Application of Molecularly Imprinted Microelectrode as a Promising Point-of-Care Biosensor for Alanine Aminotransferase Enzyme
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Materials
2.2. Apparatus
2.3. Preparation of the Working Solutions and Composites
2.4. Electrochemical Modification of the Platinum Microelectrode
2.5. Application of the Fabricated Biosensor with Real Plasma Samples
2.6. Detection of ALT Activity in Real Plasma Samples Using Commercial Assay Kit
3. Results and Discussion
3.1. POx Reaction Mechanism and Detection of ALT
3.2. Electrode Surface Modification
3.3. POx Imprinting on the Platinum Microelectrodes (PME)
3.4. Optimization of the Electrochemical Parameters of the Biosensor
3.4.1. Effect of 4-Amino Antipyrine (4-AAP) Concentration
3.4.2. Influence of Sodium Pyruvate Concentration on the Response
3.4.3. POx Removal from the MIP Matrix
3.4.4. Incubation Time (Interaction Time between POx and ALT)
3.4.5. Effect of Quiet Time
3.4.6. pH Effect
3.5. Morphological Characterization of the Biosensor
3.6. Selectivity Testing and Stability
3.7. Calibration Curve
3.8. Electrochemical Impedance Spectroscopy (EIS) Characterization of the POx MIP-Modified PME Biosensor
3.9. Detection of ALT in Human Plasma Sample
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsueh, C.J.; Wang, J.H.; Dai, L.; Liu, C.C. Determination of alanine aminotransferase with an electrochemical nano Ir-C biosensor for the screening of liver diseases. Biosensors 2011, 1, 107–117. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chang, M.L.; Liaw, Y.F. Hepatitis B flares in chronic hepatitis B: Pathogenesis, natural course, and management. J. Hepatol. 2014, 61, 1407–1417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Degertekin, B. Determination of the upper limits of normal serum alanine aminotransferase (ALT) level in healthy Turkish population. Hepatol. Forum 2020, 1, 44–47. [Google Scholar] [CrossRef]
- Li, L.; Li, L.; Cheng, G.; Wei, S.; Wang, Y.; Huang, Q.; Wu, W.; Liu, X.; Chen, G. Study of the Preparation and Properties of Chrysin Binary Functional Monomer Molecularly Imprinted Polymers. Polymers 2022, 14, 2771. [Google Scholar] [CrossRef]
- Hu, C.; Wang, T.; Zhuang, X.; Sun, Q.; Wang, X.; Lin, H.; Feng, M.; Zhang, J.; Cao, Q.; Jiang, Y. Metabolic analysis of early nonalcoholic fatty liver disease in humans using liquid chromatography-mass spectrometry. J. Transl. Med. 2021, 19, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.H.; Sun, C.X.; Shi, H.; Fan, J.H.; Song, Y.G.; Cong, P.J.; Kong, X.M.; Hao, D.L. Detection of miR-122 by fluorescence real-time PCR in blood from patients with chronic hepatitis B and C infections. Cytokine 2020, 131, 155076. [Google Scholar] [CrossRef]
- Yang, F.; Liao, J.; Pei, R.; Yu, W.; Han, Q.; Li, Y.; Guo, J.; Hu, L.; Pan, J.; Tang, Z. Autophagy attenuates copper-induced mitochondrial dysfunction by regulating oxidative stress in chicken hepatocytes. Chemosphere 2018, 204, 36–43. [Google Scholar] [CrossRef]
- Liu, J.; Sun, L.; Li, G.; Jue, H.; He, Q. Ultrasensitive detection of dopamine via electrochemical route on spindle-like α-Fe2O3 Mesocrystals/rGO modified GCE. Mater. Res. Bull. 2021, 133, 111050. [Google Scholar] [CrossRef]
