Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment
Abstract
:1. Introduction
2. Principle of PEC Sensors
3. Photoactive Materials in PEC Sensors for Analysis of Toxins and Abused Drugs in the Environment
3.1. Semiconductors
3.2. Semiconductor-Based Heterojunctions
3.2.1. Semiconductor–Semiconductor Heterojunctions
3.2.2. Semiconductor–Carbon Heterojunctions
3.2.3. Semiconductor–Metal Heterojunctions
3.2.4. Multi-Component Heterojunctions
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Munoz, M.; Cires, S.; de Pedro, Z.M.; Colina, J.A.; Velasquez-Figueroa, Y.; Carmona-Jimenez, J.; Caro-Borrero, A.; Salazar, A.; Fuster, M.C.S.; Contreras, D.; et al. Overview of toxic cyanobacteria and cyanotoxins in Ibero-American freshwaters: Challenges for risk management and opportunities for removal by advanced technologies. Sci. Total Environ. 2021, 761, 143197. [Google Scholar] [CrossRef]
- Chen, L.K.; Guo, C.S.; Sun, Z.Y.; Xu, J. Occurrence, bioaccumulation and toxicological effect of drugs of abuse in aquatic ecosystem: A review. Environ. Res. 2021, 200, 111362. [Google Scholar] [CrossRef]
- Du, X.; Jiang, D.; Li, H.; Hao, N.; You, T.; Wang, K. An intriguing signal-off responsive photoelectrochemical aptasensor for ultrasensitive detection of microcystin-LR and its mechanism study. Sens. Actuator B-Chem. 2018, 259, 316–324. [Google Scholar] [CrossRef]
- Xu, J.Y.; Zhang, W.Y.; Zhong, S.Z.; Xie, X.X.; Che, H.M.; Si, W.R.; Tuo, X.; Xu, D.X.; Zhao, S.J. Microcystin-leucine-arginine affects brain gene expression programs and behaviors of offspring through paternal epigenetic information. Sci. Total Environ. 2023, 857, 159032. [Google Scholar] [CrossRef]
- Guo, X.; Meng, R.Y.; Liu, J.J.; Zhang, S.Y.; Liu, H.H.; Du, X.D.; Zhang, H.Z.; Li, Y.S. Microcystin leucine arginine induces human sperm damage: Involvement of the Ca2+/CaMKKβ/AMPK pathway. Ecotoxicol. Environ. Saf. 2023, 256, 114845. [Google Scholar] [CrossRef]
- Tang, Y.; Chai, Y.; Liu, X.; Li, L.; Yang, L.; Liu, P.; Zhou, Y.; Ju, H.; Cheng, Y. A photoelectrochemical aptasensor constructed with core-shell CuS-TiO2 heterostructure for detection of microcystin-LR. Biosens. Bioelectron. 2018, 117, 224–231. [Google Scholar] [CrossRef] [PubMed]
- Krishnan, R.Y.; Manikandan, S.; Subbaiya, R.; Biruntha, M.; Balachandar, R.; Karmegam, N. Origin, transport and ecological risk assessment of illicit drugs in the environment—A review. Chemosphere 2023, 311, 137091. [Google Scholar] [CrossRef]
- Metcalfe, C.D.; Bayen, S.; Desrosiers, M.; Munoz, G.; Sauve, S.; Yargeau, V. An introduction to the sources, fate, occurrence and effects of endocrine disrupting chemicals released into the environment. Environ. Res. 2022, 207, 112658. [Google Scholar] [CrossRef] [PubMed]
- Fent, K.; Weston, A.A.; Caminada, D. Ecotoxicology of human pharmaceuticals. Aquat. Toxicol. 2006, 76, 122–159. [Google Scholar] [CrossRef]
- Michalaki, A.; Grintzalis, K. Acute and Transgenerational Effects of Non-Steroidal Anti-Inflammatory Drugs on Daphnia magna. Toxics 2023, 11, 320. [Google Scholar] [CrossRef]
