Enantioanalysis of Leucine in Whole Blood Samples Using Enantioselective, Stochastic Sensors
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussions
3.1. Response Characteristics
3.2. Selectivity of the Enantioselective Stochastic Sensors
3.3. Stability and Reproducibility Measurements
3.4. Enantioanalysis of Leucine in Whole Blood Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ragni, M.; Fornelli, C.; Nisoli, E.; Penna, F. Amino acids in cancer and cachexia: An integrated view. Cancers 2022, 14, 5691. [Google Scholar] [CrossRef] [PubMed]
- Ilie-Mihai, R.M.; Stefan-van Staden, R.I.; Magerusan, L.; Coros, M.; Pruneanu, S. Enantioanalysis of tryptophan in whole blood samples using stochastic sensors—A screening test for gastric cancer. Chirality 2020, 32, 215–222. [Google Scholar] [CrossRef] [PubMed]
- Stefan-van Staden, R.I.; Ilie-Mihai, R.M.; Magerusan, L.; Coros, M.; Pruneanu, S. Enantioanalysis of glutamine-a key factor in establishing the metabolomics process in gastric cancer. Anal. Bioanal. Chem. 2020, 412, 3199–3207. [Google Scholar] [CrossRef] [PubMed]
- Stefan-van Staden, R.I.; Bogea, M.I.; Ilie-Mihai, R.M.; Gheorghe, D.C.; Aboul-Enein, H.Y.; Coros, M.; Pruneanu, S.M. NS Decorated Graphenes Modified with 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-Porphine Manganese (III) Chloride Based 3D Needle Stochastic Sensors for Enantioanalysis of Arginine-a Key Factor in the Metabolomics and Early Detection of Gastric Cancer. Anal. Bioanal. Chem. 2022, 414, 6521–6530. [Google Scholar] [CrossRef] [PubMed]
- Lieu, E.L.; Nguyen, T.; Rhyne, S.; Kim, J. Amino acids in cancer. Exp. Mol. Med. 2020, 52, 15–30. [Google Scholar] [CrossRef]
- Vettore, L.; Westbrook, R.L.; Tennant, D.A. New aspects of amino acid metabolism in cancer. Br. J. Cancer 2020, 122, 150–156. [Google Scholar] [CrossRef]
- Ritz-Timme, S.; Collins, M.J. Racemization of aspartic acid in human proteins. Ageing Res. Rev. 2002, 1, 43–59. [Google Scholar] [CrossRef]
- Bastings, J.J.A.J.; van Eijk, H.M.; Damink, S.W.O.; Rensen, S.S. D-amino acids in health and diseases: A focus on cancer. Nutrients 2019, 11, 2205. [Google Scholar] [CrossRef]
- Kögl, F.; Erxleben, H. Zur ätiologie der malignen tumoren. Z. Physiol. Chem. 1939, 258, 57–95. [Google Scholar] [CrossRef]
- Dawson, R.M.C.; Elliott, D.C.; Elliott, W.H.; Jones, K.M. Data for Biochemical Research, 3rd ed.; Clarendon Press: Oxford, UK, 1989. [Google Scholar]
- Zanchi, N.E.; Gerlinger-Romero, F.; Guimarães-Ferreira, L.; de Siqueira Filho, M.A.; Felitti, V.; Lira, F.S.; Seelaender, M.; Lancha, A.H. HMB supplementation: Clinical and athletic performance-related effects and mechanisms of action. Amino Acids 2011, 40, 1015–1025. [Google Scholar] [CrossRef]
- Xiao, F.; Wang, C.; Yin, H.; Chen, S.; Fang, J.; Guo, F. Leucine deprivation inhibits proliferation and induced apoptosis of human breast cancer cells via fatty acid synthase. Oncotarget 2016, 7, 63679–63689. [Google Scholar] [CrossRef] [PubMed]
- Troup, S.; Njue, C.; Kliewer, E.V.; Parisien, M.; Roskelley, C.; Chakravarti, S.; Roughley, P.J.; Murphy, L.C.; Watson, P.H. Reduced expression of the small leucine-rich proteoglycans, lumican, and decorin is associated with poor outcome in node-negative iinvasive breast cancer. Clin. Cancer Res. 2003, 9, 207–214. [Google Scholar] [PubMed]
