Research Progress on Chiral Supramolecular Sensors for Enantiomer Detection
Abstract
:1. Introduction
2. Optical Chiral Supramolecular Sensor
2.1. Fluorescence Sensor for the Detection of Enantiomers
2.2. Circular Dichroic Sensor for the Detection of Enantiomers
2.3. Other Optical Sensors for the Detection of Enantiomers
3. Electrochemical Chiral Supramolecular Sensors
3.1. Enantioselectivity Using Cyclic Voltammetry
3.2. Enantioselectivity Using Differential Pulse Voltammetry
4. Electrochemical Luminescence Chiral Supramolecular Sensors
5. Photoelectric Chemical Chiral Supramolecular Sensors
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arenas, M.; Martín, J.; Santos, J.-L.; Aparicio, I.; Alonso, E. Enantioselective behavior of environmental chiral pollutants: A comprehensive review. Crit. Rev. Environ. Sci. Technol. 2022, 52, 2995–3034. [Google Scholar] [CrossRef]
- Arenas, M.; Martín, J.; Santos, J.-L.; Aparicio, I.; Alonso, E. An overview of analytical methods for enantiomeric determination of chiral pollutants in environmental samples and biota. TrAC Trends Anal. Chem. 2021, 143, 116370. [Google Scholar] [CrossRef]
- Wu, S.-K.; Zhou, H.; Luo, L.; Zhou, Y.-Y. Response to comment on “Chiral pharmaceuticals: Environment sources, potential human health impacts, remediation technologies and future perspective”. Environ. Int. 2019, 127, 1–4. [Google Scholar] [CrossRef]
- Ribeiro, A.-R.; Castro, P.-M.-L.; Tiritan, M.-E. Chiral pharmaceuticals in the environment. Environ. Chem. Lett. 2012, 10, 239–253. [Google Scholar] [CrossRef]
- Zhou, Y.-Y.; Wu, S.-K.; Zhou, H.; Huang, H.-L.; Zhao, J.; Deng, Y.-C.; Wang, H.; Yang, Y.; Yang, J.; Luo, L. Chiral pharmaceuticals: Environment sources, potential human health impacts, remediation technologies and future perspective. Environ. Int. 2018, 121, 523–537. [Google Scholar] [CrossRef] [PubMed]
- Gal, J. Single-Isomer Science: The Phenomenon and Its Terminology. CNS Spectrums 2002, 7, 8–13. [Google Scholar] [CrossRef] [PubMed]
- Kasprzyk-Hordern, B. Pharmacologically active compounds in the environment and their chirality. Chem. Soc. Rev. 2010, 39, 4466–4503. [Google Scholar] [CrossRef]
- Dogan, A.; Płotka-Wasylka, J.; Kempińska-Kupczyk, D.; Namieśnik, J.; Kot-Wasik, A. Detection, identification and determination of chiral pharmaceutical residues in wastewater: Problems and challenges. TrAC Trends Anal. Chem. 2020, 122, 115710. [Google Scholar] [CrossRef]
- Bertin, S.; Yates, K.; Petrie, B. Enantiospecific behaviour of chiral drugs in soil. Environ. Pollut. 2020, 262, 114364. [Google Scholar] [CrossRef]
- Wang, X.-F.; Sun, Y.-K.; Sun, K.; Ding, Y.-Z.; Yuan, R.-J. Review: Separation and Pharmacology of Chiral Compounds in Traditional Chinese Medicine. Anal. Lett. 2017, 50, 33–49. [Google Scholar] [CrossRef]
- Ager, D.-J.; Li, T.; Pantaleone, D.-P.; Senkpeil, R.-F.; Taylor, P.-P.; Fotheringham, I.-G. Novel biosynthetic routes to non-proteinogenic amino acids as chiral pharmaceutical intermediates. J. Mol. Catal. B Enzym. 2001, 11, 199–205. [Google Scholar] [CrossRef]
- Jiang, W.; Fang, B.-S. Synthesizing Chiral Drug Intermediates by Biocatalysis. Appl. Biochem. Biotechnol. 2020, 192, 146–179. [Google Scholar] [CrossRef] [PubMed]
- Calcaterra, A.; D’acquarica, I. The market of chiral drugs: Chiral switches versus de novo enantiomerically pure compounds. J. Pharm. Biomed. Anal. 2018, 147, 323–340. [Google Scholar] [CrossRef]
- Ribeiro, C.; Santos, C.; Gonçalves, V.; Ramos, A.; Afonso, C.; Tiritan, M.-E. Chiral Drug Analysis in Forensic Chemistry: An Overview. Molecules 2018, 23, 262. [Google Scholar] [CrossRef] [PubMed]
- Maayan, M.-L.; Sellitto, R.-V.; Volpert, E.-M. Dopamine and L-Dopa: Inhibition of Thyrotropin-Stimulated Thyroidal Thyroxine Release. Endocrinology 1986, 118, 632–636. [Google Scholar] [CrossRef]
- Li, Y.-S.; Ramoz, N.; Derrington, E.; Dreher, J.-C. Hormonal responses in gambling versus alcohol abuse: A review of human studies. Prog. Neuro Psychopharmacol. Biol. Psychiatry 2020, 100, 109880. [Google Scholar] [CrossRef]
- Amabilino, D.-B.; Gale, P.-A. Supramolecular chemistry anniversary. Chem. Soc. Rev. 2017, 46, 2376–2377. [Google Scholar] [CrossRef] [PubMed]
- Pons, M.; Bernadó, P. Supramolecular Chemistry. eMagRes 2007, 2007, 1762–1763. [Google Scholar]
- Kolesnichenko, I.-V.; Anslyn, E.-V. Practical applications of supramolecular chemistry. Chem. Soc. Rev. 2017, 46, 2385–2390. [Google Scholar] [CrossRef]
