Porous Copper Oxide Thin Film Electrodes for Non-Enzymatic Glucose Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Materials
2.2. Deposition of Copper Oxide Thin Films
2.3. Thin Film Characterization
2.4. Electrochemical Characterization
3. Results and Discussion
3.1. Chemical and Microstructure Characterization
3.2. Electrochemical Characterization and Sensor Response
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fernández, I.; Carinelli, S.; González-Mora, J.L.; Villalonga, R.; Salazar-Carballo, P.A. Nickel oxide Nanoparticles/Carbon Nanotubes Nanocomposite for Non-enzymatic Determination of Hydrogen Peroxide. Electroanalysis 2022, 35, e202200192. [Google Scholar] [CrossRef]
- Nikolova, M.P.; Chavali, M.S. Metal Oxide Nanoparticles as Biomedical Materials. Biomimetics 2020, 5, 27. [Google Scholar] [CrossRef] [PubMed]
- Carinelli, S.; Fernández, I.; Luis González-Mora, J.; Salazar-Carballo, P.A. Hemoglobin-modified nanoparticles for electrochemical determination of haptoglobin: Application in bovine mastitis diagnosis. Microchem. J. 2022, 179, 107528. [Google Scholar] [CrossRef]
- Keshavarz, M.; Kassanos, P.; Tan, B.; Venkatakrishnan, K. Metal-oxide surface-enhanced Raman biosensor template towards point-of-care EGFR detection and cancer diagnostics. Nanoscale Horiz. 2020, 5, 294–307. [Google Scholar] [CrossRef]
- Şerban, I.; Enesca, A. Metal Oxides-Based Semiconductors for Biosensors Applications. Front. Chem. 2020, 8, 354. [Google Scholar] [CrossRef]
- Tripathy, N.; Kim, D.-H. Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Converg. 2018, 5, 27. [Google Scholar] [CrossRef]
- Ikram, M.; Rashid, M.; Haider, A.; Naz, S.; Haider, J.; Raza, A.; Ansar, M.T.; Uddin, M.K.; Ali, N.M.; Ahmed, S.S.; et al. A review of photocatalytic characterization, and environmental cleaning, of metal oxide nanostructured materials. Sustain. Mater. Technol. 2021, 30, e00343. [Google Scholar] [CrossRef]
- Shen, L.; Li, B.; Qiao, Y. Fe₃O₄ Nanoparticles in Targeted Drug/Gene Delivery Systems. Materials 2018, 11, 324. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 2014, 7, 2535–2558. [Google Scholar] [CrossRef]
- Nguyen, T.T.; Patel, M.; Kim, J. All-inorganic metal oxide transparent solar cells. Sol. Energy Mater. Sol. Cells 2020, 217, 110708. [Google Scholar] [CrossRef]
- Hernández-Ramírez, D.; Mendoza-Huizar, L.H.; Galán-Vidal, C.A.; Aguilar-Lira, G.Y.; Álvarez-Romero, G.A. Review—Trends on the Development of Non-Enzymatic Electrochemical Sensors Modified with Metal-Oxide Nanostructures for the Quantification of Uric Acid. J. Electrochem. Soc. 2021, 168, 057522. [Google Scholar] [CrossRef]
- Naikoo, G.A.; Salim, H.; Hassan, I.U.; Awan, T.; Arshad, F.; Pedram, M.Z.; Ahmed, W.; Qurashi, A. Recent Advances in Non-Enzymatic Glucose Sensors Based on Metal and Metal Oxide Nanostructures for Diabetes Management—A Review. Front. Chem. 2021, 9, 748957. [Google Scholar] [CrossRef] [PubMed]
- Chitare, Y.M.; Jadhav, S.B.; Pawaskar, P.N.; Magdum, V.V.; Gunjakar, J.L.; Lokhande, C.D. Metal Oxide-Based Composites in Nonenzymatic Electrochemical Glucose Sensors. Ind. Eng. Chem. Res. 2021, 60, 18195–18217. [Google Scholar] [CrossRef]
- Fan, H.; Le Boeuf, W.; Maheshwari, V. Au–Pt–Ni nanochains as dopamine catalysts: Role of elements and their spatial distribution. Nanoscale Adv. 2023, 5, 2244–2250. [Google Scholar] [CrossRef]
