Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Dipicolylamine-Terminated Diacetylene-Containing Amphiphile
2.2. Formulation and Fabrication of Spray-on Lead Sensor Strips
2.3. Testing the Selectivity of the Spray-On Sensor Strips Response to Various Ions
2.4. Examining the Effect of UV Curing Time on the Spray-On Sensor Response to Lead
2.5. Examining the Lead Sensitivity of the Spray-On Sensor Strips
2.6. Examining the Sensitivity of the Spray-On Sensor Strips to pH
3. Results
3.1. Selectivity in Color Change Response of Spray-On Sensor Strips to Various Ions
3.2. Effect of UV Curing Time on the Spray-On Sensor Color Response to Lead Ions
3.3. Sensitivity in Response of Spray-On Sensor Strips to Lead Nitrate
3.4. Assessing the Role of Sample pH on Color of Spray-On Sensor Strips
4. Discussion
4.1. Summary
4.2. Discussion and Prospects
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Walpole, G.S. The use of litmus paper as a quantitative indicator of reaction. Biochem. J. 1913, 7, 260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ostrovskaya, V.M.; Reshetnyak, E.A.; Nikitina, N.A.; Panteleimonov, A.V.; Kholin, Y.V. A test method for determining total metals with an indicator paper and its performance characteristics. J. Anal. Chem. 2004, 59, 995–1001. [Google Scholar] [CrossRef]
- Koczula, K.M.; Gallotta, A. Lateral flow assays. Essays Biochem. 2016, 60, 111–120. [Google Scholar] [PubMed]
- Flower, B.; Brown, J.C.; Simmons, B.; Moshe, M.; Frise, R.; Penn, R.; Kugathasan, R.; Petersen, C.; Daunt, A.; Ashby, D.; et al. Clinical and laboratory evaluation of SARS-CoV-2 lateral flow assays for use in a national COVID-19 seroprevalence survey. Thorax 2020, 75, 1082–1088. [Google Scholar] [CrossRef]
- VS, A.P.; Joseph, P.; SCG, K.D.; Lakshmanan, S.; Kinoshita, T.; Muthusamy, S. Colorimetric sensors for rapid detection of various analytes. Mater. Sci. Eng. C 2017, 78, 1231–1245. [Google Scholar]
- Han, F.; Wang, T.; Liu, G.; Liu, H.; Xie, X.; Wei, Z.; Li, J.; Jiang, C.; He, Y.; Xu, F. Materials with tunable optical properties for wearable epidermal sensing in health monitoring. Adv. Mater. 2022, 34, 2109055. [Google Scholar] [CrossRef]
- Shiveshwarkar, P.; Siurano, S.V.; Kadyrova, M.; Tran, N.; Jaworski, J. Investigating the Characteristics and Responses of Diacetylene Based Materials as Spray-On Colorimetric Sensors. Macromol. Res. 2022, 30, 1–5. [Google Scholar] [CrossRef]
- Lipomi, D.J.; Vosgueritchian, M.; Tee, B.C.; Hellstrom, S.L.; Lee, J.A.; Fox, C.H.; Bao, Z. Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. Nat. Nanotechnol. 2011, 6, 788–792. [Google Scholar] [CrossRef]
- Chou, H.H.; Nguyen, A.; Chortos, A.; To, J.W.; Lu, C.; Mei, J.; Kurosawa, T.; Bae, W.G.; Tok, J.B.H.; Bao, Z. A chameleon-inspired stretchable electronic skin with interactive colour changing controlled by tactile sensing. Nat. Commun. 2015, 6, 8011. [Google Scholar] [CrossRef] [Green Version]
- Snari, R.M.; Pashameah, R.A.; Alatawi, N.M.; Mogharbel, A.T.; Al-Ahmed, Z.A.; Abumelha, H.M.; El-Metwaly, N.M. Preparation of photoluminescent nanocomposite ink for detection and mapping of fingermarks. Microsc. Res. Tech. 2022, 85, 3871–3881. [Google Scholar] [CrossRef]
