Polymeric Composite including Magnetite Nanoparticles for Hydrogen Peroxide Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Isolation and Purification of Polysaccharides
2.3. Carboxymethylation of Cashew Gum Polysaccharide
2.4. Electrochemical Synthesis of Magnetite Nanoparticles (MN)
2.5. Synthesis of Nanocomposites
2.6. Instrumentation and Characterization
2.7. Electrochemical Measurements
2.8. Preparation and Modification of the Electrocatalytic Surface
2.9. Analytical Response
2.10. Milk Analysis
3. Results and Discussion
3.1. Characterization of Nanocomposites
3.2. Evaluation of the Analytical Response
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karimi, A.; Husain, S.W.; Hosseini, M.; Azar, P.A.; Ganjali, M.R. Rapid and Sensitive Detection of Hydrogen Peroxide in Milk by Enzyme-Free Electrochemiluminescence Sensor Based on a Polypyrrole-Cerium Oxide Nanocomposite. Sens. Actuators B Chem. 2018, 271, 90–96. [Google Scholar] [CrossRef]
- Brul, S.; Coote, P. Preservative Agents in Foods: Mode of Action and Microbial Resistance Mechanisms. Int. J. Food Microbiol. 1999, 50, 1–17. [Google Scholar] [CrossRef]
- Dong, X.X.; Li, M.Y.; Feng, N.N.; Sun, Y.M.; Yang, C.; Xu, Z.L. A Nanoporous MgO Based Nonenzymatic Electrochemical Sensor for Rapid Screening of Hydrogen Peroxide in Milk. RSC Adv. 2015, 5, 86485–86489. [Google Scholar] [CrossRef]
- Ping, J.; Mao, X.; Fan, K.; Li, D.; Ru, S.; Wu, J.; Ying, Y. A Prussian Blue-Based Amperometric Sensor for the Determination of Hydrogen Peroxide Residues in Milk. Ionics 2010, 16, 523–527. [Google Scholar] [CrossRef]
- Juven, B.J.; Pierson, M.D. Antibacterial Effects of Hydrogen Peroxide and Methods for Its Detection and Quantitation. J. Food Prot. 1996, 59, 1233–1241. [Google Scholar] [CrossRef] [PubMed]
- Silva, R.A.B.; Montes, R.H.O.; Richter, E.M.; Munoz, R.A.A. Rapid and Selective Determination of Hydrogen Peroxide Residues in Milk by Batch Injection Analysis with Amperometric Detection. Food Chem. 2012, 133, 200–204. [Google Scholar] [CrossRef]
- Taher, M.M.; Lakshmaiah, N. Folic Acid Stability in Hydrogen Peroxide-Potassium Thiocyanate-Treated Milk. Food Chem. 1992, 44, 343–347. [Google Scholar] [CrossRef]
- Wei, Y.; Guo, M. Hydrogen Peroxide Triggered Prochelator Activation, Subsequent Metal Chelation, and Attenuation of the Fenton Reaction. Angew. Chem. Int. Ed. 2007, 46, 4722–4725. [Google Scholar] [CrossRef] [PubMed]
- Bollella, P.; Medici, L.; Tessema, M.; Poloznikov, A.A.; Hushpulian, D.M.; Tishkov, V.I.; Andreu, R.; Leech, D.; Megersa, N.; Marcaccio, M.; et al. Highly Sensitive, Stable and Selective Hydrogen Peroxide Amperometric Biosensors Based on Peroxidases from Different Sources Wired by Os-Polymer: A Comparative Study. Solid State Ion. 2018, 314, 178–186. [Google Scholar] [CrossRef]
