Ionophore-Based Nanosphere Emulsion Incorporating Ion-Exchanger for Picogram Potentiometric Determination of HCV Drug (Daclatasvir) in Pharmaceutical Formulations and Body Fluids
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Method
3. Results and Discussion
3.1. Formation of the Emulsified Nanospheres
3.2. Complexometric Potentiometric Titration and Response Mechanism
Sensitivity of the Emulsion-Based Titration
3.3. Influence of Background Solution
3.4. Selectivity
3.5. Response Time
3.6. Analysis of Biological and Pharmaceutical Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhai, J.; Xie, X.; Cherubini, T.; Bakker, E. Ionophore-Based Titrimetric Detection of Alkali Metal Ions in Serum. ACS Sens. 2017, 2, 606–612. [Google Scholar] [CrossRef]
- Zhai, J.; Xie, X.; Bakker, E. Ionophore-based ion-exchange emulsions as novel class of complexometric titration reagents. Chem. Commun. 2014, 50, 12659–12661. [Google Scholar] [CrossRef] [PubMed]
- Soda, Y.; Gao, W.; Bosset, J.; Bakker, E. Emulsion Doping of Ionophores and Ion-Exchangers into Ion-Selective Electrode Membranes. Anal. Chem. 2020, 92, 14319–14324. [Google Scholar] [CrossRef] [PubMed]
- Zdrachek, E.; Bakker, E. From Molecular and Emulsified Ion Sensors to Membrane Electrodes: Molecular and Mechanistic Sensor Design. Acc. Chem. Res. 2019, 52, 1400–1408. [Google Scholar] [CrossRef]
- Abdel-Haleem, F.M.; Gamal, E.; Rizk, M.S.; El Nashar, R.M.; Anis, B.; Elnabawy, H.M.; Khalil, A.S.G.; Barhoum, A. T-Butyl Calixarene/Fe2O3@MWCNTs Composite-Based Potentiometric Sensor for Determination of Ivabradine Hydrochloride in Pharmaceutical Formulations. Mater. Sci. Eng. C 2020, 116, 111110. [Google Scholar] [CrossRef]
- Barhoum, A.; Hamimed, S.; Slimi, H.; Othmani, A.; Abdel-Haleem, F.M.; Bechelany, M. Modern designs of electrochemical sensor platforms for environmental analyses: Principles, nanofabrication opportunities, and challenges. Trends Environ. Anal. Chem. 2023, 38, e00199. [Google Scholar] [CrossRef]
- Zhai, J.; Xie, X.; Bakker, E. Anion-Exchange Nanospheres as Titration Reagents for Anionic Analytes. Anal. Chem. 2015, 87, 8347–8352. [Google Scholar] [CrossRef] [PubMed]
- Soda, Y.; Robinson, K.J.; Nussbaum, R.; Bakker, E. Protamine/heparin optical nanosensors based on solvatochromism. Chem. Sci. 2021, 12, 15596–15602. [Google Scholar] [CrossRef] [PubMed]
- Robinson, K.J.; Soda, Y.; Bakker, E. Recent improvements to the selectivity of extraction-based optical ion sensors. Chem. Commun. 2022, 58, 4279–4287. [Google Scholar] [CrossRef]
- Guo, C.; Zhai, J.; Chen, Q.; Du, X.; Xie, X. Phase transfer of fatty acids into ultrasmall nanospheres for colorimetric detection of lipase and albumin. Chem. Commun. 2022, 58, 5037–5040. [Google Scholar] [CrossRef]
- Abdel-Haleem, F.M.; Rizk, M.S. Development of ionophore-based nanosphere emulsion incorporating ion-exchanger for complexometric titration of thiocyanate anion. J. Adv. Res. 2017, 8, 449–454. [Google Scholar] [CrossRef] [PubMed]
- Moyer, V.A. Screening for hepatitis C virus infection in adults: U.S. preventive services task force recommendation statement. Microchim. Acta 2013, 159, 349–357. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, C.; Ma, H.; Hang, J.Q.; Leveque, V.; Sklan, E.H.; Elazar, M.; Klumpp, K.; Glenn, J.S. The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein. Virology 2011, 414, 10–18. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fayed, A.S.; Hegazy, M.A.; Kamel, E.B.; Eissa, M.S. Three Smart and Original Spectrophotometric Data Processing Ratio Techniques for Resolving the Partial Overlapped Spectra of the Binary Antiviral Mixture Daclatasvir/Sofosbuvir: Application to Combined Dosage Form Darvoni® Tablets. J. AOAC Int. 2022, 105, 612–622. [Google Scholar] [CrossRef] [PubMed]