- Shennan, D.B.; Thomson, J.; Gow, I.F.; Travers, M.T.; Barber, M.C. L-leucine transport in human breast cancer cells (MCF-7 and MDA-MB-231): Kinetics, regulation by estrogen and molecular identity of the transporter. Biochem. Biophys. Acta-Biomater. 2004, 1664, 206–216. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Zhou, X.; Peng, W.; Wu, J.; Wu, X.; Chen, Y.; Cui, Z. Expression and clinical implications of basic leucine zipper ATF-like transcription factor 2 in breast cancer. BMC Cancer 2021, 21, 1062. [Google Scholar] [CrossRef]
- Jeong, J.; Park, S.; An, H.T.; Kang, M.; Ko, J. Small leucine zipper protein functions as a negative regulator of estrogen receptor α in breast cancer. PLoS ONE 2017, 12, e0180197. [Google Scholar] [CrossRef]
- Junior, R.P.; Martins Sonehara, N.; Jardim-Perassi, B.V.; Pal, A.; Asad, Y.; Chuffa, L.G.A.; Chammas, R.; Raymand, F.I.; Zuccari, D.A.P.C. Presence of human breast cancer xenograft changes the diurnal profile of amino acids in mice. Sci. Rep. 2022, 12, 1008. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.I.; Gheorghe, D.C.; Pogacean, F.; Pruneanu, S. Simultaneous analysis of MLH1, MSH2, MSH6, PMS2 and KRAS in patients with gastric and colon cancer using stochastic sensors. Chemosensors 2022, 10, 380. [Google Scholar]
- Gheorghe, D.C.; Stefan-van Staden, R.I. Molecular recognition and quantification of HER-3, HER-4 and HRG-α in whole blood and tissue samples using stochastic sensors. Micromachines 2022, 13, 1749. [Google Scholar]
- Jia, W.; Hu, C.; Wang, Y.; Liu, Y.; Wang, L.; Zhang, S.; Zhu, Q.; Gu, Y.; Zhang, P.; Ma, J.; et al. Identification of single-molecule catecholamine enantiomers using a programmable nanopore. ACS Nano 2022, 16, 6615–6624. [Google Scholar] [CrossRef]
- Wang, J.; Prajapati, J.D.; Gao, F.; Ying, Y.L.; Kleinekathofer, U.; Winterhalter, M.; Long, Y.T. Identification of single amino acid chiral and positional isomers using an electrostatically asymmetric nanopore. J. Am. Chem. Soc. 2022, 144, 15072–15078. [Google Scholar] [CrossRef]
- Ensslen, T.; Sarthak, K.; Aksimentiev, A.; Behrends, J.C. Resolving isomeric posttranslational modifications using a biological nanopore as a sensor of molecular shape. J. Am. Chem. Soc. 2022, 144, 16060–16068. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, S.; Wang, Y.; Wang, L.; Cao, Z.; Sun, W.; Fan, P.; Zhang, P.; Chen, H.Y.; Huang, S. Nanopore identification of alditol epimers and their application in rapid analysis of alditol-containing drinks and healthcare products. J. Am. Chem. Soc. 2022, 144, 13717–13728. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.F.; Cheley, S.; Guan, X.; Bayley, H. Stochastic detection of enantiomers. J. Am. Chem. Soc. 2006, 128, 10684–10685. [Google Scholar] [CrossRef]
- Coros, M.; Pruneanu, S.; Stefan-van Staden, R.I. Recent progress in the graphene-based electrochemical sensors and biosensors. A review. J. Electrochem. Soc. 2020, 167, 037528. [Google Scholar] [CrossRef]
- Rezaei, B.; Mirahmadi Zare, Z. Modified glassy carbon electrode with multiwall carbon nanotubes as a voltametric sensor for determination of leucine in biological and pharmaceutical samples. Anal. Lett. 2008, 41, 2267–2286. [Google Scholar] [CrossRef]
