A ‘Turn-On’ Carbamazepine Sensing Using a Luminescent SiO2/-(CH2)3NH2/-C6H5 + Rh6G System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals
2.2. Sol–Gel Synthesis of the Materials
2.3. Characterization Techniques
2.4. Photoluminescent Method of Carbamazepine Determination
3. Results
3.1. Physico-Chemical Properties of Synthesized Materials
3.2. Investigation of PL Properties of Sensor and Detection Conditions
3.3. Possible Physico-Chemical Mechanism of Carbamazepine Sensing
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, X.; Jia, J.; Yue, X.; Guan, Y.; Zhu, L.; Wang, Z. River contamination shapes the microbiome and antibiotic resistance in sharpbelly (Hemiculter leucisculus). Environ. Pollut. 2021, 268, 115796. [Google Scholar] [CrossRef] [PubMed]
- Rajawat, G.S.; Belubbi, T.; Nagarsenker, M.S.; Abrahamsson, B.; Cristofoletti, R.; Groot, D.W.; Langguth, P.; Parr, A.; Polli, J.E.; Mehta, M.; et al. Biowaiver monograph for immediate-release solid oral dosage forms: Carbamazepine. J. Pharm. Sci. 2021, 110, 1935–1947. [Google Scholar]
- Miao, X.-S.; Metcalfe, C.D. Determination of carbamazepine and its metabolites in aqueous samples using liquid chromatography−electrospray tandem mass spectrometry. Anal. Chem. 2003, 75, 3731–3738. [Google Scholar] [CrossRef]
- Shankar Kikkeri, N.; Nagalli, S. Trigeminal Neuralgia. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2022. [Google Scholar]
- Köhling, R. Voltage-gated sodium channels in epilepsy. Epilepsia 2002, 43, 1278–1295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Speed, D.; Dickson, S.; Cairns, E.; Kim, N. Analysis of six anticonvulsant drugs using solid-phase extraction, deuterated internal standards, and gas chromatography-mass spectrometry. J. Anal. Toxicol. 2000, 24, 685–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weigel, S.; Bester, K.; Hühnerfuss, H. New method for rapid solid-phase extraction of large-volume water samples and its application to non-target screening of North Sea water for organic contaminants by gas chromatography–mass spectrometry. J. Chromatogr. A 2001, 912, 151–161. [Google Scholar] [CrossRef]
- Öllers, S.; Singer, H.P.; Fässler, P.; Müller, S.R. Simultaneous quantification of neutral and acidic pharmaceuticals and pesticides at the low-ng/l level in surface and waste water. J. Chromatogr. A 2001, 911, 225–234. [Google Scholar] [CrossRef]
- Mansour, N.M.; El-Sherbiny, D.T.; Ibrahim, F.A.; El Subbagh, H.I. Development of an Inexpensive, sensitive and green HPLC method for the simultaneous determination of brivaracetam, piracetam and carbamazepine; application to pharmaceuticals and human plasma. Microchem. J. 2021, 163, 105863. [Google Scholar] [CrossRef]
- Miao, X.-S.; Yang, J.-J.; Metcalfe, C.D. Carbamazepine and its metabolites in wastewater and in biosolids in a municipal wastewater treatment plant. Environ. Sci. Technol. 2005, 39, 7469–7475. [Google Scholar] [CrossRef]
- Zhou, S.; Xu, L.; Liu, L.; Kuang, H.; Xu, C. Development of a monoclonal antibody-based immunochromatographic assay for the detection of carbamazepine and carbamazepine-10, 11-epoxide. J. Chromatogr. B 2020, 1141, 122036. [Google Scholar] [CrossRef]
