. Anal. Bioanal. Chem. 2010, 398, 1827–1832. [Google Scholar] [CrossRef] [PubMed]
- Carmona, P.; Molina, M. Raman and Infrared Spectra of D-ribose and D-ribose 5-phosphate. J. Raman Spectrosc. 1990, 21, 395–400. [Google Scholar] [CrossRef]
- Nishimura, Y.; Tsuboi, M.; Sato, T. Structure-Spectrum Correlations in Nucleic Acids. I. Raman Lines in the 600–700 Cm −1 Range of Guanosine Residue. Nucleic Acids Res 1984, 12, 6901–6908. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.A.; Li, J.; Anderson, A.; Smith, W.; Griffey, R.H.; Mohan, V. Temperature-dependent Raman and Infrared Spectra of Nucleosides. II—Cytidine. J. Raman Spectrosc. 2001, 32, 795–802. [Google Scholar] [CrossRef]
- Jang, N.-H. The Coordination Chemistry of DNA Nucleosides on Gold Nanoparticles as a Probe by SERS-Bulletin of the Korean Chemical Society|Korea Science. Available online: http://www.koreascience.or.kr/article/JAKO200202727080320.page (accessed on 24 March 2020).
- Mathlouthi, M.; Seuvre, A.M.; Koenig, J.L. F.T.-I.R. and Laser-Raman Spectra of Thymine and Thymidine. Carbohydr. Res. 1984, 134, 23–38. [Google Scholar] [CrossRef]
- Rimai, L. Studies of Raman Spectra of Water Solutions of Adenosine Tri-, Di-, and Monophosphate and Some Related Compounds. Biophys. J. 1969, 9, 320–329. [Google Scholar] [CrossRef] [Green Version]
- Forrest, G.; Lord, R.C. Laser Raman Spectroscopy of Biomolecules. X-frequency and Intensity of the Phosphodiester Stretching Vibrations of Cyclic Nucleotides. J. Raman Spectrosc. 1977, 6, 32–37. [Google Scholar] [CrossRef]
- Benevides, J.M.; Wang, A.H.J.; Van der Marel, G.A.; Van Boom, J.H.; Thomas, G.J., Jr. Effect of the G.T Mismatch on Backbone and Sugar Conformations of Z-DNA and B-DNA: Analysis by Raman Spectroscopy of Crystal and Solution Structures of d(CGCGTG) and d(CGCGCG). Biochemistry 1989, 28, 304–310. [Google Scholar] [CrossRef]
- Benevides, J.M.; Wang, A.H.J.; Van der Marel, G.A.; Van Boom, J.H.; Thomas, G.J., Jr. Crystal and Solution Structures of the B-DNA Dodecamer d(CGCAAATTTGCG) Probed by Raman Spectroscopy: Heterogeneity in the Crystal Structure Does Not Persist in the Solution Structure. Biochemistry 1988, 27, 931–938. [Google Scholar] [CrossRef] [PubMed]
- Prescott, B.; Steinmetz, W.; Thomas, G.J. Characterization of DNA Structures by Laser Raman Spectroscopy. Biopolymers 1984, 23, 235–256. [Google Scholar] [CrossRef] [PubMed]
- Thornton, J.; Forcé, R.K. Surface-Enhanced Raman Spectroscopy of Nucleic Acid Compounds and Their Mixtures. Appl. Spectrosc. AS 1991, 45, 1522–1526. [Google Scholar] [CrossRef]
- Bell, S.E.J.; Sirimuthu, N.M.S. Surface-Enhanced Raman Spectroscopy (SERS) for Sub-Micromolar Detection of DNA/RNA Mononucleotides. J. Am. Chem. Soc. 2006, 128, 15580–15581. [Google Scholar] [CrossRef]
- Potara, M.; Baia, M.; Farcau, C.; Astilean, S. Chitosan-Coated Anisotropic Silver Nanoparticles as a SERS Substrate for Single-Molecule Detection. Nanotechnology 2012, 23, 055501. [Google Scholar] [CrossRef] [PubMed]
