Highly Selective Uricase-Based Quantification of Uric Acid Using Hydrogen Peroxide Sensitive Poly-(vinylpyrrolidone) Templated Copper Nanoclusters as a Fluorescence Probe
Abstract
:1. Introduction
2. Experimental Design
2.1. Reagents
2.2. Instruments
2.3. Synthesis of the PVP-Decorated CuNCs
2.4. Characterization of the PVP-CuNCs
2.5. General procedures for Detecting H2O2 and UA
3. Results and Discussion
3.1. PVP-CuNCs-Based Fluorescence Detection of H2O2
3.2. Optimization for the Detection of UA by PVP-Coated CuNCs
3.3. Enzymatic detection of UA by the PVP-CuNCs
3.4. Specificity of the Present Assay
3.5. Analytical Application of the Present Fluorescence Platform
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dryhurst, G. Electrochemistry of Biological Molecules; Academic Press: New York, NY, USA, 1977. [Google Scholar]
- Grabowska, I.; Chudy, M.; Dybko, A.; Brzozka, Z. Uric acid determination in a miniaturized flow system with dual optical detection. Sens. Actuators B 2008, 130, 508–513. [Google Scholar] [CrossRef]
- Raj, C.R.; Ohsaka, T. Voltammetric detection of uric acid in the presence of ascorbic acid at a gold electrode modified with a self-assembled monolayer of heteroaromatic thiol. J. Electroanal. Chem. 2003, 540, 69–77. [Google Scholar]
- Kannan, P.; John, S.A. Determination of nanomolar uric and ascorbic acids using enlarged gold nanoparticles modified electrode. Anal. Biochem. 2009, 386, 65–72. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.J.; Kang, D.H.; Feig, D.; Kivlighn, S.; Kanellis, J.; Watanabe, S.; Tuttle, K.R.; Rodriguez-Iturbe, B.; HerreraAcosta, J.; Mazzali, M. Is there a pathogenetic role for uric acid in hypertension and cardiovascular and renal disease? Hypertension 2003, 41, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Gagliardi, A.C.M.; Miname, M.H.; Santos, R.D. Uric acid: A marker of increased cardiovascular risk. Atherosclerosis 2009, 202, 11–17. [Google Scholar] [CrossRef]
- Rocha, D.L.; Rocha, F.R.P. A flow-based procedure with solenoid micro-pumps for the spectrophotometric determination of uric acid in urine. Microchem. J. 2010, 94, 53–59. [Google Scholar] [CrossRef]
- Buhimschi, C.S.; Norwitz, E.R.; Funai, E.; Richman, S.; Guller, S.; Lockwood, C.J.; Buhimschi, I.A. Urinary angiogenic factors cluster hypertensive disorders and identify women with severe preeclampsia. Am. J. Obstet. Gynecol. 2005, 192, 734–741. [Google Scholar] [CrossRef]
- Moccia, M.; Lanzillo, R.; Palladino, R.; Russo, C.; Carotenuto, A.; Massarelli, M.; Vacca, G.; Vacchiano, V.; Nardone, A.; Triassi, M.; et al. Uric acid: A potential biomarker of multiple sclerosis and of its disability. Clin. Chem. Lab. Med. 2015, 53, 753–759. [Google Scholar] [CrossRef]
- Aafria, S.; Kumari, P.; Sharma, S.; Yadav, S.; Batra, B.; Rana, J.S.; Sharma, M. Electrochemical biosensing of uric acid: A review. Microchem. J. 2022, 182, 107945. [Google Scholar] [CrossRef]
- Javier, E.L.V.; Ronei, J.P. A portable SERS method for the determination of uric acid using a paper-based substrate and multivariate curve resolution. Analyst 2016, 141, 1966–1972. [Google Scholar]