- Xiang, D.-D.; Geng, Q.-X.; Cong, H.; Tao, T.; Yamato, T. Host-guest interaction of hemicucurbiturils with phenazine hydrochloride salt. Supramol. Chem. 2015, 27, 37–43. [Google Scholar] [CrossRef]
- Xu, W.-W.; Cheng, M.; Zhang, S.-Y.; Wu, Q.-F.; Liu, Z.; Dhinakaran, M.-K.; Liang, F.; Kovaleva, E.-G.; Li, H.-B. Recent advances in chiral discrimination on host–guest functionalized interfaces. Chem. Commun. 2021, 57, 7480–7492. [Google Scholar] [CrossRef] [PubMed]
- Liang, X.-T.; Liang, W.-T.; Jin, P.-Y.; Wang, H.-T.; Wu, W.-H.; Yang, C. Advances in Chirality Sensing with Macrocyclic Molecules. Chemosensors 2021, 9, 279. [Google Scholar] [CrossRef]
- Zor, E.; Bingol, H.; Ersoz, M. Chiral sensors. Trends Anal. Chem. 2019, 121, 115662. [Google Scholar] [CrossRef]
- Biedermann, F.; Nau, W.-M. Noncovalent Chirality Sensing Ensembles for the Detection and Reaction Monitoring of Amino Acids, Peptides, Proteins, and Aromatic Drugs. Angew. Chem. Int. Ed. 2014, 53, 5694–5699. [Google Scholar] [CrossRef]
- Huang, S.; Yu, H.-F.; Li, F. Supramolecular Chirality Transfer toward Chiral Aggregation: Asymmetric Hierarchical Self-Assembly. Adv. Sci. 2021, 8, 2002132. [Google Scholar] [CrossRef] [PubMed]
- Ouyanga, G.-H.; Liu, M.-H. Self-assembly of chiral supra-amphiphiles. Mater. Chem. Front. 2020, 4, 155. [Google Scholar] [CrossRef]
- Liu, Y. Supramolecular basketry. Nat. Chem. 2017, 9, 1037–1038. [Google Scholar] [CrossRef] [PubMed]
- Fukuhara, G. Polymer-based supramolecular sensing and application to chiral photochemistry. Polym. J. 2015, 47, 649–655. [Google Scholar] [CrossRef]
- Shang, X.; Song, I.; Jung, G.Y.; Choi, W.; Ohtsu, H.; Lee, J.H.; Koo, J.Y.; Liu, B.; Ahn, J.; Kawano, M.; et al. Chiral self-sorted multifunctional supramolecular biocoordination polymers and their applications in sensors. Nat. Commun. 2018, 9, 3933. [Google Scholar] [CrossRef]
- Dong, J.-Q.; Liu, Y.; Cui, Y. Supramolecular Chirality in Metal–Organic Complexes. Acc. Chem. Res. 2021, 54, 194–206. [Google Scholar] [CrossRef]
- Zhang, L.; Jin, Q.-X.; Liu, M.-H. Enantioselective Recognition by Chiral Supramolecular Gels. Chem. Asian J. 2016, 11, 2642–2649. [Google Scholar] [CrossRef] [PubMed]
- Travagliante, G.; Gaeta, M.; Purrello, R.; D’urso, A. Recognition and Sensing of Chiral Organic Molecules by Chiral Porphyrinoids: A Review. Chemosensors 2021, 9, 204. [Google Scholar] [CrossRef]
- Ibanez, J.-G.; Rincón, M.-E.; Gutierrez-Granados, S.; Chahma, M.-H.; Jaramillo-Quintero, O.-A.; Frontana-Uribe, B.-A. Conducting Polymers in the Fields of Energy, Environmental Remediation, and Chemical–Chiral Sensors. Chem. Rev. 2018, 118, 4731–4816. [Google Scholar] [CrossRef] [PubMed]
- Tiwari, M.-P.; Prasad, A. Molecularly imprinted polymer based enantioselective sensing devices: A review. Anal. Chim. Acta 2015, 853, 1–18. [Google Scholar] [CrossRef]
- Prabodh, A.; Bauer, D.; Kubik, S.; Rebmann, P.; Klärner, F.-G.; Schrader, T.; Bizzini, L.-D.; Mayor, M.; Biedermann, F. Chirality sensing of terpenes, steroids, amino acids, peptides and drugs with acyclic cucurbit[n]urils and molecular tweezers. Chem. Commun. 2020, 56, 4652. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.-D.; Borrull, F.; Marcé, R.-M.; Fontanals, N. Enantiomeric fraction determination of chiral drugs in environmental samples using chiral liquid chromatography and mass spectrometry. Trends Environ. Anal. Chem. 2021, 29, e00115. [Google Scholar] [CrossRef]
- Wong, C.-S. Environmental fate processes and biochemical transformations of chiral emerging organic pollutants. Anal. Bioanal. Chem. 2006, 386, 544–558. [Google Scholar] [CrossRef]
- Addonizio, C.-J.; Gates, B.-D.; Webber, M.-J. Supramolecular “click chemistry” for targeting in the body. Bioconjug. Chem. 2021, 32, 1935–1946. [Google Scholar] [CrossRef]
- Polavarapu, P.-L. Determination of the Absolute Configurations of Chiral Drugs Using Chiroptical Spectroscopy. Molecules 2016, 21, 1056. [Google Scholar] [CrossRef]
- Tyszka, A.; Pikus, G.; Dąbrowa, K.; Jurczak, J. Late-Stage Functionalization of (R)-BINOL-Based Diazacoronands and Their Chiral Recognition of α-Phenylethylamine Hydrochlorides. J. Org. Chem. 2019, 84, 6502–6507. [Google Scholar] [CrossRef]
- Wu, D.; Sedgwick, A.-C.; Gunnlaugsson, T.; Akkaya, E.-U.; Yoon, J.-Y.; James, T.-D. Fluorescent chemosensors: The past, present and future. Chem. Soc. Rev. 2017, 46, 7105–7123. [Google Scholar] [CrossRef]
- Brzechwa-Chodzyńska, A.; Drożdż, W.; Harrowfield, J.; Stefankiewicz, A.R. Fluorescent sensors: A bright future for cages. Coord. Chem. Rev. 2021, 434, 213820. [Google Scholar] [CrossRef]