- Lima, L.S.; Rossini, E.L.; Pezza, L.; Pezza, H.R. Bioactive Paper Platform for Detection of Hydrogen Peroxide in Milk. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 227, 117774. [Google Scholar] [CrossRef]
- Gubitz, G.; Van Zoonen, P.; Gooijer, C.; Velthorst, N.H.; Frei, R.W. Immobilized Fluorophores in Dynamic Chemiluminescence Detection of Hydrogen Peroxide. Anal. Chem. 1985, 57, 2071–2074. [Google Scholar] [CrossRef]
- Chen, W.; Li, B.; Xu, C.; Wang, L. Chemiluminescence Flow Biosensor for Hydrogen Peroxide Using DNAzyme Immobilized on Eggshell Membrane as a Thermally Stable Biocatalyst. Biosens. Bioelectron. 2009, 24, 2534–2540. [Google Scholar] [CrossRef]
- Matsubara, C.; Kawamoto, N.; Takamura, K. Oxo[5, 10, 15, 20-Tetra(4-Pyridyl)Porphyrinato]Titanium(IV): An Ultra-High Sensitivity Spectrophotometric Reagent for Hydrogen Peroxide. Analyst 1992, 117, 1781–1784. [Google Scholar] [CrossRef]
- Yalçıner, F.; Çevik, E.; Şenel, M.; Baykal, A. Development of an Amperometric Hydrogen Peroxide Biosensor Based on the Immobilization of Horseradish Peroxidase onto Nickel Ferrite Nanoparticle-Chitosan Composite. Nano-Micro Lett. 2011, 3, 91–98. [Google Scholar] [CrossRef]
- Ammam, M. Electrochemical and Electrophoretic Deposition of Enzymes: Principles, Differences and Application in Miniaturized Biosensor and Biofuel Cell Electrodes. Biosens. Bioelectron. 2014, 58, 121–131. [Google Scholar] [CrossRef] [PubMed]
- Meier, J.; M Hofferber, E.; A Stapleton, J.; Iverson, N.M. Hydrogen Peroxide Sensors for Biomedical Applications. Chemosensors 2019, 7, 64. [Google Scholar] [CrossRef]
- Zhao, S.; Danley, M.; Ward, J.E.; Li, D.; Mincer, T.J. An Approach for Extraction, Characterization and Quantitation of Microplastic in Natural Marine Snow Using Raman Microscopy. Anal. Methods 2017, 9, 1470–1478. [Google Scholar] [CrossRef]
- Prabhu, P.; Babu, R.S.; Narayanan, S.S. Synergetic Effect of Prussian Blue Film with Gold Nanoparticle Graphite–Wax Composite Electrode for the Enzyme-Free Ultrasensitive Hydrogen Peroxide Sensor. J. Solid State Electrochem. 2014, 18, 883–891. [Google Scholar] [CrossRef]
- Jaime-González, J.; Mazario, E.; Menendez, N.; Sanchez-Marcos, J.; Muñoz-Bonilla, A.; Herrasti, P. Comparison of Ferrite Nanoparticles Obtained Electrochemically for Catalytical Reduction of Hydrogen Peroxide. J. Solid State Electrochem. 2016, 20, 1191–1198. [Google Scholar] [CrossRef]
- Keerthi, M.; Boopathy, G.; Chen, S.-M.; Chen, T.-W.; Lou, B.-S. A Core-Shell Molybdenum Nanoparticles Entrapped f-MWCNTs Hybrid Nanostructured Material Based Non-Enzymatic Biosensor for Electrochemical Detection of Dopamine Neurotransmitter in Biological Samples. Sci. Rep. 2019, 9, 13075. [Google Scholar] [CrossRef]
- Cao, G.S.; Wang, P.; Li, X.; Wang, Y.; Wang, G.; Li, J. Hydrogen Peroxide Electrochemical Sensor Based on Fe3O4 Nanoparticles. Micro Nano Lett. 2014, 9, 16–18. [Google Scholar] [CrossRef]
