A Turn-On Fluorescent Assay for Glyphosate Determination Based on Polydopamine-Polyethyleneimine Copolymer via the Inner Filter Effect
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Instruments
2.2. Preparation of PDA-PEI Copolymer
2.3. Detection Procedure for ALP
2.4. Procedure for Glyphosate Sensing
2.5. Detection Glyphosate in Real Samples
3. Results
3.1. Characterization of PDA-PEI Copolymer
3.2. ALP Detection Based on PDA-PEI Copolymer
3.3. Analytical Performance for Glyphosate Determination
3.4. Determination of Glyphosate in Actual Samples
3.5. Mechanism of This Assay for Glyphosate Detection
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sawetwong, P.; Chairam, S.; Jarujamrus, P.; Amatatongchai, M. Enhanced selectivity and sensitivity for colorimetric determination of glyphosate using Mn-ZnS quantum dot embedded molecularly imprinted polymers combined with a 3D-microfluidic paper-based analytical device. Talanta 2021, 225, 122077. [Google Scholar] [CrossRef] [PubMed]
- Wiwasuku, T.; Boonmak, J.; Burakham, R.; Hadsadee, S.; Jungsuttiwong, S.; Bureekaew, S.; Promarak, V.; Youngme, S. Turn-on fluorescent probe towards glyphosate and Cr3+ based on Cd(II)-metal organic framework with Lewis basic sites. Inorg. Chem. Front. 2021, 8, 977–988. [Google Scholar] [CrossRef]
- Luo, D.; Huang, X.; Liu, B.; Zou, W.; Wu, Y. Facile colorimetric nanozyme sheet for the rapid detection of glyphosate in agricultural products based on inhibiting peroxidase-like catalytic activity of porous Co3O4 nanoplates. J. Agric. Food Chem. 2021, 69, 3537–3547. [Google Scholar] [CrossRef]
- Zelaya, I.A.; Anderson, J.A.H.; Owen, M.D.K.; Landes, R.D. Evaluation of spectrophotometric and HPLC methods for shikimic acid determination in plants: Models in glyphosate-resistant and -susceptible crops. J. Agric. Food Chem. 2021, 59, 2202–2212. [Google Scholar] [CrossRef]
- Munoz, R.; Guevara-Lara, A.; Santos, J.L.M.; Miranda, J.M.; Rodriguez, J.A. Determination of glyphosate in soil samples using CdTe/CdS quantum dots in capillary electrophoresis. Microchem. J. 2019, 146, 582–587. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Shen, C.; Wang, C.; Hu, X.; Wang, G. An electrochemical sensor on the hierarchically porous Cu-BTC MOF platform for glyphosate determination. Sens. Actuators. B Chem. 2019, 283, 487–494. [Google Scholar] [CrossRef]
- Cao, Y.; Wang, L.; Wang, C.; Hu, X.; Liu, Y.; Wang, G. Sensitive detection of glyphosate based on a Cu-BTC MOF/g-C3N4 nanosheet photoelectrochemical sensor. Electrochim. Acta 2019, 317, 341–347. [Google Scholar] [CrossRef]
- Hamedpour, V.; Sasaki, Y.; Zhang, Z.; Kubota, R.; Minami, T. Simple colorimetric chemosensor array for oxyanions: Quantitative assay for herbicide glyphosate. Anal. Chem. 2019, 91, 13627–13632. [Google Scholar] [CrossRef]
- Qu, F.; Wang, H.; You, J. Dual lanthanide-probe based on coordination polymer networks for ratiometric detection of glyphosate in food samples. Food Chem. 2020, 323, 126815. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiang, J.; Liu, S.; Yang, J.; Zhang, H.; Yan, J.; Hu, X. Fluorescent carbon dots for glyphosate determination based on fluorescence resonance energy transfer and logic gate operation. Sens. Actuators B Chem. 2017, 242, 545–553. [Google Scholar] [CrossRef]