- Gautam, Y.K.; Sharma, K.; Tyagi, S.; Ambedkar, A.K.; Chaudhary, M.; Pal Singh, B. Nanostructured metal oxide semiconductor-based sensors for greenhouse gas detection: Progress and challenges. R. Soc. Open Sci. 2021, 8, 201324. [Google Scholar] [CrossRef]
- Garcia-Garcia, F.J.; Salazar, P.; Yubero, F.; González-Elipe, A.R. Non-enzymatic Glucose electrochemical sensor made of porous NiO thin films prepared by reactive magnetron sputtering at oblique angles. Electrochim. Acta 2016, 201, 38–44. [Google Scholar] [CrossRef]
- Salazar, P.; Rico, V.; González-Elipe, A.R. Non-Enzymatic Glucose Sensors Based on Nickel Nanoporous Thin Films Prepared by Physical Vapor Deposition at Oblique Angles for Beverage Industry Applications. J. Electrochem. Soc. 2016, 163, B704. [Google Scholar] [CrossRef]
- Salazar, P.; Rico, V.; González-Elipe, A.R. Nickel–copper bilayer nanoporous electrode prepared by physical vapor deposition at oblique angles for the non-enzymatic determination of glucose. Sens. Actuators B Chem. 2016, 226, 436–443. [Google Scholar] [CrossRef]
- Salazar, P.; Rico, V.; Rodríguez-Amaro, R.; Espinós, J.P.; González-Elipe, A.R. New Copper wide range nanosensor electrode prepared by physical vapor deposition at oblique angles for the non-enzimatic determination of glucose. Electrochim. Acta 2015, 169, 195–201. [Google Scholar] [CrossRef]
- Vyas, A.N.; Saratale, G.D.; Sartale, S.D. Recent developments in nickel based electrocatalysts for ethanol electrooxidation. Int. J. Hydrogen Energy 2020, 45, 5928–5947. [Google Scholar] [CrossRef]
- Saha, S.; Bansal, S.; Khanuja, M. Chapter 2—Classification of nanomaterials and their physical and chemical nature. In Nano-enabled Agrochemicals in Agriculture; Ghorbanpour, M., Shahid, M.A., Eds.; Academic Press: Cambridge, MA, USA, 2022; pp. 7–34. [Google Scholar] [CrossRef]
- Yang, H.; Bao, J.; Qi, Y.; Zhao, J.; Hu, Y.; Wu, W.; Wu, X.; Zhong, D.; Huo, D.; Hou, C. A disposable and sensitive non-enzymatic glucose sensor based on 3D graphene/Cu2O modified carbon paper electrode. Anal. Chim. Acta 2020, 1135, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Abid, N.; Khan, A.M.; Shujait, S.; Chaudhary, K.; Ikram, M.; Imran, M.; Haider, J.; Khan, M.; Khan, Q.; Maqbool, M. Synthesis of nanomaterials using various top-down and bottom-up approaches, influencing factors, advantages, and disadvantages: A review. Adv. Colloid Interface Sci. 2022, 300, 102597. [Google Scholar] [CrossRef] [PubMed]
- Hwang, D.-W.; Lee, S.; Seo, M.; Chung, T.D. Recent advances in electrochemical non-enzymatic glucose sensors—A review. Anal. Chim. Acta 2018, 1033, 1–34. [Google Scholar] [CrossRef] [PubMed]
- Zhu, C.; Lv, T.; Yang, H.; Li, X.; Wang, X.; Guo, X.; Xie, C.; Zeng, D. Influence of magnetron sputtering process on the stability of WO3 thin film gas sensor. Mater. Today Commun. 2023, 34, 105116. [Google Scholar] [CrossRef]
- Lin, X.; Xu, Y.; Pan, X.; Xu, J.; Ding, Y.; Sun, X.; Song, X.; Ren, Y.; Shan, P.-F. Global, regional, and national burden and trend of diabetes in 195 countries and territories: An analysis from 1990 to 2025. Sci. Rep. 2020, 10, 14790. [Google Scholar] [CrossRef]
- Fruh, S.M. Obesity: Risk factors, complications, and strategies for sustainable long-term weight management. J. Am. Assoc. Nurse Pract. 2017, 29, S3–S14. [Google Scholar] [CrossRef]
- Diabetes Atlas, 10th ed.; International Diabetes Federation (IDF): Brussels, Belgium, 2021.