- Parolini, M. Toxicity of the Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) acetylsalicylic acid, paracetamol, diclofenac, ibuprofen and naproxen towards freshwater invertebrates: A review. Sci. Total Environ. 2020, 740, 140043. [Google Scholar] [CrossRef]
- Patel, M.; Kumar, R.; Kishor, K.; Mlsna, T.; Pittman, C.U.; Mohan, D. Pharmaceuticals of Emerging Concern in Aquatic Systems: Chemistry, Occurrence, Effects, and Removal Methods. Chem. Rev. 2019, 119, 3510–3673. [Google Scholar] [CrossRef] [Green Version]
- Marmon, P.; Owen, S.F.; Margiotta-Casaluci, L. Pharmacology-informed prediction of the risk posed to fish by mixtures of non-steroidal anti-inflammatory drugs (NSAIDs) in the environment. Environ. Int. 2021, 146, 106222. [Google Scholar] [CrossRef] [PubMed]
- Zastepa, A.; Pick, F.R.; Blais, J.M.; Saleem, A. Analysis of intracellular and extracellular microcystin variants in sediments and pore waters by accelerated solvent extraction and high performance liquid chromatography-tandem mass spectrometry. Anal. Chim. Acta 2015, 872, 26–34. [Google Scholar] [CrossRef] [PubMed]
- Fresco-Cala, B.; Gálvez-Vergara, A.; Cárdenas, S. Preparation, characterization and evaluation of hydrophilic polymers containing magnetic nanoparticles and amine-modified carbon nanotubes for the determination of anti-inflammatory drugs in urine samples. Talanta 2020, 218, 121124. [Google Scholar] [CrossRef]
- Vardali, S.; Papadouli, C.; Rigos, G.; Nengas, I.; Panagiotaki, P.; Golomazou, E. Recent Advances in Mycotoxin Determination in Fish Feed Ingredients. Molecules 2023, 28, 2519. [Google Scholar] [CrossRef] [PubMed]
- Foss, A.J.; Aubel, M.T. Using the MMPB technique to confirm microcystin concentrations in water measured by ELISA and HPLC (UV, MS, MS/MS). Toxicon 2015, 104, 91–101. [Google Scholar] [CrossRef]
- Liu, J.; Xing, Y.; Lin, Y.; Xie, Y.; Zhou, X. Effect of pretreatment approach on the ELISA-based detection of cyanotoxins in water: Analysis and application. Sci. Total Environ. 2023, 871, 161988. [Google Scholar] [CrossRef]
- Garg, K.; Villavicencio-Aguilar, F.; Solano-Rivera, F.; Gilbert, L. Analytical Validation of a Direct Competitive ELISA for Multiple Mycotoxin Detection in Human Serum. Toxins 2022, 14, 727. [Google Scholar] [CrossRef]
- Abdelwahab, N.S.; Abdelrahman, M.M. Simultaneous Determination of Methocarbamol and Ibuprofen by First Derivative Synchronous Fluorescence Spectroscopic Method in Their Binary Mixture and Spiked Human Plasma. J. Fluoresc. 2014, 24, 129–135. [Google Scholar] [CrossRef]
- Pouyanfar, N.; Harofte, S.Z.; Soltani, M.; Siavashy, S.; Asadian, E.; Ghorbani-Bidkorbeh, F.; Kecili, R.; Hussain, C.M. Artificial intelligence-based microfluidic platforms for the sensitive detection of environmental pollutants: Recent advances and prospects. Trends Environ. Anal. Chem. 2022, 34, e00160. [Google Scholar] [CrossRef]
- Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev. 2015, 44, 729–741. [Google Scholar] [CrossRef] [PubMed]