- Manivel, A.; Anandan, S. Silver Nanoparticles Embedded Phosphomolybdate–Polyaniline Hybrid Electrode for Electrocatalytic Reduction of H2O. J. Solid State Electrochem. 2011, 15, 153–160. [Google Scholar] [CrossRef]
- Afraz, A.; Rafati, A.A.; Hajian, A. Analytical Sensing of Hydrogen Peroxide on Ag Nanoparticles–Multiwalled Carbon Nanotube-Modified Glassy Carbon Electrode. J. Solid State Electrochem. 2013, 17, 2017–2025. [Google Scholar] [CrossRef]
- Jin, E.; Bian, X.; Lu, X.; Wang, C. Fabrication of Multiwalled Carbon Nanotubes/Polypyrrole/Prussian Blue Ternary Composite Nanofibers and Their Application for Enzymeless Hydrogen Peroxide Detection. J. Mater. Sci. 2012, 47, 4326–4331. [Google Scholar] [CrossRef]
- Xing, L.; Rong, Q.; Ma, Z. Non-Enzymatic Electrochemical Sensing of Hydrogen Peroxide Based on Polypyrrole/Platinum Nanocomposites. Sens. Actuators B Chem. 2015, 221, 242–247. [Google Scholar] [CrossRef]
- Tao, Y.; Ju, E.; Ren, J.; Qu, X. Polypyrrole Nanoparticles as Promising Enzyme Mimics for Sensitive Hydrogen Peroxide Detection. Chem. Commun. 2014, 50, 3030–3032. [Google Scholar] [CrossRef]
- Zhang, T.; Yuan, R.; Chai, Y.; Li, W.; Ling, S. A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-Copper Nanocomposite Modified Gold Electrode. Sensors 2008, 8, 5141–5152. [Google Scholar] [CrossRef]
- Akhtar, M.A.; Hayat, A.; Iqbal, N.; Marty, J.L.; Nawaz, M.H. Functionalized Graphene Oxide–Polypyrrole–Chitosan (FGO–PPy–CS) Modified Screen-Printed Electrodes for Non-Enzymatic Hydrogen Peroxide Detection. J. Nanoparticle Res. 2017, 19, 334. [Google Scholar] [CrossRef]
- Montoya, P.; Mejía, S.; Gonçales, V.R.; De Torresi, S.I.C.; Calderón, J.A. Performance Improvement of Macroporous Polypyrrole Sensor for Detection of Ammonia by Incorporation of Magnetite Nanoparticles. Sens. Actuators B Chem. 2015, 213, 444–451. [Google Scholar] [CrossRef]
- Ansari, R. Polypyrrole Conducting Electroactive Polymers: Synthesis and Stability Studies. E-J. Chem. 2006, 3, 860413. [Google Scholar] [CrossRef]
- Duchet, J.; Legras, R.; Demoustier-Champagne, S. Chemical Synthesis of Polypyrrole: Structure–Properties Relationship. Synth. Met. 1998, 98, 113–122. [Google Scholar] [CrossRef]
- Castro, R.A.O.; Monte, R.S.; Mendes, L.G.; Furtado, R.F.; Silva, Â.R.A.; Biswas, A.; Cheng, H.N.; Alves, C.R. Electrosynthesis and Characterization of Polypyrrole/Cashew Gum Composite Grown on Gold Surface in Aqueous Medium. Int. J. Electrochem. Sci. 2017, 12, 50–61. [Google Scholar] [CrossRef]
- Ramesan, M.T.; Siji, C.; Kalaprasad, G.; Bahuleyan, B.K.; Al-Maghrabi, M.A. Effect of Silver Doped Zinc Oxide as Nanofiller for the Development of Biopolymer Nanocomposites from Chitin and Cashew Gum. J. Polym. Environ. 2018, 26, 2983–2991. [Google Scholar] [CrossRef]