- Wang, T.; Xu, C.; Xu, S.; Gao, L.; Blaženović, I.; Ji, J.; Wang, J.; Sun, X. Untargeted metabolomics analysis by gas chromatography/time-of-flight mass spectrometry of human serum from methamphetamine abusers. Addict. Biol. 2021, 26, e13062. [Google Scholar] [CrossRef]
- Plaxco, K.W.; Soh, H.T. Switch-based biosensors: A new approach towards real-time, in vivo molecular detection. Trends Biotechnol. 2011, 29, 1–5. [Google Scholar] [CrossRef] [Green Version]
- Mehrotra, P. Biosensors and their applications—A review. J. Oral Biol. Craniofacial Res. 2016, 6, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Singh, R.; Marques, C.; Jha, R.; Zhang, B.; Zhang, B.; Kumar, S.; Kumar, S. Taper-in-taper fiber structure-based LSPR sensor for alanine aminotransferase detection. Opt. Express 2021, 29, 43793–43810. [Google Scholar] [CrossRef]
- Moed, S.; Zaman, M.H. A quantitative electrochemical assay for liver injury. Biosens. Bioelectron. 2019, 131, 74–78. [Google Scholar] [CrossRef]
- Yadav, S.; Jangra, R.; Sharma, B.R.; Sharma, M. Current advancement in biosensing techniques for determination of alanine aminotransferase and aspartate aminotransferase—A mini review. Process Biochem. 2022, 114, 71–76. [Google Scholar] [CrossRef]
- Saygili, E.; Orakci, B.; Koprulu, M.; Demirhan, A.; Ilhan-Ayisigi, E.; Kilic, Y.; Yesil-Celiktas, O. Quantitative determination of H2O2 for detection of alanine aminotransferase using thin film electrodes. Anal. Biochem. 2020, 591, 113538. [Google Scholar] [CrossRef] [PubMed]
- Xuan, G.S.; Oh, S.W.; Choi, E.Y. Development of an electrochemical immunosensor for alanine aminotransferase. Biosens. Bioelectron. 2003, 19, 365–371. [Google Scholar] [CrossRef]
- Song, M.J.; Yun, D.H.; Hong, S.I. An electrochemical biosensor array for rapid detection of alanine aminotransferase and aspartate aminotransferase. Biosci. Biotechnol. Biochem. 2009, 73, 474–478. [Google Scholar] [CrossRef] [Green Version]
- Lowdon, J.W.; Diliën, H.; Singla, P.; Peeters, M.; Cleij, T.J.; van Grinsven, B.; Eersels, K. MIPs for commercial application in low-cost sensors and assays—An overview of the current status quo. Sensors Actuators B Chem. 2020, 325, 128973. [Google Scholar] [CrossRef]
- Leibl, N.; Haupt, K.; Gonzato, C.; Duma, L. Molecularly imprinted polymers for chemical sensing: A tutorial review. Chemosensors 2021, 9, 123. [Google Scholar] [CrossRef]
- El Malahany, N.; Abdel Tawab, M.; Elwy, H.; Fahmy, H.; Mohamed El Nashar, R. Design and Application of Molecularly Imprinted Electrochemical Sensor for the New Generation Antidiabetic Drug Saxagliptin. Electroanalysis 2022, e202200313. [Google Scholar] [CrossRef]
- Abdel-Haleem, F.M.; Gamal, E.; Rizk, M.S.; Madbouly, A.; El Nashar, R.M.; Anis, B.; Elnabawy, H.M.; Khalil, A.S.G.; Barhoum, A. Molecularly Imprinted Electrochemical Sensor-Based Fe2O3@MWCNTs for Ivabradine Drug Determination in Pharmaceutical Formulation, Serum, and Urine Samples. Front. Bioeng. Biotechnol. 2021, 9, 648704. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.; Kandeil, A.; Gomaa, M.; Mohamed El Nashar, R.; El-Sherbiny, I.M.; Hassan, R.Y.A. SARS-CoV-2-Impedimetric Biosensor: Virus-Imprinted Chips for Early and Rapid Diagnosis. ACS Sensors 2021, 6, 4098–4107. [Google Scholar] [CrossRef] [PubMed]