- Ma, X.; Kang, J.; Wu, Y.; Pang, C.; Li, S.; Li, J.; Xiong, Y.; Luo, J.; Wang, M.; Xu, Z. Recent advances in metal/covalent organic framework-based materials for photoelectrochemical sensing applications. Trac-Trends Anal. Chem. 2022, 157, 116793. [Google Scholar] [CrossRef]
- Bilge, S.; Sınağ, A. Current trends and strategies in the development of green MXene-based photoelectrochemical sensing application. Trac-Trends Anal. Chem. 2023, 163, 117059. [Google Scholar] [CrossRef]
- Qureshi, A.; Shaikh, T.; Niazi, J.H. Semiconductor quantum dots in photoelectrochemical sensors from fabrication to biosensing applications. Analyst 2023, 148, 1633–1652. [Google Scholar] [CrossRef]
- Wang, H.-Y.; Xu, Y.-T.; Wang, B.; Yu, S.-Y.; Shi, X.-M.; Zhao, W.-W.; Jiang, D.; Chen, H.-Y.; Xu, J.-J. A Photoelectrochemical Nanoreactor for Single-Cell Sampling and Near Zero-Background Faradaic Detection of Intracellular microRNA. Angew. Chem. Int. Ed. 2022, 61, e202212752. [Google Scholar]
- Li, C.-J.; Hu, J.; Gao, G.; Chen, J.-H.; Wang, C.-S.; Zhou, H.; Chen, G.; Qu, P.; Lin, P.; Zhao, W.-W. Biomolecules-Incorporated Metal-Organic Frameworks Gated Light-Sensitive Organic Photoelectrochemical Transistor for Biodetection. Adv. Funct. Mater. 2023, 33, 2211277. [Google Scholar] [CrossRef]
- Shi, L.; Yin, Y.; Zhang, L.-C.; Wang, S.; Sillanpää, M.; Sun, H. Design and engineering heterojunctions for the photoelectrochemical monitoring of environmental pollutants: A review. Appl. Catal. B 2019, 248, 405–422. [Google Scholar] [CrossRef]
- Yang, L.; Liu, X.; Li, L.; Zhang, S.; Zheng, H.; Tang, Y.; Ju, H. A visible light photoelectrochemical sandwich aptasensor for adenosine triphosphate based on MgIn2S4-TiO2 nanoarray heterojunction. Biosens. Bioelectron. 2019, 142, 111487. [Google Scholar] [CrossRef]
- Wang, H.; Xu, Y.; Xu, D.; Chen, L.; Qiu, X.; Zhu, Y. Graphitic Carbon Nitride for Photoelectrochemical Detection of Environmental Pollutants. ACS EST Engg. 2022, 2, 140–157. [Google Scholar] [CrossRef]
- Hao, N.; Zhang, Y.; Zhong, H.; Zhou, Z.; Hua, R.; Qian, J.; Liu, Q.; Li, H.; Wang, K. Design of a Dual Channel Self-Reference Photoelectrochemical Biosensor. Anal. Chem. 2017, 89, 10133–10136. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Tang, D. Recent advances in photoelectrochemical biosensors for analysis of mycotoxins in food. Trac-Trends Anal. Chem. 2020, 124, 115814. [Google Scholar] [CrossRef]
- Peng, B.; Tang, L.; Zeng, G.M.; Zhou, Y.Y.; Zhang, Y.; Long, B.Q.; Fang, S.Y.; Chen, S.; Yu, J.F. Current Progress in Aptasensors for Heavy Metal Ions Based on Photoelectrochemical Method: A Review. Curr. Anal. Chem. 2018, 14, 4–12. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Tang, Y.; Wang, C.; Zhao, F.; Zeng, B. Recent advances in bismuth oxyhalide-based functional materials for photoelectrochemical sensing. Trac-Trends Anal. Chem. 2020, 131, 116020. [Google Scholar] [CrossRef]
- Chen, W.F.; Liu, S.Y.; Fu, Y.K.; Yan, H.C.; Qin, L.; Lai, C.; Zhang, C.; Ye, H.Y.; Chen, W.J.; Qin, F.Z.; et al. Recent advances in photoelectrocatalysis for environmental applications: Sensing, pollutants removal and microbial inactivation. Coord. Chem. Rev. 2022, 454, 214341. [Google Scholar] [CrossRef]