- Lee, E.-S.; Lee, J.-M.; Kim, H.-J.; Kim, Y.-P. Fluorogenic Aptasensors with Small Molecules. Chemosensors 2021, 9, 54. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Wu, X.; Li, Z.; Jiang, Y.-B. Optical chirality sensing using macrocycles, synthetic and supramolecular oligomers/polymers, and nanoparticle based sensors. Chem. Soc. Rev. 2015, 44, 4249–4263. [Google Scholar] [CrossRef] [PubMed]
- Quan, M.; Pang, X.-Y.; Jiang, W. Circular dichroism based chirality sensing with supramolecular host–guest chemistry. Angew. Chem. Int. Ed. 2022, 61, e202201258. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, L.-L.; Sun, B.-B.; Qian, C.; Wang, R.-B.; Jiang, J.-L.; Lin, C.; Ma, J.; Wang, L.-Y. Competitive Selection of Conformation Chirality of Water-Soluble Pillar[5]arene Induced by Amino Acid Derivatives. Org. Lett. 2020, 22, 2266–2270. [Google Scholar] [CrossRef]
- Purcell-Milton, F.; McKenna, R.; Brennan, L.-J.; Cullen, C.-P.; Guillemeney, L.; Tepliakov, N.-V.; Baimuratov, A.-S.; Rukhlenko, I.-D.; Perova, T.-S.; Duesberg, G.-S.; et al. Induction of Chirality in Two-Dimensional Nanomaterials: Chiral 2D MoS2 Nanostructures. ACS Nano 2018, 12, 954–964. [Google Scholar] [CrossRef]
- Evans, J.-D.; Coudert, F.-X. Microscopic mechanism of chiral induction in a metal-organic ramework. J. Am. Chem. Soc. 2016, 138, 6131–6134. [Google Scholar] [CrossRef]
- Osawa, K.; Tagaya, H.; Kondo, S.-I. Induced Circular Dichroism of Achiral Cyclic Bisurea via Hydrogen Bonds with Chiral Carboxylates. J. Org. Chem. 2019, 84, 6623–6630. [Google Scholar] [CrossRef]
- Zhu, H.-T.-Z.; Li, Q.; Gao, Z.-C.; Wang, H.-L.; Shi, W.-B.; Wu, Y.-T.; Shangguan, L.-Q.; Hong, X.; Wang, F.; Huang, F.-H. Pillararene Host–Guest Complexation Induced Chirality Amplification: A New Way to Detect Cryptochiral Compounds. Angew. Chem. Int. Ed. 2020, 59, 10868–10872. [Google Scholar] [CrossRef]
- Weirich, L.; Merten, C. Induced VCD and conformational chirality in host–guest complexes of a chiral ammonium salt with crown ethers. Phys. Chem. Chem. Phys. 2021, 23, 18300–18307. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Rahim, N.-A.-A.; Xia, Y.-J.; Fujiki, M.; Song, B.; Zhang, Z.-B.; Zhang, W.; Zhu, X.-L. Supramolecular Chirality in Achiral Polyfluorene: Chiral Gelation, Memory of Chirality, and Chiral Sensing Property. Macromolecules 2016, 49, 3214–3221. [Google Scholar] [CrossRef]
- Chen, Y.; Fu, L.-L.; Sun, B.-B.; Qian, C.; Pangannaya, S.; Zhu, H.; Ma, J.; Jiang, J.-L.; Ni, Z.-J.; Wang, R.-B.; et al. Selection of Planar Chiral Conformations between Pillar[5,6]arenes Induced by Amino Acid Derivatives in Aqueous Media. Chem. A Eur. J. 2021, 27, 5890–5896. [Google Scholar] [CrossRef] [PubMed]
- Fa, S.-X.; Egami, K.; Adachi, K.; Kato, K.; Ogoshi, T. Sequential Chiral Induction and Regulator-Assisted Chiral Memory of Pillar[5]arenes. Angew. Chem. Int. Ed. 2020, 59, 20353–20356. [Google Scholar] [CrossRef]
- Zhang, H.-Y.; Cheng, L.; Nian, H.; Du, J.; Chen, T.; Cao, L.-P. Adaptive chirality of achiral tetraphenylethene-based tetracationic cyclophanes with dual responses of fluorescence and circular dichroism in water. Chem. Commun. 2021, 57, 3135–3138. [Google Scholar] [CrossRef] [PubMed]
- Cheng, L.; Liu, K.; Duan, Y.-J.; Duan, H.-H.; Li, Y.-W.; Gao, M.; Cao, L.-P. Adaptive chirality of an achiral cage: Chirality transfer, induction, and circularly polarized luminescence through aqueous host-guest complexation. CCS Chem. 2020, 2, 2749–2763. [Google Scholar] [CrossRef]
- Sapotta, M.; Spenst, P.; Saha-Möller, C.-R.; Würthner, F. Guest-mediated chirality transfer in the host–guest complexes of an atropisomeric perylene bisimide cyclophane host. Org. Chem. Front. 2019, 6, 892–899. [Google Scholar] [CrossRef]
- Liana, D.-D.; Raguse, B.; Gooding, J.-J.; Chow, E. Recent Advances in Paper-Based Sensors. Sensors 2012, 12, 11505–11526. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.-D.; Qin, F.; Zhang, H.-L.; Kou, M.; Zhang, Z.-G. A high-performance optical trace oxygen sensor based on the room-temperature phosphorescence from palladium (II) octaethylporphyrin. Measurement 2023, 206, 112275. [Google Scholar] [CrossRef]
- Banerjee, J.; Mandal, S.; Pradhan, M. Polarization-Multiplexed Incoherent Broadband Surface Plasmon Resonance: A New Analytical Strategy for Plasmonic Sensing. Anal. Chem. 2022, 94, 6689–6694. [Google Scholar] [CrossRef]