- Yang, Q.; Wang, J.; Chen, X.; Yang, W.; Pei, H.; Hu, N.; Li, Z.; Suo, Y.; Li, T.; Wang, J. The simultaneous detection and removal of organophosphorus pesticides by a novel Zr-MOF based smart adsorbent. J. Mater. Chem. A 2018, 6, 2184–2192. [Google Scholar] [CrossRef]
- Sun, F.; Yang, L.; Li, S.; Wang, Y.; Wang, L.; Li, P.; Ye, F.; Fu, Y. New fluorescent probes for the sensitive determination of glyphosate in food and environmental samples. J. Agr. Food Chem. 2021, 69, 12661–12673. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bi, Y.; Gao, J.; Li, Y.; Ding, H.; Ding, L. Carbon dots based turn-on fluorescent probes for the sensitive determination of glyphosate in environmental water samples. RSC Adv. 2016, 6, 85820–85828. [Google Scholar] [CrossRef]
- Wang, X.; Yang, Y.; Huo, D.; Ji, Z.; Ma, Y.; Yang, M.; Luo, H.; Luo, X.; Hou, C.; Lv, J. A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate. Microchim. Acta 2020, 187, 341. [Google Scholar] [CrossRef] [PubMed]
- Hou, J.; Wang, X.; Lan, S.; Zhang, C.; Hou, C.; He, Q.; Huo, D. A turn-on fluorescent sensor based on carbon dots from Sophora japonica leaves for the detection of glyphosate. Anal. Methods 2020, 12, 4130–4138. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Zhang, Y.; Luo, Y.; Shen, F.; Sun, C. Efficient fluorescence resonance energy transfer between oppositely charged CdTe quantum dots and gold nanoparticles for turn-on fluorescence detection of glyphosate. Talanta 2014, 125, 385–392. [Google Scholar] [CrossRef]
- Wang, L.; Bi, Y.; Hou, J.; Li, H.; Xu, Y.; Wang, B.; Ding, H.; Ding, L. Facile, green and clean one-step synthesis of carbon dots from wool: Application as a sensor for glyphosate detection based on the inner filter effect. Talanta 2016, 160, 268–275. [Google Scholar] [CrossRef]
- Hong, C.; Ye, S.; Dai, C.; Wu, C.; Chen, L.; Huang, Z. Sensitive and on-site detection of glyphosate based on papain-stabilized fluorescent gold nanoclusters. Anal. Bioanal. Chem. 2020, 412, 8177–8184. [Google Scholar] [CrossRef]
- Zhong, Z.; Jia, L. Room temperature preparation of water-soluble polydopamine-polyethyleneimine copolymer dots for selective detection of copper ions. Talanta 2019, 197, 584–591. [Google Scholar] [CrossRef]
- Xiao, T.; Sun, J.; Zhao, J.; Wang, S.; Liu, G.; Yang, X. FRET effect between fluorescent polydopamine nanoparticles and MnO2 nanosheets and its application for sensitive sensing of alkaline phosphatase. ACS Appl. Mater. Interfaces 2018, 10, 6560–6569. [Google Scholar] [CrossRef]
- Yang, P.; Zhang, S.; Chen, X.; Liu, X.; Wang, Z.; Li, Y. Recent developments in polydopamine fluorescent nanomaterials. Mater. Horiz. 2020, 7, 746–761. [Google Scholar] [CrossRef]
- Xue, Q.; Cao, X.; Zhang, C.; Xian, Y. Polydopamine nanodots are viable probes for fluorometric determination of the activity of alkaline phosphatase via the in situ regulation of a redox reaction triggered by the enzyme. Microchim. Acta 2018, 185, 231. [Google Scholar] [CrossRef]
- Kong, X.J.; Wu, S.; Chen, T.T.; Yu, R.Q.; Chu, X. MnO2-induced synthesis of fluorescent polydopamine nanoparticles for reduced glutathione sensing in human whole blood. Nanoscale 2016, 8, 15604–15610. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; Zhang, K.; Wang, L.; Zhou, K.; Zeng, J.; Gao, D.; Xia, Z.; Fu, Q. Redox modulation of polydopamine surface chemistry: A facile strategy to enhance the intrinsic fluorescence of polydopamine nanoparticles for sensitive and selective detection of Fe3+. Nanoscale 2018, 10, 18064–18073. [Google Scholar] [CrossRef]