- Shi, Y.T.; Zou, Y.T.; Khan, M.S.; Zhang, M.G.; Yan, J.; Zheng, X.H.; Wang, W.Q.; Xie, Z.G. Metal-organic framework-derived photoelectrochemical sensors: Structural design and biosensing technology. J. Mater. Chem. C 2023, 11, 3692–3709. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, M.; Zhang, L. Label-free and visible-light driven photoelectrochemical sensor with CuCo2O4@CoO Core-shell hybrid rod as photoanode for selective sensing diclofenac. Electrochim. Acta 2021, 397, 139239. [Google Scholar] [CrossRef]
- Gao, K.; Bai, X.; Zhang, Y.; Ji, Y. N–doped graphene quantum dots embedded in BiOBr nanosheets as hybrid thin film electrode for quantitative photoelectrochemical detection paracetamol. Electrochim. Acta 2019, 318, 422–429. [Google Scholar] [CrossRef]
- Shi, T.; Wen, Z.; Ding, L.; Liu, Q.; Guo, Y.; Ding, C.; Wang, K. Visible/near-infrared light response VOPc/carbon nitride nanocomposites: VOPc sensitizing carbon nitride to improve photo-to-current conversion efficiency for fabricating photoelectrochemical diclofenac aptasensor. Sens. Actuator B-Chem. 2019, 299, 126834. [Google Scholar] [CrossRef]
- Ouyang, X.; Tang, L.; Feng, C.; Peng, B.; Liu, Y.; Ren, X.; Zhu, X.; Tan, J.; Hu, X. Au/CeO2/g-C3N4 heterostructures: Designing a self-powered aptasensor for ultrasensitive detection of Microcystin-LR by density functional theory. Biosens. Bioelectron. 2020, 164, 112328. [Google Scholar] [CrossRef] [PubMed]
- Bostan, H.B.; Taghdisi, S.M.; Bowen, J.L.; Demertzis, N.; Rezaee, R.; Panahi, Y.; Tsatsakis, A.M.; Karimi, G. Determination of microcystin-LR, employing aptasensors. Biosens. Bioelectron. 2018, 119, 110–118. [Google Scholar] [CrossRef]
- Fan, L.; Xiao, G.; Wang, M.; Zhao, S.; Yang, Q.; Cheng, L.; Huang, J.J.; Yue, Z. Ultrasensitive photoelectrochemical microcystin-LR immunosensor using carboxyl-functionalized graphene oxide enhanced gold nanoclusters for signal amplification. Anal. Chim. Acta 2021, 1185, 339078. [Google Scholar] [CrossRef] [PubMed]
- Qileng, A.; Wei, J.; Lu, N.; Liu, W.; Cai, Y.; Chen, M.; Lei, H.; Liu, Y. Broad-specificity photoelectrochemical immunoassay for the simultaneous detection of ochratoxin A, ochratoxin B and ochratoxin C. Biosens. Bioelectron. 2018, 106, 219–226. [Google Scholar] [CrossRef]
- Bai, X.Y.; Gao, W.K.; Zhou, C.H.; Zhao, D.Y.; Zhang, Y.; Jia, N.Q. Photoelectrochemical determination of diclofenac using oriented single-crystalline TiO2 nanoarray modified with molecularly imprinted polypyrrole. Microchim. Acta 2022, 189, 90. [Google Scholar] [CrossRef]
- Chen, J.; Gao, P.; Wang, H.; Han, L.; Zhang, Y.; Wang, P.; Jia, N. A PPy/Cu2O molecularly imprinted composite film-based visible light-responsive photoelectrochemical sensor for microcystin-LR. J. Mater. Chem. 2018, 6, 3937–3944. [Google Scholar] [CrossRef]
- Wang, H.; Liang, D.; Xu, Y.; Liang, X.; Qiu, X.; Lin, Z. A highly efficient photoelectrochemical sensor for detection of chlorpyrifos based on 2D/2D β-Bi2O3/g-C3N4 heterojunctions. Environ. Sci.-Nano 2021, 8, 773–783. [Google Scholar] [CrossRef]