- Camafeita, L.E.; Sánchez-Cortés, S.; García-Ramos, J.V. SERS of Guanine and Its Alkyl Derivatives on Gold Sols. J. Raman Spectrosc. 1996, 27, 533–537. [Google Scholar] [CrossRef]
- Śanchez-Cortés, S.; Garcia-Ramos, J.V. SERS of Cytosine and Its Methylated Derivatives on Metal Colloids. J. Raman Spectrosc. 1992, 23, 61–66. [Google Scholar] [CrossRef]
- Agarwal, S.; Ray, B.; Mehrotra, R. SERS as an Advanced Tool for Investigating Chloroethyl Nitrosourea Derivatives Complexation with DNA. Int. J. Biol. Macromol. 2015, 81, 891–897. [Google Scholar] [CrossRef]
- Green, M.; Liu, F.-M.; Cohen, L.; Köllensperger, P.; Cass, T. SERS Platforms for High Density DNA Arrays. Faraday Discuss. 2006, 132, 269–280. [Google Scholar] [CrossRef]
- He, L.; Langlet, M.; Bouvier, P.; Calers, C.; Pradier, C.-M.; Stambouli, V. New Insights into Surface-Enhanced Raman Spectroscopy Label-Free Detection of DNA on Ag/TiO2 Substrate. J. Phys. Chem. C 2014, 118, 25658–25670. [Google Scholar] [CrossRef]
- Kundu, J.; Neumann, O.; Janesko, B.G.; Zhang, D.; Lal, S.; Barhoumi, A.; Scuseria, G.E.; Halas, N.J. Adenine− and Adenosine Monophosphate (AMP)−Gold Binding Interactions Studied by Surface-Enhanced Raman and Infrared Spectroscopies. J. Phys. Chem. C 2009, 113, 14390–14397. [Google Scholar] [CrossRef]
- Oldenburg, S.; Averitt, R.; Westcott, S.; Halas, N. Nanoengineering of Optical Resonances. Chem. Phys. Lett. 1998, 288, 243–247. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Bell, S.E.J. DNA Reorientation on Au Nanoparticles: Label-Free Detection of Hybridization by Surface Enhanced Raman Spectroscopy. Chem. Commun. 2011, 47, 10966–10968. [Google Scholar] [CrossRef]
- Papadopoulou, E.; Bell, S.E.J. Label-Free Detection of Single-Base Mismatches in DNA by Surface-Enhanced Raman Spectroscopy. Angew. Chem. Int. Ed. 2011, 50, 9058–9061. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Papadopoulou, E.; Bell, S.E.J. Label-Free Detection of Nanomolar Unmodified Single- and Double-Stranded DNA by Using Surface-Enhanced Raman Spectroscopy on Ag and Au Colloids. Chem.–A Eur. J. 2012, 18, 5394–5400. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.-J.; Lei, Z.-C.; Li, J.; Zong, C.; Yang, C.J.; Ren, B. Label-Free Surface-Enhanced Raman Spectroscopy Detection of DNA with Single-Base Sensitivity. J. Am. Chem. Soc. 2015, 137, 5149–5154. Available online: https://pubs.acs.org/doi/abs/10.1021/jacs.5b01426 (accessed on 17 March 2020). [CrossRef] [PubMed]
- Guerrini, L.; Krpetić, Ž.; van Lierop, D.; Alvarez-Puebla, R.A.; Graham, D. Direct Surface-Enhanced Raman Scattering Analysis of DNA Duplexes. Angew. Chem. Int. Ed. 2015, 54, 1144–1148. [Google Scholar] [CrossRef]
- Masetti, M.; Xie, H.; Krpetić, Ž.; Recanatini, M.; Alvarez-Puebla, R.A.; Guerrini, L. Revealing DNA Interactions with Exogenous Agents by Surface-Enhanced Raman Scattering. J. Am. Chem. Soc. 2015, 137, 469–476. [Google Scholar] [CrossRef]
- Hartwich, G. Characterization of DNA Probes Immobilized on Gold Surfaces. J. Am. Chem. Soc. 1997, 119, 8916–8920. Available online: https://pubs.acs.org/doi/abs/10.1021/ja9719586 (accessed on 16 March 2020).