- Wang, Z.; Xu, C.; Lu, Y.; Wei, G.; Ye, G.; Sun, T.; Chen, J. Microplasma electrochemistry controlled rapid preparation of fluorescent polydopamine nanoparticles and their application in uranium detection. Chem. Eng. J. 2018, 344, 480–486. [Google Scholar] [CrossRef]
- Chen, M.; Wen, Q.; Gu, F.; Gao, J.; Zhang, C.C.; Wang, Q. Mussel chemistry assembly of a novel biosensing nanoplatform based on polydopamine fluorescent dot and its photophysical features. Chem. Eng. J. 2018, 342, 331–338. [Google Scholar] [CrossRef]
- Tang, L.; Mo, S.; Liu, S.G.; Liao, L.L.; Li, N.B.; Luo, H.Q. Synthesis of fluorescent polydopamine nanoparticles by Michael addition reaction as an analysis platform to detect iron ions and pyrophosphate efficiently and construction of an IMPLICATION logic gate. Sens. Actuators B Chem. 2018, 255, 754–762. [Google Scholar] [CrossRef]
- Liu, M.; Ji, J.; Zhang, X.; Zhang, X.; Yang, B.; Deng, F.; Li, Z.; Wang, K.; Yang, Y.; Wei, Y. Self-polymerization of dopamine and polyethyleneimine: Novel fluorescent organic nanoprobes for biological imaging applications. J. Mater. Chem. B 2015, 3, 3476–3482. [Google Scholar] [CrossRef]
- Zhao, C.; Zuo, F.; Liao, Z.; Qin, Z.; Du, S.; Zhao, Z. Mussel-inspired one-pot synthesis of a fluorescent and water-soluble polydopamine-polyethyleneimine copolymer. Macromol. Rapid Comm. 2015, 36, 909–915. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Xue, S.F.; Chen, Z.H.; Han, X.Y.; Shi, G.; Zhang, M. Bioinspired copolymers based nose/tongue-mimic chemosensor for label-free fluorescent pattern discrimination of metal ions in biofluids. Anal. Chem. 2018, 90, 8248–8253. [Google Scholar] [CrossRef]
- Lin, T.; Liu, S.; Huang, J.; Tian, C.; Hou, L.; Ye, F.; Zhao, S. Multicolor and photothermal dual-mode assay of alkaline phosphatase based on the UV light-assisted etching of gold nanorods, Anal. Chim. Acta 2021, 1181, 338926. [Google Scholar] [CrossRef]
- Xiang, J.; Wang, X.; Lin, A.; Wei, H. In situ exsolution of noble-metal nanoparticles on perovskites as enhanced peroxidase mimics for bioanalysis. Anal. Chem. 2021, 93, 5954–5962. [Google Scholar]
- Wu, T.; Ma, Z.; Li, P.; Liu, M.; Liu, X.; Li, H.; Zhang, Y.; Yao, S. Colorimetric detection of ascorbic acid and alkaline phosphatase activity based on the novel oxidase mimetic of Fe-Co bimetallic alloy encapsulated porous carbon nanocages. Talanta 2019, 202, 354–361. [Google Scholar] [CrossRef]
- Ye, K.; Niu, X.; Song, H.; Wang, L.; Peng, Y. Combining CeVO4 oxidase-mimetic catalysis with hexametaphosphate ion induced electrostatic aggregation for photometric sensing of alkaline phosphatase activity. Anal Chim Acta 2020, 1126, 16–23. [Google Scholar] [CrossRef]
- Ni, P.; Chen, C.; Jiang, Y.; Zhang, C.; Wang, B.; Lu, Y.; Wang, H. A fluorescent assay for alkaline phosphatase activity based on inner filter effect by in-situ formation of fluorescent azamonardine, Sens. Actuators B: Chem. 2020, 302, 127145. [Google Scholar] [CrossRef]
- Wang, R.; Wang, Z.; Rao, H.; Xue, X.; Luo, M.; Xue, Z.; Lu, X. A two fluorescent signal indicator-based ratio fluorometric alkaline phosphatase assay based on one signal precursor. Chem. Commun. 2021, 57, 4444–4447. [Google Scholar] [CrossRef]
- Zhan, Y.; Yang, S.; Chen, L.; Zeng, Y.; Li, L.; Lin, Z.; Guo, Z.; Xu, W. Ultrahigh efficient FRET ratiometric fluorescence biosensor for visual detection of alkaline phosphatase activity and its inhibitor, ACS Sustain. Chem. Eng. 2021, 9, 12922–12929. [Google Scholar]