- Zhao, S.; Wang, J.; Ye, F.; Liu, Y.M. Determination of uric acid in human urine and serum by capillary electrophoresis with chemiluminescence detection. Anal. Biochem. 2008, 378, 127–131. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Zheng, H.; Wang, J.; Hou, J.; He, Q.; Liu, H.; Xiong, C.; Kong, X.; Nie, Z. Carbon nanodots as a matrix for the analysis of low-molecular-weight molecules in both positive- and negative-ion matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and quantification of glucose and uric acid in real sample. Anal. Chem. 2013, 85, 6646–6652. [Google Scholar] [CrossRef]
- Chen, Y.; Ji, P.; Ma, G.; Song, Z.; Tang, B.Q.; Li, T. Simultaneous determination of cellular adenosine nucleotides, malondialdehyde, and uric acid using HPLC. Biomed. Chromatogr. 2021, 35, e5156. [Google Scholar] [CrossRef]
- Bera, R.K.; Anoop, A.; Raj, C.R. Enzyme-free colorimetric assay of serum uric acid. Chem. Commun. 2011, 47, 11498–11500. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.Y.; Zhu, G.B.; Cao, W.D.; Liu, Z.J.; Pan, C.G.; Hu, W.J.; Zhao, W.Y.; Sun, J.F. A novel ratiometric fluorescent probe for the detection of uric acid in human blood based on H2O2-mediated fluorescence quenching of gold/silver nanoclusters. Talanta 2019, 191, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Seok, J.S.; Ju, H. Plasmonic optical biosensors for detecting c-reactive protein: A review. Micromachines 2020, 11, 895. [Google Scholar] [CrossRef] [PubMed]
- Kaushal, S.; Nanda, S.S.; Yi, D.K.; Ju, H. Effects of aspect ratio heterogeneity of an assembly of gold nanorod on localized surface plasmon resonance. J. Phys. Chem. Lett. 2020, 11, 5972–5979. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Sasikumar, K.; Kosame, S.; Ju, H. Optical Sensing of Toxic Cyanide Anions Using Noble Metal Nanomaterials. Nanomaterials 2023, 13, 290. [Google Scholar] [CrossRef]
- Tran NH, T.; Trinh KT, L.; Lee, J.H.; Yoon, W.J.; Ju, H. Reproducible Enhancement of Fluorescence by Bimetal Mediated Surface Plasmon Coupled Emission for Highly Sensitive Quantitative Diagnosis of Double-Stranded DNA. Small 2018, 14, 1801385. [Google Scholar] [CrossRef]
- Tran NH, T.; Phan, T.B.; Nguyen, T.T.; Ju, H. Coupling of silver nanoparticle-conjugated fluorescent dyes into optical fiber modes for enhanced signal-to-noise ratio. Biosens. Bioelectron. 2021, 176, 112900. [Google Scholar] [CrossRef]
- Tran, V.T.; Ju, H. Fluorescence Based on Surface Plasmon Coupled Emission for Ultrahigh Sensitivity Immunoassay of Cardiac Troponin I. Biomedicines 2021, 9, 448. [Google Scholar] [CrossRef] [PubMed]
- Tran NH, T.; Trinh KT, L.; Lee, J.H.; Yoon, W.J.; Ju, H. Fluorescence enhancement using bimetal surface plasmon-coupled emission from 5-carboxyfluorescein (FAM). Micromachines 2018, 9, 460. [Google Scholar] [CrossRef] [PubMed]
- Rajamanikandan, R.; Ilanchelian, M. Protein-localized bright-red fluorescent gold nanoclusters as cyanide-selective colorimetric and fluorometric nanoprobes. ACS Omega 2018, 10, 14111–14118. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Wang, E. Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9, 132–157. [Google Scholar] [CrossRef]
- Díez, I.; Ras, R.H. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970. [Google Scholar] [CrossRef]
- Choi, S.; Dickson, R.M.; Yu, J. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891. [Google Scholar] [CrossRef]
- Lu, Y.; Wei, W.; Chen, W. Copper nanoclusters: Synthesis, characterization and properties. Chin. Sci. Bull. 2012, 57, 41–47. [Google Scholar] [CrossRef]