- Barhoumi, A.; Zhang, D.; Halas, N.J. Correlation of Molecular Orientation and Packing Density in a DsDNA Self-Assembled Monolayer Observable with Surface-Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2008, 130, 14040–14041. [Google Scholar] [CrossRef]
- Barhoumi, A.; Zhang, D.; Tam, F.; Halas, N.J. Surface-Enhanced Raman Spectroscopy of DNA. J. Am. Chem. Soc. 2008, 130, 5523–5529. [Google Scholar] [CrossRef]
- Barhoumi, A.; Halas, N.J. Label-Free Detection of DNA Hybridization Using Surface Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2010, 132, 12792–12793. [Google Scholar] [CrossRef] [PubMed]
- Waybrant, B.; Pearce, T.R.; Kokkoli, E. Effect of Polyethylene Glycol, Alkyl, and Oligonucleotide Spacers on the Binding, Secondary Structure, and Self-Assembly of Fractalkine Binding FKN-S2 Aptamer-Amphiphiles. Available online: https://pubs.acs.org/doi/abs/10.1021/la500403v (accessed on 30 April 2020).
- Demers, L.M.; Mirkin, C.A.; Mucic, R.C.; Reynolds, R.A.; Letsinger, R.L.; Elghanian, R.; Viswanadham, G. A Fluorescence-Based Method for Determining the Surface Coverage and Hybridization Efficiency of Thiol-Capped Oligonucleotides Bound to Gold Thin Films and Nanoparticles. Anal. Chem. 2000, 72, 5535–5541. Available online: https://pubs.acs.org/doi/abs/10.1021/ac0006627 (accessed on 29 April 2020). [CrossRef] [PubMed]
- Pagba, C.V.; Lane, S.M.; Wachsmann-Hogiu, S. Raman and Surface-enhanced Raman Spectroscopic Studies of the 15-mer DNA Thrombin-binding Aptamer. J. Raman Spectrosc. 2010, 41, 241–247. [Google Scholar] [CrossRef]
- Yasukuni, R.; Gillibert, R.; Triba, M.N.; Grinyte, R.; Pavlov, V.; Chapelle, M.L. de la Quantitative Analysis of SERS Spectra of MnSOD over Fluctuated Aptamer Signals Using Multivariate Statistics. Nanophotonics 2019, 8, 1477–1483. [Google Scholar] [CrossRef]
- Safar, W.; Tatar, A.-S.; Leray, A.; Potara, M.; Liu, Q.; Edely, M.; Djaker, N.; Spadavecchia, J.; Fu, W.; Derouich, S.G.; et al. New Insight into the Aptamer Conformation and Aptamer/Protein Interaction by Surface-Enhanced Raman Scattering and Multivariate Statistical Analysis. Nanoscale 2021, 13, 12443–12453. [Google Scholar] [CrossRef]
- Gillibert, R.; Triba, M.N.; de la Chapelle, M.L. Surface Enhanced Raman Scattering Sensor for Highly Sensitive and Selective Detection of Ochratoxin A. Analyst 2018, 143, 339–345. [Google Scholar] [CrossRef] [PubMed]
- Ichimura, T.; Watanabe, H.; Morita, Y.; Verma, P.; Kawata, S.; Inouye, Y. Temporal Fluctuation of Tip-Enhanced Raman Spectra of Adenine Molecules. J. Phys. Chem. C 2007, 111, 9460–9464. Available online: https://pubs.acs.org/doi/abs/10.1021/jp070420b (accessed on 28 April 2021). [CrossRef] [Green Version]
- Rasmussen, A.; Deckert, V. Surface- and Tip-enhanced Raman Scattering of DNA Components. J. Raman Spectrosc. 2006, 37, 311–317. [Google Scholar] [CrossRef]
- Budich, C.; Neugebauer, U.; Popp, J.; Deckert, V. Cell Wall Investigations Utilizing Tip-Enhanced Raman Scattering. J. Microsc. 2008, 229, 533–539. [Google Scholar] [CrossRef]