- Hussein, H.A.; El Nashar, R.M.; El-Sherbiny, I.M.; Hassan, R.Y.A. High selectivity detection of FMDV- SAT-2 using a newly-developed electrochemical nanosensors. Biosens. Bioelectron. 2021, 191, 113435. [Google Scholar] [CrossRef] [PubMed]
- Khalid, S.A.; Hassan, R.Y.A.; El Nashar, R.M.; El-Sherbiny, I.M. Voltammetric determination of Salmonella typhimurium in minced beef meat using a chip-based imprinted sensor. RSC Adv. 2022, 12, 3445–3453. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Wang, L.; Yan, J.; Luan, D.; Sun, T.; Wu, J.; Bian, X. Rapid, sensitive and label-free detection of pathogenic bacteria using a bacteria-imprinted conducting polymer film-based electrochemical sensor. Talanta 2021, 226, 122135. [Google Scholar] [CrossRef] [PubMed]
- Atef Abdel Fatah, M.; Abd El-Moghny, M.G.; El-Deab, M.S.; Mohamed El Nashar, R. Application of molecularly imprinted electrochemical sensor for trace analysis of Metribuzin herbicide in food samples. Food Chem. 2023, 404, 134708. [Google Scholar] [CrossRef]
- El Harery, A.H.; Ghani, N.T.A.; El Nashar, R.M. Application of Molecularly Imprinted Electrochemical Sensor for Selective Non-Labelled Detection of Acetamiprid Insecticide in Fruits. J. Electrochem. Soc. 2023, 170, 027505. [Google Scholar] [CrossRef]
- Akgönüllü, S.; Seçkin, K.; Esen, C.; Denizli, A. Molecularly Imprinted Polymer-Based Sensors for Protein Detection. Polymers 2023, 15, 629. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Jagminas, A.; Ramanavicius, A. Advances in molecularly imprinted polymers based affinity sensors (review). Polymers 2021, 13, 974. [Google Scholar] [CrossRef]
- Ostovan, A.; Arabi, M.; Wang, Y.; Li, J.; Li, B.; Wang, X.; Chen, L. Greenificated Molecularly Imprinted Materials for Advanced Applications. Adv. Mater. 2022, 34, 2203154. [Google Scholar] [CrossRef]
- Al-mhyawi, S.R.; Abdel-tawab, M.A.; El, R.M. A novel electrochemical hybrid platform for sensitive determination of the aminoglycoside antibiotic Kasugamycin residues in vegetables. Food Chem. 2023, 411, 135506. [Google Scholar] [CrossRef] [PubMed]
- Al-Mhyawi, S.R.; Ahmed, R.K.; El Nashar, R.M. Application of a conducting poly-methionine/gold nanoparticles-modified sensor for the electrochemical detection of paroxetine. Polymers 2021, 13, 3981. [Google Scholar] [CrossRef] [PubMed]
- Crapnell, R.D.; Hudson, A.; Foster, C.W.; Eersels, K.; van Grinsven, B.; Cleij, T.J.; Banks, C.E.; Peeters, M. Recent advances in electrosynthesized molecularly imprinted polymer sensing platforms for bioanalyte detection. Sensors 2019, 19, 1204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ahmed, R.K.; Saad, E.M.; Fahmy, H.M.; El Nashar, R.M. Multivariate experimental design: Towards more reliable electrochemical detection. Curr. Opin. Electrochem. 2022, 31, 100880. [Google Scholar] [CrossRef]