- Qambrani, N.; Buledi, J.A.; Khand, N.H.; Solangi, A.R.; Ameen, S.; Jalbani, N.S.; Khatoon, A.; Taher, M.A.; Moghadam, A.T.; Shojaei, M.; et al. Facile synthesis of NiO/ZnO nanocomposite as an effective platform for electrochemical determination of carbamazepine. Chemosphere 2022, 303, 135270. [Google Scholar] [CrossRef] [PubMed]
- Ramos, I.I.; Carl, P.; Schneider, R.J.; Segundo, M.A. Automated lab-on-valve sequential injection ELISA for determination of carbamazepine. Anal. Chim. Acta 2019, 1076, 91–99. [Google Scholar] [CrossRef] [PubMed]
- Khayoon, W.S.; Younis, H.R. Ion pair-dispersive liquid–liquid microextraction combined with spectrophotometry for carbamazepine determination in pharmaceutical formulations and biological samples. J. Anal. Chem. 2020, 75, 733–741. [Google Scholar] [CrossRef]
- Rezaei, Z.; Hemmateenejad, B.; Khabnadideh, S.; Gorgin, M. Simultaneous spectrophotometric determination of carbamazepine and phenytoin in serum by PLS regression and comparison with HPLC. Talanta 2005, 65, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Goudarzy, F.; Zolgharnein, J.; Ghasemi, J.B. Determination and degradation of carbamazepine using g-C3N4@ CuS nanocomposite as a sensitive fluorescence sensor and efficient photocatalyst. Inorg. Chem. Commun. 2022, 141, 109512. [Google Scholar] [CrossRef]
- Li, Y.; Sun, M.; Yang, Y.; Meng, H.; Wang, Q.; Li, C.; Li, G. Luminescence-colour-changing sensing toward neurological drug carbamazepine in water and biofluids based on white light-emitting CD/Ln-MOF/PVA test papers. J. Mater. Chem. C 2021, 9, 8683–8693. [Google Scholar] [CrossRef]
- Halicka, K.; Meloni, F.; Czok, M.; Spychalska, K.; Baluta, S.; Malecha, K.; Pilo, M.I.; Cabaj, J. New Trends in Fluorescent Nanomaterials-Based Bio/Chemical Sensors for Neurohormones Detection─ A Review. ACS Omega 2022, 7, 33749–33768. [Google Scholar] [CrossRef]
- Ziarani, G.M.; Khademi, M.; Mohajer, F.; Badiei, A. The application of modified SBA-15 as a chemosensor. Curr. Nanomater. 2022, 7, 4–24. [Google Scholar] [CrossRef]
- Willner, M.R.; Vikesland, P.J. Nanomaterial enabled sensors for environmental contaminants. J. Nanobiotechnol. 2018, 16, 1–16. [Google Scholar] [CrossRef]
- Würth, C.; González, M.G.; Niessner, R.; Panne, U.; Haisch, C.; Genger, U.R. Determination of the absolute fluorescence quantum yield of rhodamine 6G with optical and photoacoustic methods–Providing the basis for fluorescence quantum yield standards. Talanta 2012, 90, 30–37. [Google Scholar] [CrossRef]
- Ma, C.; Lin, L.; Du, Y.; Chen, L.B.; Luo, F.; Chen, X. Fluorescence quenching determination of iron (III) using rhodamine 6G hydrazide derivative. Anal. Methods 2013, 5, 1843–1847. [Google Scholar] [CrossRef]
- Xu, Z.Q.; Mao, X.J.; Wang, Y.; Wu, W.N.; Mao, P.D.; Zhao, X.L.; Li, H.J. Rhodamine 6G hydrazone with coumarin unit: A novel single-molecule multianalyte (Cu 2+ and Hg 2+) sensor at different pH value. RSC Adv. 2017, 7, 42312–42319. [Google Scholar] [CrossRef] [Green Version]