- Singh, A.; Kaur, S.; Kaur, A.; Aree, T.; Kaur, N.; Singh, N.; Bakshi, M.S. Aqueous-Phase Synthesis of Copper Nanoparticles Using Organic Nanoparticles: Application of Assembly in Detection of Cr3+. ACS Sustain. Chem. Eng. 2014, 2, 982–990. [Google Scholar] [CrossRef]
- Ma, S.-Y.; Yeh, Y.-C. One-step synthesis of water-soluble fluorescent copper nanoparticles for label-free detection of manganese ions. Anal. Methods 2015, 7, 6475–6478. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, B.; Rogach, A.L. Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horiz. 2017, 2, 135–146. [Google Scholar] [CrossRef]
- Shekhar, S.; Mahato, P.; Yadav, R.; Verma, S.D.; Mukherjee, S. White light generation through l-ascorbic acid-templated thermoresponsive copper nanoclusters. ACS Sustain. Chem. Eng. 2022, 10, 1379–1389. [Google Scholar] [CrossRef]
- Liu, X.; Astruc, D. Atomically precise copper nanoclusters and their applications. Coord. Chem. Rev. 2018, 359, 112–126. [Google Scholar] [CrossRef]
- Shahsavari, S.; Hadian-Ghazvini, S.; Saboor, F.H.; Oskouie, I.M.; Hasany, M.; Simchi, A.; Rogach, A.L. Ligand functionalized copper nanoclusters for versatile applications in catalysis, sensing, bioimaging, and optoelectronics. Mater. Chem. Front. 2019, 3, 2326–2356. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Azaad, B.; Kumar, L.S.; Ilanchelian, M. Glutathione functionalized copper nanoclusters as a fluorescence platform for specific biosensing of cysteine and application in cellular imaging. Microchem. J. 2020, 158, 105253. [Google Scholar] [CrossRef]
- Jia, X.; Yang, X.; Li, J.; Li, D.; Wang, E. Stable Cu nanoclusters: From an aggregation-induced emission mechanism to biosensing and catalytic applications. Chem. Commun. 2014, 50, 237–239. [Google Scholar] [CrossRef] [PubMed]
- Rajamanikandan, R.; Ilanchelian, M. Protein-protected red emittive copper nanoclusters as a fluorometric probe for highly sensitive biosensing of creatinine. Anal. Methods 2018, 10, 3666–3674. [Google Scholar] [CrossRef]
- Wang, Z.; Susha, A.S.; Chen, B.; Reckmeier, C.; Tomanec, O.; Zboril, R.; Zhong, H.; Rogach, A.L. Poly(vinylpyrrolidone) supported copper nanoclusters: Glutathione enhanced blue photoluminescence for application in phosphor converted light emitting devices. Nanoscale 2016, 8, 7197–7202. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M. Fluorescence sensing approach for high specific detection of 2,4,6-trinitrophenol using bright cyan blue color-emittive poly(vinylpyrrolidone)-supported copper nanoclusters as a fluorophore. ACS Omega 2018, 3, 18251–18257. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M. Simple smartphone merged rapid colorimetric platform for the environmental monitoring of toxic sulfide ions by cysteine functionalized silver nanoparticles. Microchem. J. 2022, 174, 107071. [Google Scholar] [CrossRef]
- Zhou, T.; Yao, Q.; Zhao, T.; Chen, X. One-pot synthesis of fluorescent DHLA-stabilized Cu nanoclusters for the determination of H2O2. Talanta 2015, 141, 80–85. [Google Scholar] [CrossRef]
- Lee, Y.D.; Lim, C.K.; Singh, A.; Koh, J.; Kim, J.; Kwon, I.C.; Kim, S. Dye/peroxalate aggregated nanoparticles with enhanced and tunable chemiluminescence for biomedical imaging of hydrogen peroxide. ACS Nano 2012, 6, 6759–6766. [Google Scholar] [CrossRef] [PubMed]