- Hasseb, A.A.; Abdel Ghani, N.d.T.; Shehab, O.R.; El Nashar, R.M. Application of molecularly imprinted polymers for electrochemical detection of some important biomedical markers and pathogens. Curr. Opin. Electrochem. 2022, 31, 100848. [Google Scholar] [CrossRef]
- Wang, M.; Ji, Z.; Xu, J.; Zhang, C.; Yang, Y.; Liang, X.; Zhang, Y. Study on stereoselective bioactivity, acute toxicity, and degradation in cucurbits and soil of chiral fungicide famoxadone. Environ. Sci. Pollut. Res. 2021, 28, 15947–15953. [Google Scholar] [CrossRef]
- Han, Y.D.; Song, S.Y.; Lee, J.H. Multienzyme-modified biosensing surface for the electrochemical analysis of aspartate transaminase and alanine transaminase in human plasma. Anal. Bioanal. Chem. 2011, 400, 797–805. [Google Scholar] [CrossRef]
- Jamal, M.; Worsfold, O.; McCormac, T.; Dempsey, E. A stable and selective electrochemical biosensor for the liver enzyme alanine aminotransferase (ALT). Biosens. Bioelectron. 2009, 24, 2926–2930. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Domínguez, S.; Arias-Pardilla, J.; Berenguer-Murcia, Á.; Morallón, E.; Cazorla-Amorós, D. Electrochemical deposition of platinum nanoparticles on different carbon supports and conducting polymers. J. Appl. Electrochem. 2008, 38, 259–268. [Google Scholar] [CrossRef] [Green Version]
- Paraíso, L.F.; de Paula, L.F.; Franco, D.L.; Madurro, J.M.; Brito-Madurro, A.G. Bioelectrochemical detection of alanine aminotransferase for molecular diagnostic of the liver disease. Int. J. Electrochem. Sci. 2014, 9, 1286–1297. [Google Scholar]
- Kamal Ahmed, R.; Saad, E.M.; Fahmy, H.M.; El Nashar, R.M. Design and application of molecularly imprinted Polypyrrole/Platinum nanoparticles modified platinum sensor for the electrochemical detection of Vardenafil. Microchem. J. 2021, 171, 106771. [Google Scholar] [CrossRef]
- Korkut, S.; Göl, S.; Kilic, M.S. Poly(pyrrole-co-pyrrole-2-carboxylic acid)/Pyruvate oxidase based biosensor for phosphate: Determination of the Potential, and application in streams. Electroanalysis 2020, 32, 271–280. [Google Scholar] [CrossRef]
- Hsueh Alan, C.J.; Wang, J.H.; Dai, L.; Liu, C.C. Development of an electrochemical-based aspartate aminotransferase nanoparticle ir-c biosensor for screening of liver diseases. Biosensors 2012, 2, 234–244. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tawab, M.A.H.A.; El-Moghny, M.G.A.; El Nashar, R.M. Computational design of molecularly imprinted polymer for electrochemical sensing and stability indicating study of sofosbuvir. Microchem. J. 2020, 158, 105180. [Google Scholar] [CrossRef]
- Hu, R.; Wen, W.; Wang, Q.; Xiong, H.; Zhang, X.; Gu, H.; Wang, S. Novel electrochemical aptamer biosensor based on an enzyme-gold nanoparticle dual label for the ultrasensitive detection of epithelial tumour marker MUC1. Biosens. Bioelectron. 2014, 53, 384–389. [Google Scholar] [CrossRef]
- Cui, F.; Zhou, Z.; Zhou, H.S. Molecularly imprinted polymers and surface imprinted polymers based electrochemical biosensor for infectious diseases. Sensors 2020, 20, 996. [Google Scholar] [CrossRef] [Green Version]