- Giri, S.D.; Sarkar, A. Electrochemical Study of Bulk and Monolayer Copper in Alkaline Solution. J. Electrochem. Soc. 2016, 163, H252. [Google Scholar] [CrossRef]
- Fang, J.; Xuan, Y. Investigation of optical absorption and photothermal conversion characteristics of binary CuO/ZnO nanofluids. RSC Adv. 2017, 7, 56023–56033. [Google Scholar] [CrossRef]
- Shaban, M.; Abdelkarem, K.; El Sayed, A.M. Structural, optical and gas sensing properties of Cu2O/CuO mixed phase: Effect of the number of coated layers and (Cr + S) co-Doping. Phase Transit. 2019, 92, 347–359. [Google Scholar] [CrossRef]
- CHEN, F.; SHAO, B.; ZHAI, W.; MA, X. Highly sensitive glucose sensor based on hierarchical CuO. Sci. China Technol. Sci. 2021, 64, 65–70. [Google Scholar] [CrossRef]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. Interfacial Electrochem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Pourbeyram, S.; Mehdizadeh, K. Nonenzymatic glucose sensor based on disposable pencil graphite electrode modified by copper nanoparticles. J. Food Drug Anal. 2016, 24, 894–902. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Liu, Y.; Su, L.; Zhang, Z.; Huo, D.; Hou, C.; Lei, Y. CuO nanowires based sensitive and selective non-enzymatic glucose detection. Sens. Actuators B Chem. 2014, 191, 86–93. [Google Scholar] [CrossRef]
- Luo, L.; Zhu, L.; Wang, Z. Nonenzymatic amperometric determination of glucose by CuO nanocubes-graphene nanocomposite modified electrode. Bioelectrochemistry 2012, 88, 156–163. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, L.; Manuzzi, D.; de los Monteros, H.V.E.; Jia, W.; Huo, D.; Hou, C.; Lei, Y. Ultrasensitive and selective non-enzymatic glucose detection using copper nanowires. Biosens. Bioelectron. 2012, 31, 426–432. [Google Scholar] [CrossRef] [PubMed]
- Hsu, Y.-W.; Hsu, T.-K.; Sun, C.-L.; Nien, Y.-T.; Pu, N.-W.; Ger, M.-D. Synthesis of CuO/graphene nanocomposites for nonenzymatic electrochemical glucose biosensor applications. Electrochim. Acta 2012, 82, 152–157. [Google Scholar] [CrossRef]
- Wu, H.-X.; Cao, W.-M.; Li, Y.; Liu, G.; Wen, Y.; Yang, H.-F.; Yang, S.-P. In situ growth of copper nanoparticles on multiwalled carbon nanotubes and their application as non-enzymatic glucose sensor materials. Electrochim. Acta 2010, 55, 3734–3740. [Google Scholar] [CrossRef]
- Ashok, A.; Kumar, A.; Tarlochan, F. Highly efficient nonenzymatic glucose sensors based on CuO nanoparticles. Appl. Surf. Sci. 2019, 481, 712–722. [Google Scholar] [CrossRef]
- Yang, S.; Li, G.; Wang, D.; Qiao, Z.; Qu, L. Synthesis of nanoneedle-like copper oxide on N-doped reduced graphene oxide: A three-dimensional hybrid for nonenzymatic glucose sensor. Sens. Actuators B Chem. 2017, 238, 588–595. [Google Scholar] [CrossRef]
- Chen, H.; Fan, G.; Zhao, J.; Qiu, M.; Sun, P.; Fu, Y.; Han, D.; Cui, G. A portable micro glucose sensor based on copper-based nanocomposite structure. New J. Chem. 2019, 43, 7806–7813. [Google Scholar] [CrossRef]
- Vinoth, V.; Shergilin, T.D.; Asiri, A.M.; Wu, J.J.; Anandan, S. Facile synthesis of copper oxide microflowers for nonenzymatic glucose sensor applications. Mater. Sci. Semicond. Process. 2018, 82, 31–38. [Google Scholar] [CrossRef]
- Wang, A.; Yang, Y.; Zhao, Q.; Ji, X. Facile hydrothermal synthesis CuO microflowers for non-enzymatic glucose sensors. Micro Nano Lett. 2022, 17, 107–113. [Google Scholar] [CrossRef]