- Wang, M.; Zhou, X.; Cheng, L.; Wang, M.; Su, X. Lysozyme-functionalized 5-methyl-2-thiouracil gold/silver nanoclusters for luminescence assay of alkaline phosphatase. ACS Appl. Nano Mater. 2021, 4, 9265–9273. [Google Scholar] [CrossRef]
- Chen, Q.; Chen, H.; Li, Z.; Pang, J.; Lin, T.; Guo, L.; Fu, F. Colorimetric sensing of glyphosate in environmental water based on peroxidase mimetic activity of MoS2 nanosheets. J. Nanosci. Nanotechnol. 2017, 17, 5730–5734. [Google Scholar] [CrossRef]
- Chang, Y.; Zhang, Z.; Hao, J.; Yang, W.; Tang, J. A simple label free colorimetric method for glyphosate detection based on the inhibition of peroxidase-like activity of Cu(II). Sens. Actuators B Chem. 2016, 228, 410–415. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, L.; Sharma, A.S.; Chen, M.; Chen, Q. A system composed of polyethylenimine-capped upconversion nanoparticles, copper(II), hydrogen peroxide and 3,3′,5,5′-tetramethylbenzidine for colorimetric and fluorometric determination of glyphosate. Microchim. Acta 2019, 186, 835. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, J.; Zhou, R.; Xi, Y.N.; Hou, X.; Xu, K.; Wu, P. Phosphorescent inner filter effect-based sensing of xanthine oxidase and its inhibitors with Mn-doped ZnS quantum dots. Nanoscale 2018, 10, 8477–8482. [Google Scholar] [CrossRef] [PubMed]
Methods/Materials | Linear Range (μg/mL) | Detection Limit (μg/mL) | Reference |
---|---|---|---|
Colorimetry/Mn-ZnS quantum dot | 0.005–50 | 0.002 | [1] |
Colorimetry/MoS2 nanosheets. | 0.4–2.0 | 0.087 | [39] |
Colorimetry/Cu2+/TMB a | 0.34–3.4 | 1.69 | [40] |
Fluorimetry/CPNs | 0.015–8.45 | 0.007 | [9] |
Fluorimetry/Zr-MOF | 0.1–40 | 0.093 | [11] |
Fluorimetry/N-doped Si quantum dots | 0.1–1 | 0.0078 | [14] |
Fluorimetry/CD/Fe3+ | 0.1–16 | 0.00875 | [15] |
Fluorimetry/CDs-AgNPs | 0.025–2.5 | 0.012 | [17] |
Fluorimetry/PDA-PEI copolymer | 0.2–2, 2–10 | 0.06 | This work |
Sample | Spiked (μg/mL) | Founded (μg/mL) | Recovery (%) | RSD (%) |
---|---|---|---|---|
Lake water | 1.0 | 1.05 ± 0.03 | 105.0 | 2.86 |
10.0 | 9.35 ± 0.28 | 93.5 | 2.99 | |
Tap water | 1.0 | 1.07 ± 0.03 | 107.0 | 2.80 |
10 | 10.11 ± 0.26 | 101.1 | 2.57 | |
Apple | 1.0 | 1.06 ± 0.03 | 106.0 | 2.83 |
10.0 | 8.88 ± 0.658 | 88.8 | 7.41 | |
Pear | 1.0 | 0.984 ± 0.038 | 98.4 | 3.86 |
10.0 | 10.15 ± 0.79 | 101.5 | 7.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, P.; Liu, S.; Lu, Y. A Turn-On Fluorescent Assay for Glyphosate Determination Based on Polydopamine-Polyethyleneimine Copolymer via the Inner Filter Effect. Chemosensors 2023, 11, 398. https://doi.org/10.3390/chemosensors11070398
Ni P, Liu S, Lu Y. A Turn-On Fluorescent Assay for Glyphosate Determination Based on Polydopamine-Polyethyleneimine Copolymer via the Inner Filter Effect. Chemosensors. 2023; 11(7):398. https://doi.org/10.3390/chemosensors11070398
Chicago/Turabian StyleNi, Pengjuan, Siyuan Liu, and Yizhong Lu. 2023. "A Turn-On Fluorescent Assay for Glyphosate Determination Based on Polydopamine-Polyethyleneimine Copolymer via the Inner Filter Effect" Chemosensors 11, no. 7: 398. https://doi.org/10.3390/chemosensors11070398
APA StyleNi, P., Liu, S., & Lu, Y. (2023). A Turn-On Fluorescent Assay for Glyphosate Determination Based on Polydopamine-Polyethyleneimine Copolymer via the Inner Filter Effect. Chemosensors, 11(7), 398. https://doi.org/10.3390/chemosensors11070398