- Upadhyay, Y.; Paira, P.; Kumar, S.A.; Choi, H.J.; Kumar, R.; Sahoo, S.K. Vitamin B6 cofactor conjugated rhodamine 6G derivative: Fluorescent turn-on sensing of Al (III) and Cr (III) with bioimaging application in live HeLa cells. Inorg. Chim. Acta 2019, 489, 198–203. [Google Scholar] [CrossRef]
- Zhang, F.; Zhu, J.; Li, J.J.; Zhao, J.W. Fluorescence spectral detection of cysteine based on the different medium-coated gold nanorods-Rhodamine 6G probe: From quenching to enhancement. Sens. Actuators B Chem. 2015, 220, 1279–1287. [Google Scholar] [CrossRef]
- Yan, G.; Kong, B.; Zhao, J.; Ni, H.; Zhan, L.; Huang, C.; Zou, H. Fluorescence turn-on Cu2-xSe@ HA-rhodamine 6G FRET nanoprobe for hyaluronidase detection and imaging. J. Photochem. Photobiol. B: Biol. 2022, 233, 112496. [Google Scholar] [CrossRef]
- Kotsyuda, S.S.; Tomina, V.V.; Zub, Y.L.; Furtat, I.M.; Lebed, A.P.; Vaclavikova, M.; Melnyk, I.V. Bifunctional silica nanospheres with 3-aminopropyl and phenyl groups. Synthesis approach and prospects of their applications. Appl. Surf. Sci. 2017, 420, 782–791. [Google Scholar] [CrossRef]
- Arbeloa, F.L.; Ojeda, P.R.; Arbeloa, I.L. Dimerization and trimerization of rhodamine 6G in aqueous solution. Effect on the fluorescence quantum yield. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1988, 84, 1903–1912. [Google Scholar] [CrossRef]
- Chen, Z.; Tang, Y.J.; Xie, T.T.; Chen, Y.; Li, Y.Q. Fluorescence spectral properties of rhodamine 6G at the silica/water interface. J. Fluoresc. 2008, 18, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Shrivastava, A.; Gupta, V.B. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chron. Young Sci. 2011, 2, 21–25. [Google Scholar] [CrossRef]
- Ndlovu, T.; Chimonyo, M.; Okoh, A.I.; Muchenje, V.; Dzama, K.; Raats, J.G. Assessing the nutritional status of beef cattle: Current practices and future prospects. Afr. J. Biotechnol. 2007, 6, 2727–2734. [Google Scholar]
- Harrington, J.M.; Young, D.J.; Essader, A.S.; Sumner, S.J.; Levine, K.E. Analysis of human serum and whole blood for mineral content by ICP-MS and ICP-OES: Development of a mineralomics method. Biol. Trace Elem. Res. 2014, 160, 132–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Melnyk, I.V.; Tomina, V.V.; Stolyarchuk, N.V.; Seisenbaeva, G.A.; Kessler, V.G. Organic dyes (acid red, fluorescein, methylene blue) and copper(II) adsorption on amino silica spherical particles with tailored surface hydrophobicity and porosity. J. Mol. Liq. 2021, 336, 116301. [Google Scholar] [CrossRef]
- Gheitarani, B.; Golshan, M.; Hosseini, M.S.; Salami-Kalajahi, M. Reflectance and photophysical properties of rhodamine 6G/2-(4-methyl-2-oxo-2H-chromen-7-yloxy) acetic acid as a cold hybrid colorant. Sci. Rep. 2022, 12, 6145. [Google Scholar] [CrossRef] [PubMed]
- Sing, K.S.W.; Everett, D.; Haul, R.; Moscou, L.; Pierotti, R.; Rouquerol, J.; Siemieniewska, T. International union of pure commission on colloid and surface chemistry including catalysis* reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity. Pure Appl. Chem. 1985, 57, 603–619. [Google Scholar] [CrossRef]
- Majoube, M.; Henry, M. Fourier transform Raman and infrared and surface-enhanced Raman spectra for rhodamine 6G. Spectrochim. Acta Part A Mol. Spectrosc. 1991, 47, 1459–1466. [Google Scholar] [CrossRef]