- Schreml, S.; Meier, R.J.; Weiß, K.T.; Cattani, J.; Flittner, D.; Gehmert, S.; Wolfbeis, O.S.; Landthaler, M.; Babilas, P. A s prayable luminescent pH sensor and its use for wound imaging in vivo. Exp. Dermatol. 2012, 21, 951–953. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.D.; Meier, R.J.; Schmittlein, C.; Schreml, S.; Schäferling, M.; Wolfbeis, O.S. A water-sprayable, thermogelating and biocompatible polymer host for use in fluorescent chemical sensing and imaging of oxygen, pH values and temperature. Sens. Actuators B Chem. 2015, 221, 37–44. [Google Scholar] [CrossRef]
- Koren, K.; Jakobsen, S.L.; Kühl, M. In-vivo imaging of O2 dynamics on coral surfaces spray-painted with sensor nanoparticles. Sens. Actuators B Chem. 2016, 237, 1095–1101. [Google Scholar] [CrossRef]
- Peng, D.; Gu, F.; Zhong, Z.; Liu, Y. Thermal stability improvement of sprayable fast-responding pressure-sensitive paint for measurement above 100 C. Chin. J. Aeronaut. 2021, 34, 320–326. [Google Scholar] [CrossRef]
- Furuya, T.; Nakai, T.; Imai, M.; Kameda, M. Characterization and Improvement of Heat Resistance of a Polymer-Ceramic Pressure-Sensitive Paint at High Temperatures. Sensors 2021, 21, 8177. [Google Scholar] [CrossRef]
- Tong, S.; Schirnding, Y.E.V.; Prapamontol, T. Environmental lead exposure: A public health problem of global dimensions. Bull. World Health Organ. 2000, 78, 1068–1077. [Google Scholar]
- Yuan, W.; Holland, S.K.; Cecil, K.M.; Dietrich, K.N.; Wessel, S.D.; Altaye, M.; Hornung, R.W.; Ris, M.D.; Egelhoff, J.C.; Lanphear, B.P. The impact of early childhood lead exposure on brain organization: A functional magnetic resonance imaging study of language function. Pediatrics 2006, 118, 971–977. [Google Scholar] [CrossRef] [Green Version]
- Levallois, P.; Barn, P.; Valcke, M.; Gauvin, D.; Kosatsky, T. Public health consequences of lead in drinking water. Curr. Environ. Health Rep. 2018, 5, 255–262. [Google Scholar] [CrossRef]
- Chen, S.W.; Chen, X.; Li, Y.; Yang, Y.; Dong, Y.; Guo, J.; Wang, J. Polydiacetylene-based colorimetric and fluorometric sensors for lead ion recognition. RSC Adv. 2022, 12, 22210–22218. [Google Scholar] [CrossRef]
- Lee, K.M.; Chen, X.; Fang, W.; Kim, J.M.; Yoon, J. A dual colorimetric and fluorometric sensor for lead ion based on conjugated polydiacetylenes. Macromol. Rapid Commun. 2011, 32, 497–500. [Google Scholar] [CrossRef]
- Chauhan, A.; Islam, A.; Javed, H.; Kumar, S. Facile fabrication of Amberlite XAD-16 with dipicolylamine for remediation of industrial wastewater containing lead and copper: Isotherm, kinetics, thermodynamics and selectivity studies. Microchem. J. 2019, 146, 606–613. [Google Scholar] [CrossRef]
- Kwon, J.Y.; Jang, Y.J.; Lee, Y.J.; Kim, K.M.; Seo, M.S.; Nam, W.; Yoon, J. A highly selective fluorescent chemosensor for Pb2+. J. Am. Chem. Soc. 2005, 127, 10107–10111. [Google Scholar] [CrossRef] [PubMed]
- Louie, M.W.; Liu, H.W.; Lam, M.H.C.; Lau, T.C.; Lo, K.K.W. Novel luminescent tricarbonylrhenium (I) polypyridine tyramine-derived dipicolylamine complexes as sensors for zinc (II) and cadmium (II) ions. Organometallics 2009, 28, 4297–4307. [Google Scholar] [CrossRef]