- Fan, L.; Zhang, C.; Liang, G.; Yan, W.; Guo, Y.; Bi, Y.; Dong, C. Highly sensitive photoelectrochemical aptasensor based on MoS2 quantum dots/TiO2 nanotubes for detection of atrazine. Sens. Actuator B-Chem. 2021, 334, 129652. [Google Scholar] [CrossRef]
- Ge, L.; Liu, Q.; Jiang, D.; Ding, L.; Wen, Z.; Guo, Y.; Ding, C.; Wang, K. Oxygen vacancy enhanced photoelectrochemical performance of Bi2MoO6/B, N co-doped graphene for fabricating lincomycin aptasensor. Biosens. Bioelectron. 2019, 135, 145–152. [Google Scholar] [CrossRef]
- Chen, K.; Liu, M.; Zhao, G.; Shi, H.; Fan, L.; Zhao, S. Fabrication of a Novel and Simple Microcystin-LR Photoelectrochemical Sensor with High Sensitivity and Selectivity. Environ. Sci. Technol. 2012, 46, 11955–11961. [Google Scholar] [CrossRef]
- Zhang, Z.; Huang, L.; Sheng, S.; Jiang, C.; Wang, Y. MIL-125(Ti)-derived COOH functionalized TiO2 grafted molecularly imprinted polymers for photoelectrochemical sensing of ofloxacin. Sens. Actuator B-Chem. 2021, 343, 130119. [Google Scholar] [CrossRef]
- Zu, M.; Zhou, X.; Zhang, S.; Qian, S.; Li, D.-S.; Liu, X.; Zhang, S. Sustainable engineering of TiO2-based advanced oxidation technologies: From photocatalyst to application devices. J. Mater. Sci. Technol. 2021, 78, 202–222. [Google Scholar] [CrossRef]
- Liu, Y.; Gan, X.; Zhou, B.; Xiong, B.; Li, J.; Dong, C.; Bai, J.; Cai, W. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode. J. Hazard. Mater. 2009, 171, 678–683. [Google Scholar] [CrossRef] [PubMed]
- Shamraiz, U.; Hussain, R.A.; Badshah, A. Fabrication and applications of copper sulfide (CuS) nanostructures. J. Solid State Chem. 2016, 238, 25–40. [Google Scholar] [CrossRef]
- Bai, X.; Zhang, Y.; Gao, W.; Zhao, D.; Yang, D.; Jia, N. Hollow ZnS–CdS nanocage based photoelectrochemical sensor combined with molecularly imprinting technology for sensitive detection of oxytetracycline. Biosens. Bioelectron. 2020, 168, 112522. [Google Scholar] [CrossRef] [PubMed]
- Yan, P.; Jiang, D.; Li, H.; Bao, J.; Xu, L.; Qian, J.; Chen, C.; Xia, J. BiPO4 nanocrystal/BiOCl nanosheet heterojunction as the basis for a photoelectrochemical 4-chlorophenol sensor. Sens. Actuator B-Chem. 2019, 279, 466–475. [Google Scholar] [CrossRef]
- Yu, S.-Y.; Zhang, L.; Zhu, L.-B.; Gao, Y.; Fan, G.-C.; Han, D.-M.; Chen, G.; Zhao, W.-W. Bismuth-containing semiconductors for photoelectrochemical sensing and biosensing. Coord. Chem. Rev. 2019, 393, 9–20. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, H.; Ai, S. Recent advances and applications of Bi2S3-based composites in photoelectrochemical sensors and biosensors. Trac-Trends Anal. Chem. 2023, 158, 116876. [Google Scholar] [CrossRef]
- Li, R.; Liu, Y.; Cheng, L.; Yang, C.; Zhang, J. Photoelectrochemical Aptasensing of Kanamycin Using Visible Light-Activated Carbon Nitride and Graphene Oxide Nanocomposites. Anal. Chem. 2014, 86, 9372–9375. [Google Scholar] [CrossRef]