- Chen, Y.-F.; Qiao, J.; Liu, Q.-R.; Zhang, M.-M.; Qi, L. Fluorescence turn-on assay for detection of serum D-penicillamine based on papain@AuNCs-Cu2+ complex. Anal. Chim. Acta 2018, 1026, 133–139. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Chen, X.-F.; Yu, L.; Sun, M.-T.; Alamry, K.-A.; Asiri, A.-M.; Zhang, K.; Zapien, J.-A.; Wang, S.-H. Fluorescent MUA-stabilized Au nanoclusters for sensitive and selective detection of penicillamine. Anal. Bioanal. Chem. 2018, 410, 2629–2636. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.-Y.; Zhang, Q.-Y.; Li, F.; Wang, M.; Sun, J.; Zhu, S.-Y. Fluorescent DNA-templated silver nanoclusters for highly sensitive detection of d-penicillamine. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 253, 119584. [Google Scholar] [CrossRef] [PubMed]
- Yuan, H.-Y.; Huang, Y.-M.; Yang, J.-D.; Guo, Y.; Zeng, X.-Q.; Zhou, S.; Cheng, J.-W.; Zhang, Y.-H. An aptamer-based fluorescence bio-sensor for chiral recognition of arginine enantiomers. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 200, 330–338. [Google Scholar] [CrossRef] [PubMed]
- Huy, B.-T.; Huong, L.-T.-C.; Linh, P.-K.; Huyen, N.-T.-K.; Tran, N.-A.; Tuan, N.-D.; Dao, V.-D.; Lee, Y.-I. Novel aspartic chiral optical sensor based on β-cyclodextrin-functionalized CdTe nanoparticles. Inorg. Chem. Commun. 2021, 134, 109036. [Google Scholar] [CrossRef]
- Lu, Z.-Y.; Lu, X.-T.; Zhong, Y.-H.; Hu, Y.-F.; Li, G.-K.; Zhang, R.-K. Carbon dot-decorated porous organic cage as fluorescent sensor for rapid discrimination of nitrophenol isomers and chiral alcohols. Anal. Chim. Acta 2019, 1050, 146–153. [Google Scholar] [CrossRef]
- Masteri-Farahani, M.; Mollatayefeh, N. Chiral colloidal CdSe quantum dots functionalized with cysteine molecules: New optical nanosensor for selective detection and measurement of morphine. Colloids Surf. A Physicochem. Eng. Asp. 2019, 569, 78–84. [Google Scholar] [CrossRef]
- Xiao, J.-N.; Wang, X.-L.; Xu, X.-B.; Tian, F.-L.; Liu, Z.-L. Fabrication of a “turn-on”-type enantioselective fluorescence sensor via a modified achiral MOF: Applications for synchronous detection of phenylalaninol enantiomers. Analyst 2021, 146, 937–942. [Google Scholar] [CrossRef]
- Thoonen, S.; Tay, H.M.; Hua, C. A chiral binaphthyl-based coordination polymer as an enantioselective fluorescence sensor. Chem. Commun. 2022, 58, 4512–4515. [Google Scholar] [CrossRef]
- Tang, S.-S.; Wu, X.-D.; Zhao, P.-F.; Tang, K.-L.; Chen, Y.; Fu, K.-L.; Zhou, S.; Yang, Z.-X.; Zhang, Z.-H. A near-infrared fluorescence capillary imprinted sensor for chiral recognition and sensitive detection of l-histidine. Anal. Chim. Acta 2022, 1206, 339794. [Google Scholar] [CrossRef]
- Chovelon, B.; Fiore, E.; Faure, P.; Peyrin, E.; Ravelet, C. Kissing interactions for the design of a multicolour fluorescence anisotropy chiral aptasensor. Talanta 2019, 205, 120098. [Google Scholar] [CrossRef]
- Ohishi, Y.; Murase, M.; Abe, H.; Inouye, M. Enantioselective Solid–Liquid Extraction of Native Saccharides with Chiral BINOL-Based Pyridine–Phenol Type Macrocycles. Org. Lett. 2019, 21, 6202–6207. [Google Scholar] [CrossRef] [PubMed]
- Chai, H.-X.; Chen, Z.; Wang, S.-H.; Quan, M.; Yang, L.-P.; Ke, H.; Jiang, W. Enantioselective Recognition of Neutral Molecules in Water by a Pair of Chiral Biomimetic Macrocyclic Receptors. CCS Chem. 2020, 2, 440–452. [Google Scholar] [CrossRef]
- Huang, X.; Wang, X.-P.; Quan, M.; Yao, H.; Ke, H.; Jiang, W. Biomimetic Recognition and Optical Sensing of Carboxylic Acids in Water by Using a Buried Salt Bridge and the Hydrophobic Effect. Angew. Chem. Int. Ed. 2021, 60, 1929–1935. [Google Scholar] [CrossRef]
- Liu, K.-Y.; Du, G.-H.; Ye, L.; Jiang, L.-M. A chiroptical nanoprobe for highly selective recognition of histidine enantiomers in aqueous media. Sens. Actuators B Chem. 2019, 284, 55–62. [Google Scholar] [CrossRef]
- Guo, Y.; Han, Y.; Chen, C.-F. Construction of Chiral Nanoassemblies Based on Host-Guest Complexes and Their Responsive CD and CPL Properties: Chirality Transfer From 2,6-helic[6]arenes to a Stilbazolium Derivative. Front. Chem. 2019, 7, 543. [Google Scholar] [CrossRef]
- Bao, S.-H.; Wu, S.-S.; Huang, L.-P.; Xu, X.; Xu, R.; Li, Y.-G.; Liang, Y.-R.; Yang, M.-Y.; Yoon, D.-K.; Lee, M.; et al. Supramolecular Nanopumps with Chiral Recognition for Moving Organic Pollutants from Water. ACS Appl. Mater. Interfaces 2019, 11, 31220–31226. [Google Scholar] [CrossRef]
- Hirao, T.; Kishino, S.; Haino, T. Supramolecular chiral sensing by supramolecular helical polymers. Chem. Commun. 2023, 59, 2421–2424. [Google Scholar] [CrossRef]