- El Gohary, N.A.; Madbouly, A.; El Nashar, R.M.; Mizaikoff, B. Voltammetric Determination of Valaciclovir Using a Molecularly Imprinted Polymer Modified Carbon Paste Electrode. Electroanalysis 2017, 29, 1388–1399. [Google Scholar] [CrossRef]
- Sha, H.; Yan, B. Dye-functionalized metal–organic frameworks with the uniform dispersion of MnO2 nanosheets for visualized fluorescence detection of alanine aminotransferase. Nanoscale 2021, 13, 20205–20212. [Google Scholar] [CrossRef]
- Feng, W.; Qiao, J.; Jiang, J.; Sun, B.; Li, Z.; Qi, L. Development of alanine aminotransferase reactor based on polymer@Fe3O4 nanoparticles for enzyme inhibitors screening by chiral ligand exchange capillary electrophoresis. Talanta 2018, 182, 600–605. [Google Scholar] [CrossRef]
Sample No. | Reference Kit * U/L | Found U/L | Recovery (%) | RSD * (%) |
---|---|---|---|---|
1 | 8 | 8.10 | 101.25 | 1.23 |
2 | 14 | 14.12 | 100.86 | 1.27 |
3 | 17 | 17.65 | 103.82 | 2.01 |
4 | 29 | 29.48 | 101.66 | 0.96 |
5 | 38 | 38.02 | 100.05 | 0.27 |
6 | 45 | 45.44 | 100.98 | 0.77 |
7 | 51 | 51.64 | 101.25 | 0.47 |
8 | 61 | 60.88 | 99.80 | 1.09 |
9 | 69 | 69.73 | 101.06 | 0.44 |
10 | 85 | 85.62 | 100.73 | 1.31 |
11 | 121 | 121.29 | 100.24 | 0.58 |
12 | 160 | 159.89 | 99.93 | 0.29 |
Method | Principle | Linear Range | LOD | Ref. |
---|---|---|---|---|
Ag/AgCl/GluOx | Electrochemical techniques | 10–1000 U/L | 3.29 U/L | [38] |
Anti-ALT antibody/Ag/AgCl | Spectrophotometric measurement | 0.01–100 μg/mL | 10 pg/mL | [16] |
Platinum/polydimethylsiloxane | Electrochemical techniques | 1.3–250 U/L | 0.4 U/L | [17] |
Nano Ir-C | Electrochemical techniques | 0–544 ng/mL | 2.18 U/L | [43] |
AuNPs/MoS2/CeO2/GluOx | LSPR | 10–1000 U/L | 10.61 U/L | [12] |
MnO2@ZIF-8-luminol | Fluorescence | 0–1500 U/L | 0.5 U/L | [48] |
ALT@PNAS@ PNAS | CLE-CE technique | 12.5 μg/mL–0.3 mg/mL | 6.1 μM | [49] |
POx MIP-modified PME | Electrochemical techniques | 25–700 U/L | 2.97 U/L | This Work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Samy, M.A.; Abdel-Tawab, M.A.-H.; Abdel-Ghani, N.T.; El Nashar, R.M. Application of Molecularly Imprinted Microelectrode as a Promising Point-of-Care Biosensor for Alanine Aminotransferase Enzyme. Chemosensors 2023, 11, 262. https://doi.org/10.3390/chemosensors11050262
Samy MA, Abdel-Tawab MA-H, Abdel-Ghani NT, El Nashar RM. Application of Molecularly Imprinted Microelectrode as a Promising Point-of-Care Biosensor for Alanine Aminotransferase Enzyme. Chemosensors. 2023; 11(5):262. https://doi.org/10.3390/chemosensors11050262
Chicago/Turabian StyleSamy, Mostafa Ahmed, Muhammed Abdel-Hamied Abdel-Tawab, Nour. T. Abdel-Ghani, and Rasha M. El Nashar. 2023. "Application of Molecularly Imprinted Microelectrode as a Promising Point-of-Care Biosensor for Alanine Aminotransferase Enzyme" Chemosensors 11, no. 5: 262. https://doi.org/10.3390/chemosensors11050262
APA StyleSamy, M. A., Abdel-Tawab, M. A. -H., Abdel-Ghani, N. T., & El Nashar, R. M. (2023). Application of Molecularly Imprinted Microelectrode as a Promising Point-of-Care Biosensor for Alanine Aminotransferase Enzyme. Chemosensors, 11(5), 262. https://doi.org/10.3390/chemosensors11050262