- Treffer, R.; Lin, X.; Bailo, E.; Deckert-Gaudig, T.; Deckert, V. Distinction of Nucleobases—A Tip-Enhanced Raman Approach. Beilstein J. Nanotechnol. 2011, 2, 628–637. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najjar, S.; Talaga, D.; Schué, L.; Coffinier, Y.; Szunerits, S.; Boukherroub, R.; Servant, L.; Rodriguez, V.; Bonhommeau, S. Tip-Enhanced Raman Spectroscopy of Combed Double-Stranded DNA Bundles. J. Phys. Chem. C 2014, 118, 1174–1181. Available online: https://pubs.acs.org/doi/abs/10.1021/jp410963z (accessed on 25 April 2022). [CrossRef]
- Otto, C.; van den Tweel, T.J.J.; de Mul, F.F.M.; Greve, J. Surface-enhanced Raman Spectroscopy of DNA Bases. J. Raman Spectrosc. 1986, 17, 289–298. [Google Scholar] [CrossRef] [Green Version]
- Thomas, G.; Benevides, J.; Overman, S.; Ueda, T.; Ushizawa, K.; Saitoh, M.; Tsuboi, M. Polarized Raman Spectra of Oriented Fibers of A DNA and B DNA: Anisotropic and Isotropic Local Raman Tensors of Base and Backbone Vibrations. Biophys. J. 1995, 68, 1073. [Google Scholar] [CrossRef] [Green Version]
- Huser, T.; Orme, C.A.; Hollars, C.W.; Corzett, M.H.; Balhorn, R. Raman Spectroscopy of DNA Packaging in Individual Human Sperm Cells Distinguishes Normal from Abnormal Cells. J. Biophotonics 2009, 2, 322–332. [Google Scholar] [CrossRef] [PubMed]
- Morla-Folch, J.; Xie, H.; Gisbert-Quilis, P.; Pedro, S.G.; Pazos-Perez, N.; Alvarez-Puebla, R.A.; Guerrini, L. Ultrasensitive Direct Quantification of Nucleobase Modifications in DNA by Surface-Enhanced Raman Scattering: The Case of Cytosine. Angew. Chem. Int. Ed. 2015, 54, 13650–13654. [Google Scholar] [CrossRef]
Nitrogenous bases | Puric | Pyrimidic | |||||
Adenine (A) C5H5N5 | Guanine (G) C5H5N5O | Cytosine (C) C4H5N3O | Thymine (T) C5H6N2O2 | ||||
Molar mass (g/mol) | 135 | 151 | 111 | 126 | |||
Atomic mass percentage | C: 44% H: 43% N: 52% | C 40% H 3% N 46% O 11% | C: 43% H: 4.6% N: 38% O: 14.4% | C 48% H 54% N 22% O 25% | |||
Nucleoside | Deoxyribonucleoside | deoxyadenosine (dA) | deoxguanosine (dG) | deoxycytidine (dC) | deoxythymidine (dT) | ||
Nucleotide | Deoxyribonucleotide | Mono | Phosphate | dAMP | dGMP | dCMP | dTMP |
Di | dADP | dGDP | dCDP | dTDP | |||
tri | dATP | dGTP | dCTP | dTTP |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Safar, W.; Azziz, A.; Edely, M.; Lamy de la Chapelle, M. Conventional Raman, SERS and TERS Studies of DNA Compounds. Chemosensors 2023, 11, 399. https://doi.org/10.3390/chemosensors11070399
Safar W, Azziz A, Edely M, Lamy de la Chapelle M. Conventional Raman, SERS and TERS Studies of DNA Compounds. Chemosensors. 2023; 11(7):399. https://doi.org/10.3390/chemosensors11070399
Chicago/Turabian StyleSafar, Wafa, Aicha Azziz, Mathieu Edely, and Marc Lamy de la Chapelle. 2023. "Conventional Raman, SERS and TERS Studies of DNA Compounds" Chemosensors 11, no. 7: 399. https://doi.org/10.3390/chemosensors11070399
APA StyleSafar, W., Azziz, A., Edely, M., & Lamy de la Chapelle, M. (2023). Conventional Raman, SERS and TERS Studies of DNA Compounds. Chemosensors, 11(7), 399. https://doi.org/10.3390/chemosensors11070399