- Zor, E. Silver nanoparticles-embedded nanopaper as a colorimetric chiral sensing platform. Talanta 2018, 184, 149–155. [Google Scholar] [CrossRef]
- Copur, F.; Bekar, N.; Zor, E.; Alpaydin, S.; Bingol, H. Nanopaper-based photoluminescent enantioselective sensing of L-Lysine by L-Cysteine modified carbon quantum dots. Sens. Actuators B Chem. 2019, 279, 305–312. [Google Scholar] [CrossRef]
- Xu, X.-Y.; Zhang, Y.; Wang, B.-F.; Luo, L.; Xu, Z.-L.; Tian, X.-G. A novel surface plasmon resonance sensor based on a functionalized graphene oxide/molecular-imprinted polymer composite for chiral recognition of l-tryptophan. RSC Adv. 2018, 8, 32538–32544. [Google Scholar] [CrossRef] [PubMed]
- Cui, K.; Dorner, I.; Mertens, S.-F.-L. Interfacial supramolecular electrochemistry. Curr. Opin. Electrochem. 2018, 8, 156–163. [Google Scholar] [CrossRef]
- Arnaboldi, S.; Magni, M.; Mussini, P.R. Enantioselective selectors for chiral electrochemistry and electroanalysis: Stereogenic elements and enantioselection performance. Curr. Opin. Electrochem. 2018, 8, 60–72. [Google Scholar] [CrossRef]
- Zhu, G.-B.; Kingsford, O.-J.; Yi, Y.; Wong, K.-Y. Review—Recent Advances in Electrochemical Chiral Recognition. J. Electrochem. Soc. 2019, 166, H205–H217. [Google Scholar] [CrossRef]
- Canfarotta, F.; Rapini, R.; Piletsky, S. Recent advances in electrochemical sensors based on chiral and nano-sized imprinted polymers. Curr. Opin. Electrochem. 2018, 7, 146–152. [Google Scholar] [CrossRef]
- Kowalczyk, A.; Lipiński, P.F.; Karoń, K.; Rode, J.E.; Lyczko, K.; Dobrowolski, J.C.; Donten, M.; Kaczorek, D.; Poszytek, J.; Kawęcki, R.; et al. Enantioselective sensing of (S)-Thalidomide in blood plasma with a chiral naphthalene diimide derivative. Biosens. Bioelectron. 2020, 167, 112446. [Google Scholar] [CrossRef]
- Iskierko, Z.; Checinska, A.; Sharma, P.S.; Golebiewska, K.; Noworyta, K.; Borowicz, P.; Fronc, K.; Bandi, V.; D’Souza, F.; Kutner, W. Molecularly imprinted polymer based extended-gate field-effect transistor chemosensors for phenylalanine enantioselective sensing. J. Mater. Chem. C 2017, 5, 969–977. [Google Scholar] [CrossRef]
- Stefanelli, M.; Magna, G.; Zurlo, F.; Caso, F.-M.; Bartolomeo, E.-D.; Antonaroli, S.; Venanzi, M.; Paolesse, R.; Natale, C.-D.; Monti, D. Chiral selectivity of porphyrin-ZnO nanoparticle conjugates. ACS Appl. Mater. Interfaces 2019, 11, 12077–12087. [Google Scholar] [CrossRef]
- Muñoz, J.; González-Campo, A.; Riba-Moliner, M.; Baeza, M.; Mas-Torrent, M. Chiral magnetic-nanobiofluids for rapid electrochemical screening of enantiomers at a magneto nanocomposite graphene-paste electrode. Biosens. Bioelectron. 2018, 105, 95–102. [Google Scholar] [CrossRef]
- Zhou, H.-F.; Yu, R.-P.; Ran, G.-X.; Moussa, S.; Song, Q.-J.; Mauzeroll, J.; Masson, J.-F. In-situ dynamic reaction of Ag NPs: Strategy for the construction of a sensitive electrochemical chiral sensor. Sens. Actuators B Chem. 2020, 319, 128315. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.-X.; Zhu, Z.-W. A disposable dual-signal enantioselective electrochemical sensor based on stereogenic porous chiral carbon nanotubes hydrogel. Talanta 2021, 232, 122445. [Google Scholar] [CrossRef]
- He, S.-Y.; Shang, X.; Lu, W.; Tian, Y.; Xu, Z.-A.; Zhang, W. Electrochemical enantioselective sensor for effective recognition of tryptophan isomers based on chiral polyaniline twisted nanoribbon. Anal. Chim. Acta 2021, 1147, 155–164. [Google Scholar] [CrossRef]
- BelBruno, J.-J. Molecularly imprinted polymers. Chem. Rev. 2019, 119, 94–119. [Google Scholar] [CrossRef] [PubMed]
- Mazzotta, E.; Giulio, T.-D.; Malitesta, C. Electrochemical sensing of macromolecules based on molecularly imprinted polymers: Challenges, successful strategies, and opportunities. Anal. Bioanal. Chem. 2022, 414, 5165–5200. [Google Scholar] [CrossRef]
- Duan, D.-D.; Yang, H.; Ding, Y.-P.; Li, L.; Ma, G.-H. A three-dimensional conductive molecularly imprinted electrochemical sensor based on MOF derived porous carbon/carbon nanotubes composites and prussian blue nanocubes mediated amplification for chiral analysis of cysteine enantiomers. Electrochim. Acta 2019, 302, 137–144. [Google Scholar] [CrossRef]
- Zhang, L.-M.; Luo, K.; Li, D.; Zhang, Y.-F.; Zeng, Y.; Li, J.-P. Chiral molecular imprinted sensor for highly selective determination of D-carnitine in enantiomers via dsDNA-assisted conformation immobilization. Anal. Chim. Acta 2020, 1136, 82–90. [Google Scholar] [CrossRef] [PubMed]