- Ezzeldin, E.; Abo-Talib, N.F.; Tammam, M.H.; Asiri, Y.A.; Amr, A.E.G.E.; Almehizia, A.A. Validated reversed-phase liquid chromatographic method with gradient elution for simultaneous determination of the antiviral agents: Sofosbuvir, ledipasvir, daclatasvir, and simeprevir in their dosage forms. Molecules 2020, 25, 4611. [Google Scholar] [CrossRef]
- Viswanath, A.; Lakshmanrao, A.; Unnisa, A.; Anupama, B.; Haritha, K. Estimation of daclatasvir in pharmaceutical dasage form by ultra performance liquid chromatography. Int. J. Pharm. Sci. Res. 2021, 12, 973–983. [Google Scholar] [CrossRef]
- Atta, N.F.; Ahmed, Y.M.; Galal, A. Nano-magnetite/ionic liquid crystal modifiers of carbon nanotubes composite electrode for ultrasensitive determination of a new anti-hepatitis C drug in human serum. J. Electroanal. Chem. 2018, 823, 296–306. [Google Scholar] [CrossRef]
- Badawy, S.S.; Ahmed, Y.M.; Sultan, M.A. Voltammetric determination of daclatasvir dihydrochloride at bimetallic Ag/Co nanoparticles modified carbon paste electrode. Microchem. J. 2023, 191, 108799. [Google Scholar] [CrossRef]
- Azab, S.M.; Fekry, A.M. Electrochemical design of a new nanosensor based on cobalt nanoparticles, chitosan and MWCNT for the determination of daclatasvir: A hepatitis C antiviral drug. RSC Adv. 2017, 7, 1118–1126. [Google Scholar] [CrossRef] [Green Version]
- Apichai, S.; Wang, L.; Pankratova, N.; Grudpan, K.; Bakker, E. Ion-exchange Microemulsions for Eliminating Dilute Interferences in Potentiometric Determinations. Electroanalysis 2018, 30, 2462–2466. [Google Scholar] [CrossRef]
- Ahmed, Y.M.; Badawy, S.S.; Abdel-Haleem, F.M. Dibenzo-18-crown-6-based carbon paste sensors for the nanomolar potentiometric determination of daclatasvir dihydrochloride: An anti-HCV drug and a potential candidate for treatment of SARS-CoV-2. Microchem. J. 2022, 177, 107276. [Google Scholar] [CrossRef] [PubMed]
- Niu, Z.; Zhang, W.; Yu, C.; Zhang, J.; Wen, Y. Recent advances in biological sample preparation methods coupled with chromatography, spectrometry and electrochemistry analysis techniques. TrAC Trends Anal. Chem. 2018, 102, 123–146. [Google Scholar] [CrossRef]
- Hassib, S.T.; Taha, E.A.; Elkady, E.F.; Barakat, G.H. Reversed-Phase Liquid Chromatographic Method for Determination of Daclatasvir Dihydrochloride and Study of Its Degradation Behavior. Chromatographia 2017, 80, 1101–1107. [Google Scholar] [CrossRef]
- Xie, X.; Bakker, E. Ion selective optodes: From the bulk to the nanoscale. Anal. Bioanal. Chem. 2015, 407, 3899–3910. [Google Scholar] [CrossRef]
- Li, M.; Jiang, W.; Chen, Z.; Suryaprakash, S.; Lv, S.; Tang, Z.; Chen, X.; Leong, K.W. A versatile platform for surface modification of microfluidic droplets. Lab Chip 2017, 17, 635–639. [Google Scholar] [CrossRef] [Green Version]
- Kabong, M.A.; Focke, W.W.; Du Toit, E.L.; Rolfes, H.; Ramjee, S. Breakdown mechanisms of oil-in-water emulsions stabilised with Pluronic F127 and co-surfactants. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124101. [Google Scholar] [CrossRef]
- Nikolskii, B.P.; Materova, E.A. Ion-Selective Electrode Reviews; Thomas, J.D.R., Ed.; Pregamon Press: Oxford, UK, 1989; ISBN 0080341500. [Google Scholar]