- Xu, Z.; Baek, K.H.; Kim, H.N.; Cui, J.; Qian, X.; Spring, D.R.; Shin, I.; Yoon, J. Zn2+-triggered amide tautomerization produces a highly Zn2+-selective, cell-permeable, and ratiometric fluorescent sensor. J. Am. Chem. Soc. 2010, 132, 601–610. [Google Scholar] [CrossRef]
- Ding, Y.; Zhu, W.; Xu, Y.; Qian, X. A small molecular fluorescent sensor functionalized silica microsphere for detection and removal of mercury, cadmium, and lead ions in aqueous solutions. Sens. Actuators B Chem. 2015, 220, 762–771. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.M.; Oh, D.J.; Ahn, K.H. Zinc (II)-Dipicolylamine-Functionalized Polydiacetylene–Liposome Microarray: A Selective and Sensitive Sensing Platform for Pyrophosphate Ions. Chem.–Asian J. 2011, 6, 122–127. [Google Scholar] [CrossRef]
- Xu, Z.; Yoon, J.; Spring, D.R. Fluorescent chemosensors for Zn2+. Chem. Soc. Rev. 2010, 39, 1996–2006. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, B.A.; Friedle, S.; Lippard, S.J. Solution and fluorescence properties of symmetric dipicolylamine-containing dichlorofluorescein-based Zn2+ sensors. J. Am. Chem. Soc. 2009, 131, 7142–7152. [Google Scholar] [CrossRef] [Green Version]
- Rani, V.; Verma, M.L. Current Advancement in Disposable Sensors for Industrial Applications. In Recent Developments in Green Electrochemical Sensors: Design, Performance, and Applications; American Chemical Society: Washington, DC, USA, 2023; pp. 39–59. [Google Scholar]
- Jose, D.A.; König, B. Polydiacetylene vesicles functionalized with N-heterocyclic ligands for metal cation binding. Org. Biomol. Chem. 2010, 8, 655–662. [Google Scholar] [CrossRef]
- Vitharana, N.N.; Kaushalya, C.; Perera, T.; Deraniyagala, S.P.; Sameera, W.M.C.; Cooray, A.T. Dipicolylamine-Based Fluorescent Probes and Their Potential for the Quantification of Fe3+ in Aqueous Solutions. ACS Omega 2022, 7, 28342–28350. [Google Scholar] [CrossRef]
- Jung, J.; An, S.M.; Lim, E.K.; Kim, S.C.; An, B.S.; Seo, S. Development of polydiacetylene-based testosterone detection as a model sensing platform for water-insoluble hormone analytes. Chemosensors 2021, 9, 176. [Google Scholar] [CrossRef]
- Yarimaga, O.; Jaworski, J.; Yoon, B.; Kim, J.M. Polydiacetylenes: Supramolecular smart materials with a structural hierarchy for sensing, imaging and display applications. Chem. Commun. 2012, 48, 2469–2485. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiveshwarkar, P.; Jaworski, J. Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions. Chemosensors 2023, 11, 327. https://doi.org/10.3390/chemosensors11060327
Shiveshwarkar P, Jaworski J. Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions. Chemosensors. 2023; 11(6):327. https://doi.org/10.3390/chemosensors11060327
Chicago/Turabian StyleShiveshwarkar, Priyanka, and Justyn Jaworski. 2023. "Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions" Chemosensors 11, no. 6: 327. https://doi.org/10.3390/chemosensors11060327
APA StyleShiveshwarkar, P., & Jaworski, J. (2023). Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions. Chemosensors, 11(6), 327. https://doi.org/10.3390/chemosensors11060327