- Karadurmus, L.; Corman, M.-E.; Uzun, L.; Ozkan, S.-A. Enantioselective recognition of esomeprazole with a molecularly imprinted sol–gel-based electrochemical sensor. Microchim. Acta 2022, 189, 225. [Google Scholar] [CrossRef]
- Karadurmus, L.; Ozcelikay, G.; Armutcu, C.; Ozkan, S.A. Electrochemical chiral sensor based on molecularly imprinted polymer for determination of (1S,2S)-pseudoephedrine in dosage forms and biological sample. Microchem. J. 2022, 181, 107820. [Google Scholar] [CrossRef]
- Zhao, X.-Y.; Wang, Y.; Zhang, P.; Lu, Z.-M.; Xiao, Y. Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin. Macromol. Rapid Commun. 2021, 42, e2100004. [Google Scholar] [CrossRef]
- Feng, J.-F.; Tan, M.; Zhang, S.; Li, B.-J. Recent Advances of Porous Materials Based on Cyclodextrin. Macromol. Rapid Commun. 2021, 42, 2100497. [Google Scholar] [CrossRef]
- Menezes, P.-D.-P.; Andrade, T.-D.-A.; Frank, L.-A.; Souza, E.-P.-B.-S.-S.-D.; Trindade, G.-D.-G.-G.; Trindade, I.-A.-S.; Serafini, M.-R.; Guterres, S.-S.; Araújo, A.-A.-D.-S. Advances of nanosystems containing cyclodextrins and their applications in pharmaceuticals. Int. J. Pharm. 2019, 559, 312–328. [Google Scholar] [CrossRef]
- Liang, W.-T.; Rong, Y.-Q.; Fan, L.-F.; Dong, W.-J.; Dong, Q.-C.; Yang, C.; Zhong, Z.-H.; Dong, C.; Shuang, S.-M.; Wong, W.-Y. 3D graphene/hydroxypropyl-β-cyclodextrin nanocomposite as an electrochemical chiral sensor for the recognition of tryptophan enantiomers. J. Mater. Chem. C 2018, 6, 12822–12829. [Google Scholar] [CrossRef]
- Niu, X.-H.; Mo, Z.-L.; Yang, X.; Shuai, C.; Liu, N.-J.; Guo, R.-B. Graphene-ferrocene functionalized cyclodextrin composite with high electrochemical recognition capability for phenylalanine enantiomers. Bioelectrochemistry 2019, 128, 74–82. [Google Scholar] [CrossRef] [PubMed]
- Niu, X.-H.; Yang, X.; Mo, Z.-L.; Liu, N.-J.; Guo, R.-B.; Pan, Z.; Liu, Z.-Y. Electrochemical chiral sensing of tryptophan enantiomers by using 3D nitrogen-doped reduced graphene oxide and self-assembled polysaccharides. Microchim. Acta 2019, 186, 557. [Google Scholar] [CrossRef] [PubMed]
- Yi, Y.-H.; Zhang, D.-P.; Ma, Y.-Z.; Wu, X.-Y.; Zhu, G.-B. Dual-Signal Electrochemical Enantiospecific Recognition System via Competitive Supramolecular Host–Guest Interactions: The Case of Phenylalanine. Anal. Chem. 2019, 91, 2908–2915. [Google Scholar] [CrossRef]
- Zou, J.; Lan, X.-W.; Zhao, G.-Q.; Huang, Z.-N.; Liu, Y.-P.; Yu, J.-G. Immobilization of 6-O-α-maltosyl-β-cyclodextrin on the surface of black phosphorus nanosheets for selective chiral recognition of tyrosine enantiomers. Microchim. Acta 2020, 187, 636. [Google Scholar] [CrossRef]
- Gong, T.; Zhu, S.; Huang, S.-Q.; Gu, P.-C.; Xiong, Y.; Zhang, J.; Jiang, X.-H. A renewable electrochemical sensor based on a self-assembled framework of chiral molecules for efficient identification of tryptophan isomers. Anal. Chim. Acta 2022, 1191, 339276. [Google Scholar] [CrossRef] [PubMed]
- Ebrahimi, S.; Afkhami, A.; Madrakian, T. Target—Responsive host–guest binding-driven dual-sensing readout for enhanced electrochemical chiral analysis. Analyst 2021, 146, 4865–4872. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Liang, J.-Q.; Kuang, X.; Kuang, R. Simultaneous electrochemical recognition of tryptophan and penicillamine enantiomers based on MOF-modified β-CD. Carbohydr. Polym. 2022, 290, 119474. [Google Scholar] [CrossRef]
- Gao, H.-T.; Lu, Z.-M.; Xiao, Y. An electrochemical chiral sensor for amino acids based on cyclodextrin modified thiophene-based copolymer. Carbohydr. Polym. 2022, 297, 120012. [Google Scholar] [CrossRef]
- Yang, J.-P.; Yu, Y.; Wu, D.-T.; Tao, Y.-X.; Deng, L.-H.; Kong, Y. Coinduction of a Chiral Microenvironment in Polypyrrole by Overoxidation and Camphorsulfonic Acid for Electrochemical Chirality Sensing. Anal. Chem. 2018, 90, 9551–9558. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Liu, G.; Yao, X.; Gao, S.-M.; Xie, J.-W.; Xu, H.; Lin, N. Electrochemical chiral sensor based on cellulose nanocrystals and multiwall carbon nanotubes for discrimination of tryptophan enantiomers. Cellulose 2018, 25, 3861–3871. [Google Scholar] [CrossRef]
- Pu, C.-L.; Xu, Y.-X.; Liu, Q.; Zhu, A.-W.; Shi, G.-Y. Enantiomers of Single Chirality Nanotube as Chiral Recognition Interface for Enhanced Electrochemical Chiral Analysis. Anal. Chem. 2019, 91, 3015–3020. [Google Scholar] [CrossRef]