- Araújo, I.M.S.; Zampa, M.F.; Moura, J.B.; dos Santos, J.R., Jr.; Eaton, P.; Zucolotto, V.; Veras, L.M.C.; De Paula, R.C.M.; Feitosa, J.P.A.; Leite, J. Contribution of the Cashew Gum (Anacardium occidentale L.) for Development of Layer-by-Layer Films with Potential Application in Nanobiomedical Devices. Mater. Sci. Eng. C 2012, 32, 1588–1593. [Google Scholar] [CrossRef] [PubMed]
- Eiras, C.; Passos, I.N.G.; de Brito, A.C.F.; dos Santos Júnior, J.R.; Zucolotto, V.; Oliveira, O.N., Jr.; Kitagawa, I.L.; Constantino, C.J.L.; da Cunha, H.N. Nanocompósitos Eletroativos de Poli-o-Metoxianilina e Polissacarídeos Naturais. Quim. Nova 2007, 30, 1158–1162. [Google Scholar] [CrossRef]
- Silva, D.A.; De Paula, R.C.; Feitosa, J.P.A.; De Brito, A.C.; Maciel, J.S.; Paula, H.C.B. Carboxymethylation of Cashew Tree Exudate Polysaccharide. Carbohydr. Polym. 2004, 58, 163–171. [Google Scholar] [CrossRef]
- Wu, Y.; Xing, S.; Jing, S.; Zhou, T.; Zhao, C. Examining the Use of Fe3O4 Nanoparticles to Enhance the NH3 Sensitivity of Polypyrrole Films. Polym. Bull. 2007, 59, 227–234. [Google Scholar] [CrossRef]
- Montoya, P.; Jaramillo, F.; Calderón, J.; Córdoba De Torresi, S.I.; Torresi, R.M. Evidence of Redox Interactions between Polypyrrole and Fe3O4 in Polypyrrole-Fe3O4 Composite Films. Electrochim. Acta 2010, 55, 6116–6122. [Google Scholar] [CrossRef]
- Chen, A.; Wang, H.; Li, X. Influence of Concentration of FeCl3 Solution on Properties of Polypyrrole–Fe3O4 Composites Prepared by Common Ion Absorption Effect. Synth. Met. 2004, 145, 153–157. [Google Scholar] [CrossRef]
- Torquato, D.S.; Ferreira, M.L.; Sá, G.C.; Brito, E.S.; Pinto, G.A.S.; Azevedo, E.H.F. Evaluation of Antimicrobial Activity of Cashew Tree Gum. World J. Microbiol. Biotechnol. 2004, 20, 505–507. [Google Scholar] [CrossRef]
- Melo, A.M.A.; Oliveira, M.R.F.; Furtado, R.F.; de Fatima Borges, M.; Biswas, A.; Cheng, H.N.; Alves, C.R. Preparation and Characterization of Carboxymethyl Cashew Gum Grafted with Immobilized Antibody for Potential Biosensor Application. Carbohydr. Polym. 2020, 228, 115408. [Google Scholar] [CrossRef]
- Lozano, I.; López, C.; Menendez, N.; Casillas, N.; Herrasti, P. Design, Construction and Evaluation of a 3D Printed Electrochemical Flow Cell for the Synthesis of Magnetite Nanoparticles. J. Electrochem. Soc. 2018, 165, H688–H697. [Google Scholar] [CrossRef]
- Ayad, M.; Salahuddin, N.; Fayed, A.; Bastakoti, B.P.; Suzuki, N.; Yamauchi, Y. Chemical Design of a Smart Chitosan–Polypyrrole–Magnetite Nanocomposite toward Efficient Water Treatment. Phys. Chem. Chem. Phys. 2014, 16, 21812–21819. [Google Scholar] [CrossRef]
- Jaime, J.; Rangel, G.; Muñoz-Bonilla, A.; Mayoral, A.; Herrasti, P. Magnetite as a Platform Material in the Detection of Glucose, Ethanol and Cholesterol. Sens. Actuators B Chem. 2017, 238, 693–701. [Google Scholar] [CrossRef]