- Halford, J.J. One Ring to Dissolve Them All: One Ring to Dissolve Them All. Epilepsy Curr. 2015, 15, 52–53. [Google Scholar] [CrossRef] [Green Version]
- Ferdig, M.; Kaleta, A.; Buchberger, W. Improved liquid chromatographic determination of nine currently used (fluoro) quinolones with fluorescence and mass spectrometric detection for environmental samples. J. Sep. Sci. 2005, 28, 1448–1456. [Google Scholar] [CrossRef]
- Jara, B.; Tucca, F.; Srain, B.M.; Mejanelle, L.; Aranda, M.; Fernández, C.; Pantoja-Gutiérrez, S. Antibiotics florfenicol and flumequine in the water column and sediments of Puyuhuapi Fjord, Chilean Patagonia. Chemosphere 2021, 275, 130029. [Google Scholar] [CrossRef]
- Tamtam, F.; Mercier, F.; Le Bot, B.; Eurin, J.; Tuc Dinh, Q.; Clement, M.; Chevreuil, M. Occurrence and fate of antibiotics in the Seine River in various hydrological conditions. Sci. Total Environ. 2008, 393, 84–95. [Google Scholar] [CrossRef]
- Zounková, R.; Klimešová, Z.; Nepejchalová, L.; Hilscherová, K.; Bláha, L. Complex evaluation of ecotoxicity and genotoxicity of antimicrobials oxytetracycline and flumequine used in aquaculture. Environ. Toxicol. Chem. 2011, 30, 1184–1189. [Google Scholar] [CrossRef]
- Lee, H.B.; Peart, T.E.; Svoboda, M.L. Determination of ofloxacin, norfloxacin, and ciprofloxacin in sewage by selective solid-phase extraction, liquid chromatography with fluorescence detection, and liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2007, 1139, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Turiel, E.; Bordin, G.; Rodríguez, A.R. Trace enrichment of (fluoro) quinolone antibiotics in surface waters by solid-phase extraction and their determination by liquid chromatography–ultraviolet detection. J. Chromatogr. A 2003, 1008, 145–155. [Google Scholar] [CrossRef] [PubMed]
- Cha, I.; Baek, S.; Song, S.G.; Kim, J.; Lee, H.K.; Lee, J.; Song, C. Inter-and Intra-Hydrogen Bonding Strategy to Control the Fluorescence of Acylhydrazone-Based Conjugated Microporous Polymers and Their Application to Nitroaromatics Detection. Macromol 2021, 1, 234–242. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yankovych, H.; Dutková, E.; Kyshkarova, V.; Vaclavikova, M.; Melnyk, I. A ‘Turn-On’ Carbamazepine Sensing Using a Luminescent SiO2/-(CH2)3NH2/-C6H5 + Rh6G System. Chemosensors 2023, 11, 332. https://doi.org/10.3390/chemosensors11060332
Yankovych H, Dutková E, Kyshkarova V, Vaclavikova M, Melnyk I. A ‘Turn-On’ Carbamazepine Sensing Using a Luminescent SiO2/-(CH2)3NH2/-C6H5 + Rh6G System. Chemosensors. 2023; 11(6):332. https://doi.org/10.3390/chemosensors11060332
Chicago/Turabian StyleYankovych, Halyna, Erika Dutková, Viktoriia Kyshkarova, Miroslava Vaclavikova, and Inna Melnyk. 2023. "A ‘Turn-On’ Carbamazepine Sensing Using a Luminescent SiO2/-(CH2)3NH2/-C6H5 + Rh6G System" Chemosensors 11, no. 6: 332. https://doi.org/10.3390/chemosensors11060332
APA StyleYankovych, H., Dutková, E., Kyshkarova, V., Vaclavikova, M., & Melnyk, I. (2023). A ‘Turn-On’ Carbamazepine Sensing Using a Luminescent SiO2/-(CH2)3NH2/-C6H5 + Rh6G System. Chemosensors, 11(6), 332. https://doi.org/10.3390/chemosensors11060332