- Stoian, I.-A.; Iacob, B.-C.; Ramalho, J.-P.-P.; Marian, L.-O.; Chiș, V.; Bodoki, E.; Oprean, R. A chiral electrochemical system based on l-cysteine modified gold nanoparticles for propranolol enantiodiscrimination: Electroanalysis and computational modelling. Electrochim. Acta 2019, 326, 134961. [Google Scholar] [CrossRef]
- Lian, H.-T.; Huang, S.-Z.; Wei, X.-F.; Guo, J.-L.; Sun, X.-Y.; Liu, B. Gold nanodendrite-based differential potential ratiometric sensing strategy for enantioselective recognition of DOPA. Talanta 2020, 210, 120654. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.-Y.; Chen, X.; Xiao, Z.-X.; Wang, T.-Y.; Chen, Y.-L. Achiral double-decker phthalocyanine assemble into helical nanofibers for electrochemically chiral recognition of tryptophan. Colloids Surf. A Physicochem. Eng. Asp. 2021, 613, 126040. [Google Scholar] [CrossRef]
- Liu, N.-J.; Liu, J.-J.; Niu, X.-H.; Wang, J.; Guo, R.-B.; Mo, Z.-L. An electrochemical chiral sensor based on the synergy of chiral ionic liquid and 3D-NGMWCNT for tryptophan enantioselective recognition. Microchim. Acta 2021, 188, 163. [Google Scholar] [CrossRef]
- Yu, S.; Wang, Y.-Q.; Chatterjee, S.; Liang, F.; Zhu, F.; Li, H.-B. Pillar[5]arene-functionalized nanochannel platform for detecting chiral drugs. Chin. Chem. Lett. 2021, 32, 179–183. [Google Scholar] [CrossRef]
- Li, F.-H.; Wu, F.-X.; Luan, X.-X.; Yuan, Y.-L.; Zhang, L.; Xu, G.-B.; Niu, W.-X. Highly enantioselective electrochemical sensing based on helicoid Au nanoparticles with intrinsic chirality. Sens. Actuators B Chem. 2022, 362, 131757. [Google Scholar] [CrossRef]
- Kong, S.-H.; Lee, J.-I.; Kim, S.; Kang, M.-S. Light-Emitting Devices Based on Electrochemiluminescence: Comparison to Traditional Light-Emitting Electrochemical Cells. ACS Photonics 2017, 5, 267–277. [Google Scholar] [CrossRef]
- Zhao, W.; Chen, H.-Y.; Xu, J.-J. Electrogenerated chemiluminescence detection of single entities. Chem. Sci. 2021, 12, 5720–5736. [Google Scholar] [CrossRef] [PubMed]
- Fiorani, A.; Valenti, G.; Iurlo, M.; Marcaccio, M.; Paolucci, F. Electrogenerated chemiluminescence: A molecular electrochemistry point of view. Curr. Opin. Electrochem. 2018, 8, 31–38. [Google Scholar] [CrossRef]
- Han, S.; Zhang, Z.-C.; Li, S.-P.; Qi, L.-M.; Xu, G.-B. Chemiluminescence and electrochemiluminescence applications of metal nanoclusters. Sci. China Chem. 2016, 59, 794–801. [Google Scholar] [CrossRef]
- Zhao, Y.-R.; Bouffier, L.; Xu, G.-B.; Loget, G.; Sojic, N. Electrochemiluminescence with semiconductor (nano)materials. Chem. Sci. 2022, 13, 2528–2550. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.-H.; Zhao, W.-L.; Gu, J.-M.; Zhang, G.-C.; Feng, M.; Sun, X.; Yin, B.-P.; Jiang, H.; Wen, B.; Gao, F.-M. Homoleptic cyclometalated iridium(III) complex nanowires electrogenerated chemiluminescence sensors for high-performance discrimination of proline enantiomers based on the difference of electron-transfer capability. Talanta 2019, 194, 98–104. [Google Scholar] [CrossRef]
- Zhu, S.; Ran, P.; Wu, J.-L.; Chen, M.; Fu, Y.-Z. An Electrochemiluminesence Chiral Sensor for Propranolol Enantiomers Based on Functionalized Graphite-like Carbon Nitride Nanosheets. Electroanalysis 2020, 32, 185–190. [Google Scholar] [CrossRef]
- Zhao, Q.-Q.; Cai, W.-R.; Yang, B.-Z.; Yin, Z.-Z.; Wu, D.-T.; Kong, Y. Electrochemiluminescent chiral discrimination with chiral Ag2S quantum dots/few-layer carbon nitride nanosheets. Analyst 2021, 146, 6245–6251. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.-H.; Yao, J.-B.; Xiao, C.; Zhao, T.; Selvapalam, N.; Zhou, C.-S.; Wu, W.-H.; Yang, C. Electrochemiluminescent Chiral Discrimination with a pillar[5]arenemolecular universal joint-coordinated ruthenium complex. Org. Lett. 2021, 23, 3885–3890. [Google Scholar] [CrossRef]
- Wu, X.-F.; Ge, Q.-M.; Jiang, N.; Liu, M.; Cong, H.; Tao, Z. Ultrasensitive sensor for L-penicillamine with chirality-induced amplification of benzo[3]uril electrochemiluminescence via supramolecular interactions. Sens. Actuators B Chem. 2022, 362, 131801. [Google Scholar] [CrossRef]
- Okada, Y. Synthetic Semiconductor Photoelectrochemistry. Chem. Rec. 2021, 21, 2223–2238. [Google Scholar] [CrossRef]
- Govindaraju, G.-G.; Wheeler, G.-P.; Lee, D.; Choi, K.-S. Methods for Electrochemical Synthesis and Photoelectrochemical Characterization for Photoelectrodes. Chem. Mater. 2017, 29, 355–370. [Google Scholar] [CrossRef]