- Horber, F.F.; Khal, J.; Lecavalier, L.; Krom, B.; Haymond, M.W. Determination of leucine and α-ketoisocaproic acid concentrations and specific activity in plasma and leucine specific actitivies in proteins using high-performance liquid chromatography. J. Chromatogr. B 1989, 495, 81–94. [Google Scholar] [CrossRef]
- Tojo, M.; Murakami, M.; Nagata, Y. Simple and low-cos high performance liquid chromatographic method for determination of D- and L-amino acids. J. Chromatogr. Sci. 2012, 50, 393–395. [Google Scholar] [CrossRef]
- Stefan-van Staden, R.I.; Muvhulawa, L.S. Determination of L- and D-enantiomers of leucine using amperometric biosensors based on diamond paste. Instrum. Sci. Technol. 2006, 34, 475–481. [Google Scholar] [CrossRef]
- Behyar, M.B.; Hasanzadeh, M.; Seidi, F.; Shadjou, N. Sensing of amino acids: Critical role of nanomaterials for the efficient biomedical analysis. Microchem. J. 2023, 188, 108452. [Google Scholar] [CrossRef]
- Karasu, T.; Özgür, E.; Uzum, L. MIP-on-a-chip: Artificial receptors on microfluidic platforms for biomedical applications. J. Pharm. Biomed. Anal. 2023, 226, 115257. [Google Scholar] [CrossRef]
- Macovei, D.G.; Irimes, M.B.; Hosu, O.; Cristea, C.; Tertis, M. Point-of-care electrochemical testing of biomarkers involved in inflammatory and inflammatory-associated medical conditions. Anal. Bioanal. Chem. 2023, 415, 1033–1063. [Google Scholar] [CrossRef] [PubMed]
- Özyurt, I.; Uludag, I.; Ince, B.; Sezginturk, M.K. Lab-on-a-chip systems for cancer biomarker diagnosis. J. Pharm. Biomed. Anal. 2023, 226, 115266. [Google Scholar] [CrossRef] [PubMed]
- Aslam, N.; Zhou, H.; Urbach, E.K.; Turner, M.J.; Walsworth, R.L.; Lukin, M.D.; Park, H. Quantum sensors for biomedical applications. Nat. Rev. Phys. 2023, 5, 157–169. [Google Scholar] [CrossRef] [PubMed]
- Udhani, R.; Kothari, C.; Sarvaiya, J. A comprehensive study: Traditional and cutting-edge analytical techniques for the biomarker based detection of the micronutrients & POC sensing directions for next-generation diagnostic. Crit. Rev. Anal. Chem. 2023. [Google Scholar] [CrossRef]
- Scott, A.; Pandey, R.; Saxena, S.; Osman, E.; Li, Y.; Soleymani, L. A smartphone operated electrochemical reader and actuator that streamlines the operation of electrochemical biosensors. ECS Sens. Plus 2022, 1, 014601. [Google Scholar] [CrossRef]
- Tong, Z.; Shen, C.; Li, Q.; Yin, H.; Mao, H. Combining sensors and actuators with electrowetting-on-dielectric (EWOD): Advanced digital microfluidic systems for biomedical applications. Analyst 2023, 148, 1399–1421. [Google Scholar] [CrossRef]
- Juanola-Feliu, E.; Colomer-Farrarous, J.; Miribel-Catala, P.; Samitier, J.; Valls-Pasola, J. Market challenges facing academic research in commercializing nano-enabled implantable devices for in vivo biomedical analysis. Technovation 2012, 32, 193–204. [Google Scholar] [CrossRef]
- Hu, Y.; Li, J.; Yu, X.; Yang, J.; Li, Y. A simple jet multifunctional sensing platform inspired by healing-assembly hydrogels serving motion and sweat monitoring. Sens. Actuators B 2023, 378, 133173. [Google Scholar] [CrossRef]