- Mikysek, T.; Stočes, M.; Vytřas, K. Two Novelties in Ion-pair Formation-based Potentiometric Titrations of Anionic Surfactants. Electroanalysis 2016, 28, 2688–2691. [Google Scholar] [CrossRef]
- Xie, X.; Zhai, J.; Bakker, E. PH independent nano-optode sensors based on exhaustive ion-selective nanospheres. Anal. Chem. 2014, 86, 2853–2856. [Google Scholar] [CrossRef]
- Xie, X.; Crespo, G.A.; Zhai, J.; SzilÁgyi, I.; Bakker, E. Potassium-selective optical microsensors based on surface modified polystyrene microspheres. Chem. Commun. 2014, 50, 4592–4595. [Google Scholar] [CrossRef] [PubMed]
- Xie, X.; Zhai, J.; Crespo, G.A.; Bakker, E. Ionophore-based ion-selective optical nanosensors operating in exhaustive sensing mode. Anal. Chem. 2014, 86, 8770–8775. [Google Scholar] [CrossRef]
F-127 (mg) | TCP (mg) | DB18C6 (mg) | THF (mL) | Na-TPB Aliquot * (mg) | H2O (mL) | Recovery % ± SE | Ref. | |
---|---|---|---|---|---|---|---|---|
Em 1 | 3.00 | 8.00 | 2.24 | 2.00 | 1.00 | 6.00 | No response | [2] |
Em 2 | 5.00 | 8.00 | 1.25 | 2.00 | 1.80 | 6.00 | 102.15 ± 4.17 | [20] |
Amount of DAC | Recovery % | RSD * % | |
---|---|---|---|
mol/L | µg/mL | ||
1.00 × 10−4 | 81.18 | 99.37 | 2.32 |
1.00 × 10−5 | 8.12 | 100.71 | 2.29 |
1.00 × 10−6 | 0.81 | 102.15 | 4.09 |
ng/mL | |||
1.00 × 10−7 | 81.18 | 103.49 | 2.42 |
1.00 × 10−8 | 8.12 | 103.60 | 4.65 |
1.00 × 10−9 | 0.81 | 106.51 | 4.26 |
5.00 × 10−10 | 0.41 | 104.41 | 4.73 |
pg/mL | |||
1.00 × 10−10 | 81.18 | 104.94 | 2.39 |
Sample | Em with Ionophore | Ionophore-Free Em | ||
---|---|---|---|---|
Recovery % | RSD * % | Recovery % | RSD * % | |
10−6 M DAC | 102.15 | 4.09 | 107.28 | 4.70 |
10−6 M DAC + two-fold SOF | 106.51 | 4.26 | 142.86 | 0 |
10−6 M DAC + two-fold LED | 107.15 | 1.25 | 341.96 | 6.66 |
Method | Sample | Taken | Found ± SE | F-Value | t-Value |
---|---|---|---|---|---|
HPLC [23] | Daclavirocyrl a µg/mL | 4.06 | 4.07 ± 0.01 | 16.04 c | 2.57 c |
Potentiometric reverse titration | Daclavirocyrl b µg/mL | 4.06 | 4.11 ± 0.03 | 4.944 | 1.744 |
mg/mL | 0.66 | 0.66 ± 0.006 | - | - | |
Spiked serum b, µg/mL | 0.81 d | 0.82 ± 0.01 | - | - | |
0.81 e | 0.83 ± 0.02 | - | - | ||
Spiked urine b, µg/mL | 0.81 d | 0.83 ± 0.01 | - | - | |
0.81 e | 0.84 ± 0.02 | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badawy, S.S.; Ahmed, Y.M.; Abdel-Haleem, F.M.; Barhoum, A. Ionophore-Based Nanosphere Emulsion Incorporating Ion-Exchanger for Picogram Potentiometric Determination of HCV Drug (Daclatasvir) in Pharmaceutical Formulations and Body Fluids. Chemosensors 2023, 11, 385. https://doi.org/10.3390/chemosensors11070385
Badawy SS, Ahmed YM, Abdel-Haleem FM, Barhoum A. Ionophore-Based Nanosphere Emulsion Incorporating Ion-Exchanger for Picogram Potentiometric Determination of HCV Drug (Daclatasvir) in Pharmaceutical Formulations and Body Fluids. Chemosensors. 2023; 11(7):385. https://doi.org/10.3390/chemosensors11070385
Chicago/Turabian StyleBadawy, Sayed S., Yomna M. Ahmed, Fatehy M. Abdel-Haleem, and Ahmed Barhoum. 2023. "Ionophore-Based Nanosphere Emulsion Incorporating Ion-Exchanger for Picogram Potentiometric Determination of HCV Drug (Daclatasvir) in Pharmaceutical Formulations and Body Fluids" Chemosensors 11, no. 7: 385. https://doi.org/10.3390/chemosensors11070385
APA StyleBadawy, S. S., Ahmed, Y. M., Abdel-Haleem, F. M., & Barhoum, A. (2023). Ionophore-Based Nanosphere Emulsion Incorporating Ion-Exchanger for Picogram Potentiometric Determination of HCV Drug (Daclatasvir) in Pharmaceutical Formulations and Body Fluids. Chemosensors, 11(7), 385. https://doi.org/10.3390/chemosensors11070385