- Ling, Y.; Zhang, N.; Qu, F.; Wen, T.; Gao, Z.F.; Li, N.B.; Luo, H.Q. Fluorescent detection of hydrogen peroxide and glucose with polyethyleneimine-templated Cu nanoclusters. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 315–320. [Google Scholar] [CrossRef] [PubMed]
- Leed, M.G.D.; Wolkow, N.; Pham, D.M.; Daniel, C.L.; Dunaief, J.L.; Franz, K.J. Prochelators Triggered by Hydrogen Peroxide Provide Hexadentate Iron Coordination to Impede Oxidative Stress. J. Inorg. Biochem. 2011, 105, 1161–1172. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Shang, L.; Guo, S.; Fang, Y.; Wen, D.; Wang, L.; Yin, J.; Dong, S. Biomolecule- stabilized Au nanoclusters as a fluorescence probe for sensitive detection of glucose. Biosens. Bioelectron. 2011, 26, 1965–1969. [Google Scholar] [CrossRef] [PubMed]
- Lakowicz, J.R. (Ed.) Principles of Fluorescence Spectroscopy; Springer US: Boston, MA, USA, 2006. [Google Scholar]
- Rajan, D.; Rajamanikandan, R.; Ilanchelian, M. Investigating the biophysical interaction of serum albumins-gold nanorods using hybrid spectroscopic and computational approaches with the intent of enhancing cytotoxicity efficiency of targeted drug delivery. J. Mol. Liq. 2023, 377, 121541. [Google Scholar] [CrossRef]
- Park, J.S.; Wilson, J.N.; Hardcastle, K.I.; Bunz, U.H.; Srinivasarao, M. Reduced fluorescence quenching of cyclodextrin− acetylene dye rotaxanes. J. Am. Chem. Soc. 2006, 128, 7714–7715. [Google Scholar] [CrossRef]
- Shiang, Y.-C.; Huang, C.-C.; Chang, H.-T. Gold nanodot-based luminescent sensor for the detection of hydrogen peroxide and glucose. Chem. Commun. 2009, 2009, 3437–3439. [Google Scholar] [CrossRef]
- Wang, J.; Chang, Y.; Wu, W.B.; Zhang, P.; Lie, S.Q.; Huang, C.Z. Label-free and selective sensing of uric acid with gold nanoclusters as optical probe. Talanta 2016, 152, 314–320. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, X.; Lu, W.; Liao, H.; Liao, F. Uricase based methods for determination of uric acid in serum. Microchim. Acta 2009, 164, 1–6. [Google Scholar] [CrossRef]
- Kong, R.M.; Yang, A.; Wang, Q.; Wang, Y.; Ma, L.; Qu, F. Uricase based fluorometric determination of uric acid based on the use of graphene quantum dot@silver core-shell nanocomposites. Microchim. Acta 2018, 185, 63. [Google Scholar] [CrossRef]
- Wang, H.; Lu, Q.; Hou, Y.; Liu, Y.; Zhang, Y. High fluorescence S, N co-doped carbon dots as an ultra-sensitive fluorescent probe for the determination of uric acid. Talanta 2016, 155, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; He, Y.; Zhou, J.; Ge, Y.; Zhou, J.; Song, G. A ’’naked-eye’’ colorimetric and ratiometric fluorescence probe for uric acid based on Ti3C2 MXene quantum dots. Anal. Chim. Acta 2020, 1103, 134–142. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Rui, J.; Yan, Z.; Qiu, P.; Tang, X. A highly sensitive dual-read assay using nitrogen-doped carbon dots for the quantitation of uric acid in human serum and urine samples. Microchim. Acta 2021, 188, 311. [Google Scholar] [CrossRef] [PubMed]
- Azmi, N.E.; Ramli, N.I.; Abdullah, J.; Abdul Hamid, M.A.; Sidek, H.; Abd Rahman, S.; Ariffin, N.; Yusof, N.A. A simple and sensitive fluorescence-based biosensor for the determination of uric acid using H2O2-sensitive quantum dots/dual enzymes. Biosens. Bioelectron. 2015, 67, 129–133. [Google Scholar] [CrossRef]