- Srivastava, A.; Tripathy, J.; Mishra, M.M.; Behari, K. Modification of Guar Gum through Grafting of 4-vinyl Pyridine Using Potassium Peroxymonosulphate/Ascorbic Acid Redox Pair. J. Appl. Polym. Sci. 2007, 106, 1353–1358. [Google Scholar] [CrossRef]
- da Silva Perez, D.; Montanari, S.; Vignon, M.R. TEMPO-Mediated Oxidation of Cellulose III. Biomacromolecules 2003, 4, 1417–1425. [Google Scholar] [CrossRef]
- Ramesan, M.T.; Surya, K. Synthesis, Characterization, and Properties of Cashew Gum Graft Poly (Acrylamide)/Magnetite Nanocomposites. J. Appl. Polym. Sci. 2016, 133, 22. [Google Scholar] [CrossRef]
- Parikh, A.; Madamwar, D. Partial Characterization of Extracellular Polysaccharides from Cyanobacteria. Bioresour. Technol. 2006, 97, 1822–1827. [Google Scholar] [CrossRef] [PubMed]
- Paula, H.C.B.; Rodrigues, M.L.L.; Ribeiro, W.L.C.; Stadler, A.S.; Paula, R.C.M.; Abreu, F.O.M.S. Protective Effect of Cashew Gum Nanoparticles on Natural Larvicide from Moringa Oleifera Seeds. J. Appl. Polym. Sci. 2012, 124, 1778–1784. [Google Scholar] [CrossRef]
- Ramesan, M.T.; Privya, P.P.; Jayakrishnan, P.; Kalaprasad, G.; Bahuleyan, B.K.; Al-Maghrabi, M.A. Influence of Magnetite Nanoparticles on Electrical, Magnetic and Thermal Properties of Chitin/Cashew Gum Biopolymer Nanocomposites. Polym. Compos. 2018, 39, E540–E549. [Google Scholar] [CrossRef]
- Gholizadeh, A.; Shahrokhian, S.; Iraji Zad, A.; Mohajerzadeh, S.; Vosoughi, M.; Darbari, S.; Koohsorkhi, J.; Mehran, M. Fabrication of Sensitive Glutamate Biosensor Based on Vertically Aligned CNT Nanoelectrode Array and Investigating the Effect of CNTs Density on the Electrode Performance. Anal. Chem. 2012, 84, 5932–5938. [Google Scholar] [CrossRef] [PubMed]
- Lux, F. Models Proposed to Explain the Electrical Conductivity of Mixtures Made of Conductive and Insulating Materials. J. Mater. Sci. 1993, 28, 285–301. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira, M.R.F.; Herrasti, P.; Furtado, R.F.; Melo, A.M.A.; Alves, C.R. Polymeric Composite including Magnetite Nanoparticles for Hydrogen Peroxide Detection. Chemosensors 2023, 11, 323. https://doi.org/10.3390/chemosensors11060323
Oliveira MRF, Herrasti P, Furtado RF, Melo AMA, Alves CR. Polymeric Composite including Magnetite Nanoparticles for Hydrogen Peroxide Detection. Chemosensors. 2023; 11(6):323. https://doi.org/10.3390/chemosensors11060323
Chicago/Turabian StyleOliveira, Maria Roniele Felix, Pilar Herrasti, Roselayne Ferro Furtado, Airis Maria Araújo Melo, and Carlucio Roberto Alves. 2023. "Polymeric Composite including Magnetite Nanoparticles for Hydrogen Peroxide Detection" Chemosensors 11, no. 6: 323. https://doi.org/10.3390/chemosensors11060323
APA StyleOliveira, M. R. F., Herrasti, P., Furtado, R. F., Melo, A. M. A., & Alves, C. R. (2023). Polymeric Composite including Magnetite Nanoparticles for Hydrogen Peroxide Detection. Chemosensors, 11(6), 323. https://doi.org/10.3390/chemosensors11060323