- Fan, R.; Li, Y.; Park, K.W.; Du, J.; Chang, L.H.; Strieter, E.R.; Andrew, T.L. A strategy for accessing nanobody-based electrochemical sensors for analyte detection in complex media. ECS Sens. Plus 2022, 1, 010601. [Google Scholar] [CrossRef]
- Chaudhary, V.; Kaushik, A.; Furukawa, H.; Khosla, A. Review—Towards 5th generation AI and IoT driven sustainable intelligent sensors based on 2D MXenes and borophene. ECS Sens. Plus 2022, 1, 013601. [Google Scholar] [CrossRef]
- Hyodo, T.; Sakata, W.; Ueda, T.; Shimizu, Y. Effects of surface modification of Platinum electrodes with Gold on Hydrogen-sensing properties of diode-type sensors. ECS Sens. Plus 2022, 1, 013602. [Google Scholar] [CrossRef]
- Sornambikai, S.; Amir, H.; Bhuvaneshwari, G.; Ponpandian, N.; Viswanathan, C. Review—Systematic review on electrochemical biosensing of breast cancer miRNAs to develop alternative DCIS diagnostic tool. ECS Sens. Plus 2022, 1, 021602. [Google Scholar] [CrossRef]
- Moonla, C.; Lee, D.H.; Rokaya, D.; Rasitanon, N.; Kathayat, G.; Lee, W.Y.; Kim, J.; Jeerapan, I. Review—Lab-in-a-mouth and advanced point-of-care sensing systems: Detecting bioinformation from the oral cavity and saliva. ECS Sens. Plus 2022, 1, 021603. [Google Scholar] [CrossRef]
- Singh, S.; Wang, J.; Cinti, S. Review—An overview on recent progress in screen-printed electroanalytical (bio)sensors. ECS Sens. Plus 2022, 1, 023401. [Google Scholar] [CrossRef]
- Shekhar, S.; Yadav, A.K.; Khosla, A.; Solanki, P.R. Review—Interleukins profiling for biosensing applications: Possibilities and the future of disease detection. ECS Sens. Plus 2022, 1, 041601. [Google Scholar] [CrossRef]
- Ramírez, S.; Díaz, F.; Silva, C.P.; Pavez, J.; Silva, J.F. Molecular anchoring with 4-mercaptobenzoic acid and 4-aminothiophenol for using active nanorods in the detection of dopamine. ECS Sens. Plus 2022, 1, 045201. [Google Scholar] [CrossRef]
- Manjunatha, C.; Shwetha, K.P.; Athreya, Y.; Kumar, G.; Kamath, M.K.S. Perspective—Supercapacitor-powered flexible wearable strain sensors. ECS Sens. Plus 2023, 2, 017002. [Google Scholar] [CrossRef]
- Hormozi Jangi, S.R.; Akhond, M. Ultrasensitive label-free enantioselective quantification of D-/L-leucine enantiomers with a novel detection mechanism using an ultra-small high-quantum yield N-doped CDs prepared by a novel highly fast solvent-free method. Sens. Actuators B 2021, 339, 129901. [Google Scholar] [CrossRef]
Stochastic Sensor Based on N-Methyl-fullero-pyrrolidine and | Leucine | Signature toff (s) | Equation of Calibration 1, R | Sensitivity, s−1 g−1 L | Limit of Determination, ag L−1 | Linear Concentration Range, g L−1 |
---|---|---|---|---|---|---|
Graphite/Fe2O3 | L | 0.6 | 1/ton = 0.04 + 8.17 × 1013C r = 0.9993 | 8.17 × 1013 | 10.00 | 1 × 10−17–1 × 10−5 |
D | 0.8 | 1/ton = 0.01 + 1.42 × 1013C r = 0.9994 | 1.42 × 1013 | 100.00 | 1 × 10−16–1 × 10−9 | |
Nanographene | L | 2.2 | 1/ton = 0.02 + 3.44 × 1012C r = 0.9995 | 3.44 × 1012 | 100.00 | 1 × 10−16–1 × 10−4 |
D | 0.9 | 1/ton = 0.02 + 1.35 × 1015C r = 0.9996 | 1.35 × 1015 | 1.00 | 1 × 10−18–1 × 10−6 |
Stochastic Sensor Based on N-Methyl-fullero-pyrolidine and | CA15-3 | CEA | HER2 | Maspin | Ki67 | CA19-9 | p53 | L-Leucine | D-Leucine | L-Serine | D-Serine |