- Liu, Y.; Li, H.; Guo, B.; Wei, L.; Chen, B.; Zhang, Y. Gold nanoclusters as switch-off fluorescent probe for detection of uric acid based on the inner filter effect of hydrogen peroxide-mediated enlargement of gold nanoparticles. Biosens. Bioelectron. 2017, 91, 734–740. [Google Scholar] [CrossRef] [PubMed]
- Azmia, N.E.; Rashid, A.H.A.; Abdullah, J.; Yusof, N.A.; Sidek, H. Fluorescence biosensor based on encapsulated quantum dots/enzymes/sol-gel for non-invasive detection of uric acid. J. Lumin. 2018, 202, 309–315. [Google Scholar] [CrossRef]
- Jin, D.; Seo, M.-H.; Huy, B.T.; Pham, Q.-T.; Conte, M.L.; Thangadurai, D.; Lee, Y.-I. Quantitative determination of uric acid using CdTe nanoparticles as fluorescence probes. Biosens. Bioelectron. 2016, 77, 359–365. [Google Scholar] [CrossRef]
- Ma, C.; Li, P.; Xia, L.; Qu, F.; Kong, R.-M.; Song, Z.-L. A novel ratiometric fluorescence nanoprobe for sensitive determination of uric acid based on CD@ZIF-CuNC nanocomposites. Microchim. Acta 2021, 188, 259. [Google Scholar] [CrossRef]
Method | Materials | Linear Range | Detection Limit | Ref. |
---|---|---|---|---|
Fluorescence | BSA-Ag/AuNCs | 5–50 μM | 5.1 μM | [16] |
Fluorescence | BSA-AuNCs | 10–800 μM | 6.6 μM | [50] |
Fluorescence | Graphene QDs-Ag nanocomposite | 5–500 μM | 2 μM | [52] |
Fluorescence | S, N-co doped carbon dots | 0.08–10 μM | 0.07 μM | [53] |
Fluorescence | Ti3C2 Mxene QDs | 1.2–75 μM | 125 nM | [54] |
Fluorescence | N doped carbon dots | 0.5–150 μM | 60 nM | [55] |
Fluorescence | Cadmium sulfide QDs | 125–1000 μM | 125 μM | [56] |
Fluorescence | Chondroitin sulfate-AuNCs | 5–100 μM | 1.7 μM | [57] |
Fluorescence | Cadmium sulfide QDs | 60–2000 μM | 50 μM | [58] |
Fluorescence | Cadmium tellurium QDs | 0.2–6 μM | 0.1 μM | [59] |
Fluorescence | Carbon dots@ZIP-CuNCs | 1–100 μM | 0.3 μM | [60] |
Fluorescence | PVP-CuNCs | 0.5–10 μM | 113 nM | This work |
Samples | Average Found (×10−6 mol/L) | Spiked (×10−6 mol/L) | Calculated (×10−6 mol/L) | Recovery (%) | RSD (n = 3) |
---|---|---|---|---|---|
Urine sample 1 | 0.158 | 3.00 | 3.098 | 98.12 | 2.3 |
6.00 | 6.013 | 97.67 | 1.7 | ||
Urine sample 2 | 0.183 | 3.00 | 3.107 | 97.61 | 1.5 |
6.00 | 5.965 | 96.86 | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajamanikandan, R.; Ilanchelian, M.; Ju, H. Highly Selective Uricase-Based Quantification of Uric Acid Using Hydrogen Peroxide Sensitive Poly-(vinylpyrrolidone) Templated Copper Nanoclusters as a Fluorescence Probe. Chemosensors 2023, 11, 268. https://doi.org/10.3390/chemosensors11050268
Rajamanikandan R, Ilanchelian M, Ju H. Highly Selective Uricase-Based Quantification of Uric Acid Using Hydrogen Peroxide Sensitive Poly-(vinylpyrrolidone) Templated Copper Nanoclusters as a Fluorescence Probe. Chemosensors. 2023; 11(5):268. https://doi.org/10.3390/chemosensors11050268
Chicago/Turabian StyleRajamanikandan, Ramar, Malaichamy Ilanchelian, and Heongkyu Ju. 2023. "Highly Selective Uricase-Based Quantification of Uric Acid Using Hydrogen Peroxide Sensitive Poly-(vinylpyrrolidone) Templated Copper Nanoclusters as a Fluorescence Probe" Chemosensors 11, no. 5: 268. https://doi.org/10.3390/chemosensors11050268
APA StyleRajamanikandan, R., Ilanchelian, M., & Ju, H. (2023). Highly Selective Uricase-Based Quantification of Uric Acid Using Hydrogen Peroxide Sensitive Poly-(vinylpyrrolidone) Templated Copper Nanoclusters as a Fluorescence Probe. Chemosensors, 11(5), 268. https://doi.org/10.3390/chemosensors11050268