- Deng, J.; Su, Y.-D.; Liu, D.; Yang, P.-D.; Liu, B.; Liu, C. Nanowire Photoelectrochemistry. Chem. Rev. 2019, 119, 9221–9259. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.-Y.; Fu, B.-H.; Zhang, Z.-H. Ionic Current Rectification Triggered Photoelectrochemical Chiral Sensing Platform for Recognition of Amino Acid Enantiomers on Self-Standing Nanochannel Arrays. Anal. Chem. 2020, 92, 8670–8674. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.-S.; Guo, J.-L.; Dai, Z.-Q.; Liu, C.-Y.; Zhao, J.-J.; Gao, Z.-D.; Song, Y.-Y. Engineering Homochiral MOFs in TiO2 Nanotubes as Enantioselective Photoelectrochemical Electrode for Chiral Recognition. Anal. Chem. 2021, 93, 12067–12074. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zeng, Q.; Wang, L.-S. Electrochemical Polymerization Induced Chirality Fixation of Crystalline Pillararene-Based Polymer and Its Application in Interfacial Chiral Sensing. Anal. Chem. 2021, 93, 9965–9969. [Google Scholar] [CrossRef]
- Zhao, Y.-Y.; Luo, H.; Ge, Q.-M.; Liu, M.; Tao, Z.; Cong, H. An ultrasensitive photoelectrochemical sensor with layer-by-layer assembly of chiral multifarene[3,2,1] and g-C3N4 quantum dots for enantiorecognition towards thyroxine. Sens. Actuators B Chem. 2021, 336, 129750. [Google Scholar] [CrossRef]
- Hembury, G.A.; Borovkov, V.V.; Inoue, Y. Chirality-Sensing Supramolecular Systems. Chem. Rev. 2008, 108, 1–73. [Google Scholar] [CrossRef] [PubMed]
Detection Method | Targeted Substrates | Linea Range (μM) | Lod (nM) | References |
---|---|---|---|---|
Fluorescence | d-penicillamine | 30.0–2.0 × 103 | 5.0 × 103 | [61] |
Fluorescence | d-penicillamine | 23.0–0 | 80.0 | [62] |
Fluorescence | d-penicillamine | 2.5 × 10−2–0.7 | 8 | [63] |
Fluorescence | l/d-arginine | 0–0.4/0–0.3 | 1.9/1.8 | [64] |
Fluorescence | d-aspartic | 3.0–31.0 | 14.3 | [65] |
Fluorescence | l-morphine | 2.8 × 10−2–0 | 60 | [67] |
Fluorescence | l/d-phenylalaninol | 1.0 × 102–1.0 × 104 | 3.02 × 102/3.97 × 103 | [68] |
Fluorescence | l-histidine | 1.0 × 10−7–1.8 × 10−6 | 8.0 × 10−5 | [70] |
CD | l/d-histidine | 5.0–50.0 | 1.0 × 104 | [75] |
Colorimetric | d-cysteine | 5.0–1.0 × 102 | 4.9 × 103 | [79] |
RTP (solution/nanopaper) | l-lysine | 0.0–2 × 104/0.0–2.0 × 103 | 0.30/0.97 | [80] |
SPR | l-tryptophan | 0.15 × 103–2.5 × 103 | 0.1 × 106 | [81] |
CV | d-cysteine | 1.0 × 10−2–1.8 | 8.7 | [90] |
DPV | l-cysteine | 1.0 × 10−7–1.0 × 10−1 | 6.0 × 10−6 | [95] |
DPV | d-carnitine | 3.6 × 10−10–4.0 × 10−7 | 2.2 × 10−7 | [96] |
DPV | esomeprazole (ESOM) | 1.0 × 10−8–2.0 × 10−7 | 1.9 × 10−6 | [97] |
DPV | (1s,2s)-rseudoephedrine | 1.0 × 10−9–1.0 × 10−8 | 2.9 × 10−7 | [98] |
DPV | l/d-tryptophan | 0.5–1.7 × 102 | 9.6/38.0 | [102] |
DPV | l/d-phenylalanine | 10.0–5.0 × 103 | 27.0/52.0 | [103] |
DPV | l/d-tryptophan | 10.0–5.0 × 103 | 63.0/3.5 | [104] |
DPV | l-phenylalanine | 0.2–13.0 | 80.0 | [105] |
DPV | l/d-tyrosine | 10.0–1.0 × 103 | 4.81 × 103/6.89 × 103 | [106] |
DPV | l/d-tryptophan | 1.0 × 102–4.0 × 103 | 1.85 × 104/1.34 × 104 | [107] |
DPV | r/s-NaX | 0.4–6.0 | 70.0 | [108] |
DPV | l/d-tryptophan l/d-penicillamine | 10.0–0.5 × 103 | 9.8/23.0 18.0/79.0 | [109] |
DPV | l/d-tryptophan | 40.0–4.0 × 103 | 2.8 × 103/3.7 × 103 | [112] |
DPV | l/d-tryptophan | 10.0–5.0 × 103 | 24.0/55.0 | [117] |
DPV | l-tyrosine | 10.0–1.6 × 103 | - | [119] |
ECL | l/d-proline | 10.0–1.0 × 105 | 1.0 | [125] |
ECL | r/s-propranolol | 1.0–1.0 × 103 | 3.3 × 102 | [126] |
ECL | l-penicillamine | 1.0 × 10−4–10.0 | 1.0 × 10−3 | [129] |
PEC | l-histidine | 0.2 × 103–1.0 × 103 | 6.75 × 104 | [133] |
PEC | l/d-DOPA | 1.0–10.0/20.0–1.0 × 102 | 2.4 × 102 | [134] |
PEC | l-ascorbic acid | 0.1–0 | 2.44 | [135] |
PEC | l/d-thyroxine | 1.0 × 10−4–1.0 × 10−2 | 6.7 × 10−2/8.5 × 10−2 | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, X.-F.; Ge, Q.-M.; Jiang, N.; Zhao, W.-F.; Liu, M.; Cong, H.; Zhao, J.-L. Research Progress on Chiral Supramolecular Sensors for Enantiomer Detection. Chemosensors 2023, 11, 269. https://doi.org/10.3390/chemosensors11050269
Wu X-F, Ge Q-M, Jiang N, Zhao W-F, Liu M, Cong H, Zhao J-L. Research Progress on Chiral Supramolecular Sensors for Enantiomer Detection. Chemosensors. 2023; 11(5):269. https://doi.org/10.3390/chemosensors11050269
Chicago/Turabian StyleWu, Xiao-Fan, Qing-Mei Ge, Nan Jiang, Wen-Feng Zhao, Mao Liu, Hang Cong, and Jiang-Lin Zhao. 2023. "Research Progress on Chiral Supramolecular Sensors for Enantiomer Detection" Chemosensors 11, no. 5: 269. https://doi.org/10.3390/chemosensors11050269
APA StyleWu, X. -F., Ge, Q. -M., Jiang, N., Zhao, W. -F., Liu, M., Cong, H., & Zhao, J. -L. (2023). Research Progress on Chiral Supramolecular Sensors for Enantiomer Detection. Chemosensors, 11(5), 269. https://doi.org/10.3390/chemosensors11050269