- State Rosoiu, S.; Enache, L.B.; Potorac, P.; Prodana, M.; Enachescu, M. Synthesis of Copper Nanostructures for Non-Enzymatic Glucose Sensors via Direct-Current Magnetron Sputtering. Nanomaterials 2022, 12, 4144. [Google Scholar] [CrossRef] [PubMed]
- Walker, R.W.; Dumke, K.A.; Goran, M.I. Fructose content in popular beverages made with and without high-fructose corn syrup. Nutrition 2014, 30, 928–935. [Google Scholar] [CrossRef] [PubMed]
- Ventura, E.E.; Davis, J.N.; Goran, M.I. Sugar Content of Popular Sweetened Beverages Based on Objective Laboratory Analysis: Focus on Fructose Content. Obesity 2011, 19, 868–874. [Google Scholar] [CrossRef] [PubMed]
Sensor | Sensitivity (μA mM−1 cm−2) | Detection Limit (μM) | Linear Range (mM) | Reference |
---|---|---|---|---|
Cu(NP)-PGE | 1467 | 0.44 | up to 1 | [34] |
CuO-NWs | 642 | 2 | - | [35] |
CuO-G | 1360 | 0.7 | 0.002–4 | [36] |
ITO/Cu/CuO | 1406 | 0.36 | up to 1 | [19] |
CuO-NWs | 420 | 0.035 | up to 3 | [37] |
CuO-G-GCE | 1065 | 1 | up to 8 | [38] |
MWCNT/PEI/Cu | 715 | 0.5 | 0.01–0.3 | [39] |
CuO | 2062 | 0.25 | 0.001–0.85 | [40] |
N-rGO/CuO | 1420 | 0.01 | 0.001–2.5 | [41] |
CuO | 1621 | 0.2 | 0.0005–5 | [42] |
Cu/CuO | 1066 | 5.1 | - | [43] |
CuO-mFlw | 98.4 | 1.3 | up to 11 | [44] |
H-nanoCuO | 1180 | 0.4 | up to 5.5 | [32] |
CFP/GWs/Cu2O | - | 0.21 | up to 5 | [22] |
GCE/CuNCs | 2098 | 5.2 | up to 2 | [45] |
ITO/CuO/Cu2O | 2891 | 0.29 | 0.00093–0.1 | This work |
ITO/CuO/Cu2O | 2413 | - | 0.1–1.6 | This work |
Sample | Total Sugar * | Glucose * | Recovery (%) | C.V. (%) # |
---|---|---|---|---|
Coke Zero soda | 0 | N.D. | - | - |
Coke Zero soda | 1.25 † | 1.25 | 100 | 2.3 |
Coke Zero soda | 2.5 † | 2.45 | 98 | 3.8 |
Coke Zero soda | 3.75 † | 3.78 | 100.8 | 4.8 |
Apple juice | 9.5 | 4.25 | - | - |
Apple juice | 1.25 † | 5.41 | 98.4 | 4.6 |
Apple juice | 2.5 † | 6.83 | 101.2 | 3.8 |
Apple juice | 3.75 † | 7.67 | 95.9 | 4.3 |
Orange soda | 9.3 | 5.5 | 59.1 | 3.4 |
Coke soda | 10.6 | 6.6 | 62.3 | 3.2 |
Passion Fruit Zero soda | 0 | N.D. | - | - |
Tropical fruit milk | 4.9 | 3.1 | 63.3 | 5.0 |
Isotonic drink | 4.4 | 2.7 | 61.4 | 2.9 |
Non-sugar tea beverage | 0 | N.D. | - | - |
Mango juice | 3.0 | 1.6 | 53.3 | 4.0 |
Peach juice | 5.0 | 3.2 | 63.9 | 4.3 |
Tea beverage | 8.4 | 3.6 | 42.9 | 4.9 |
Pineapple juice | 5.7 | 3.3 | 57.9 | 2.4 |
Lemon-Lime soda | 4.6 | 2.4 | 52.2 | 2.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carinelli, S.; Salazar-Carballo, P.A.; De la Rosa Melián, J.E.; García-García, F. Porous Copper Oxide Thin Film Electrodes for Non-Enzymatic Glucose Detection. Chemosensors 2023, 11, 260. https://doi.org/10.3390/chemosensors11050260
Carinelli S, Salazar-Carballo PA, De la Rosa Melián JE, García-García F. Porous Copper Oxide Thin Film Electrodes for Non-Enzymatic Glucose Detection. Chemosensors. 2023; 11(5):260. https://doi.org/10.3390/chemosensors11050260
Chicago/Turabian StyleCarinelli, Soledad, Pedro A. Salazar-Carballo, Julio Ernesto De la Rosa Melián, and Francisco García-García. 2023. "Porous Copper Oxide Thin Film Electrodes for Non-Enzymatic Glucose Detection" Chemosensors 11, no. 5: 260. https://doi.org/10.3390/chemosensors11050260
APA StyleCarinelli, S., Salazar-Carballo, P. A., De la Rosa Melián, J. E., & García-García, F. (2023). Porous Copper Oxide Thin Film Electrodes for Non-Enzymatic Glucose Detection. Chemosensors, 11(5), 260. https://doi.org/10.3390/chemosensors11050260