---|---|---|---|---|---|---|---|---|---|---|---|
Signature (s) | |||||||||||
Graphite/Fe2O3 | 1.1 | 1.5 | 2.2 | 1.9 | 3.0 | 2.4 | 3.5 | 0.6 | 0.8 | 0.2 | 1.7 |
Nanographene | 0.2 | 0.6 | 3.0 | 2.5 | 3.2 | 2.8 | 1.7 | 2.2 | 0.9 | 1.3 | 2.0 |
Recovery % | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L:D | 1:99 | 1:50 | 1:25 | 1:1 | 25:1 | 50:1 | 99:1 | |||||||
Enantiomer | L | D | L | D | L | D | L | D | L | D | L | D | L | D |
Graphite/Fe2O3 based sensor | 99.10 ± 0.05 | 96.98 ± 0.02 | 97.95 ± 0.04 | 99.18 ± 0.02 | 99.00 ± 0.02 | 98.75 ± 0.03 | 98.82 ± 0.02 | 98.99 ± 0.01 | 99.15 ± 0.01 | 99.10 ± 0.03 | 99.99 ± 0.01 | 97.98 ± 0.02 | 98.16 ± 0.03 | 99.90 ± 0.02 |
Nanographene based sensor | 99.32 ± 0.02 | 96.50 ± 0.03 | 98.00 ± 0.02 | 99.53 ± 0.03 | 99.18 ± 0.03 | 99.65 ± 0.02 | 98.09 ± 0.01 | 99.99 ± 0.03 | 99.13 ± 0.02 | 99.76 ± 0.02 | 99.12 ± 0.03 | 97.00 ± 0.04 | 97.43 ± 0.02 | 99.66 ± 0.03 |
Sample No. | State of Health | L-Leucine, pg mL−1 | D-Leucine, ng mL−1 | ||
---|---|---|---|---|---|
Stochastic Sensor Based on N-Methyl-fullero-pyrrolidine and | Graphite/Fe2O3 | Nanographene | Graphite/Fe2O3 | Nanographene | |
1 | Confirmed with breast cancer | 8.62 ± 0.02 | 8.08 ± 0.01 | 3.52 ± 0.02 | 3.30 ± 0.03 |
2 | 0.48 ± 0.01 | 0.49 ± 0.03 | 5.00 ± 0.03 | 4.75 ± 0.02 | |
3 | 8.25 ± 0.01 | 8.71 ± 0.03 | 0.20 ± 0.01 | 0.18 ± 0.02 | |
4 | 15.48 ± 0.02 | 16.02 ± 0.03 | 1.87 ± 0.02 | 1.69 ± 0.03 | |
5 | 6.11 ± 0.01 | 5.50 ± 0.03 | 1.00 ± 0.02 | 1.00 ± 0.03 | |
6 | 1.24 ± 0.03 | 0.98 ± 0.02 | 2.00 ± 0.01 | 2.17 ± 0.02 | |
7 | 3.47 ± 0.01 | 2.93 ± 0.02 | 2.60 ± 0.03 | 2.58 ± 0.01 | |
8 | 0.08 ± 0.01 | 0.07 ± 0.02 | 33.10 ± 0.02 | 35.01 ± 0.01 | |
9 | 2.91 ± 0.01 | 2.26 ± 0.03 | 5.23 ± 0.03 | 5.00 ± 0.01 | |
10 | 8.30 ± 0.03 | 8.12 ± 0.01 | 1.17 ± 0.03 | 1.18 ± 0.01 | |
1 | Healthy volunteers | 18.21 ± 0.01 | 18.34 ± 0.02 | - * | - * |
2 | 20.58 ± 0.02 | 20.84 ± 0.01 | - * | - * | |
3 | 5.48 ± 0.01 | 5.12 ± 0.03 | - * | - * | |
4 | 32.25 ± 0.02 | 32.40 ± 0.01 | - * | - * | |
5 | 7.12 ± 0.01 | 7.15 ± 0.03 | - * | - * | |
6 | 27.16 ± 0.02 | 27.19 ± 0.01 | - * | - * | |
7 | 52.01 ± 0.03 | 51.15 ± 0.02 | - * | - * | |
8 | 4.89 ± 0.01 | 4.68 ± 0.03 | - * | - * | |
9 | 51.97 ± 0.03 | 52.53 ± 0.01 | - * | - * | |
10 | 43.47 ± 0.01 | 43.50 ± 0.02 | - * | - * | |
t-test | 2.96 | 3.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stefan-van Staden, R.-I.; Musat, O.-R. Enantioanalysis of Leucine in Whole Blood Samples Using Enantioselective, Stochastic Sensors. Chemosensors 2023, 11, 259. https://doi.org/10.3390/chemosensors11050259
Stefan-van Staden R-I, Musat O-R. Enantioanalysis of Leucine in Whole Blood Samples Using Enantioselective, Stochastic Sensors. Chemosensors. 2023; 11(5):259. https://doi.org/10.3390/chemosensors11050259
Chicago/Turabian StyleStefan-van Staden, Raluca-Ioana, and Oana-Raluca Musat. 2023. "Enantioanalysis of Leucine in Whole Blood Samples Using Enantioselective, Stochastic Sensors" Chemosensors 11, no. 5: 259. https://doi.org/10.3390/chemosensors11050259
APA StyleStefan-van Staden, R. -I., & Musat, O. -R. (2023). Enantioanalysis of Leucine in Whole Blood Samples Using Enantioselective, Stochastic Sensors. Chemosensors, 11(5), 259. https://doi.org/10.3390/chemosensors11050259