- Low, S.S.; Chen, Z.; Li, Y.; Lu, Y.; Liu, Q. Design principle in biosensing: Critical analysis based on graphitic carbon nitride (G-C3N4) photoelectrochemical biosensor. Trac-Trends Anal. Chem. 2021, 145, 116454. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, N.; Zhao, W.-W.; Jiang, D.-C.; Xu, J.-J.; Chen, H.-Y. Polymer Dots for Photoelectrochemical Bioanalysis. Anal. Chem. 2017, 89, 4945–4950. [Google Scholar] [CrossRef]
- Wang, C.; Wang, H.; Zhang, M.; Zeng, B.; Zhao, F. Molecularly imprinted photoelectrochemical sensor for aflatoxin B1 detection based on organic/inorganic hybrid nanorod arrays. Sens. Actuator B-Chem. 2021, 339, 129900. [Google Scholar] [CrossRef]
- Li, L.; Zhang, S.; Zhao, H. A low cost universal photoelectrochemical detector for organic compounds based on photoelectrocatalytic oxidation at a nanostructured TiO2 photoanode. J. Electroanal. Chem. 2011, 656, 211–217. [Google Scholar] [CrossRef] [Green Version]
- Özcan, L. Photoelectrochemical determination of paracetamol by using TiO2 modified FTO electrodes. Anal. Bioanal. Electrochem. 2019, 11, 1117–1128. [Google Scholar]
- Lin, Y.-M.; Tseng, Y.-H.; Huang, J.-H.; Chao, C.C.; Chen, C.-C.; Wang, I. Photocatalytic Activity for Degradation of Nitrogen Oxides over Visible Light Responsive Titania-Based Photocatalysts. Environ. Sci. Technol. 2006, 40, 1616–1621. [Google Scholar] [CrossRef] [PubMed]
- Fan, D.; Wang, H.; Khan, M.S.; Bao, C.; Wang, H.; Wu, D.; Wei, Q.; Du, B. An ultrasensitive photoelectrochemical immunosensor for insulin detection based on BiOBr/Ag2S composite by in-situ growth method with high visible-light activity. Biosens. Bioelectron. 2017, 97, 253–259. [Google Scholar] [CrossRef]
- Chava, R.K.; Kang, M. Improving the photovoltaic conversion efficiency of ZnO based dye sensitized solar cells by indium doping. J. Alloys Compd. 2017, 692, 67–76. [Google Scholar] [CrossRef]
- Chahrour, K.M.; Ooi, P.C.; Eid, A.M.; Nazeer, A.A.; Madkour, M.; Dee, C.F.; Wee, M.F.M.R.; Hamzah, A.A. Synergistic effect of bi-phased and self-doped Ti3+ on anodic TiO2 nanotubes photoelectrode for photoelectrochemical sensing. J. Alloys Compd. 2022, 900, 163496. [Google Scholar] [CrossRef]
- Chen, L.-C.; Tu, Y.-J.; Wang, Y.-S.; Kan, R.-S.; Huang, C.-M. Characterization and photoreactivity of N-, S-, and C-doped ZnO under UV and visible light illumination. J. Photochem. Photobiol. A 2008, 199, 170–178. [Google Scholar] [CrossRef]
- Wang, J.; Wang, X.; Yan, J.; Tan, Q.; Liang, G.; Qu, S.; Zhong, Z. Enhanced Photoelectrochemical Properties of Ti3+ Self-Doped Branched TiO2 Nanorod Arrays with Visible Light Absorption. Material 2018, 11, 1791. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Qiao, Y.; Li, J.; Fang, H.; Fan, D.; Wang, W. A sensitive and label-free photoelectrochemical aptasensor using Co-doped ZnO diluted magnetic semiconductor nanoparticles. Biosens. Bioelectron. 2016, 77, 378–384. [Google Scholar] [CrossRef]
- Zheng, L.; Zhang, H.; Won, M.; Kim, E.; Li, M.; Kim, J.S. Codoping g-C3N4 with boron and graphene quantum dots: Enhancement of charge transfer for ultrasensitive and selective photoelectrochemical detection of dopamine. Biosens. Bioelectron. 2023, 224, 115050. [Google Scholar] [CrossRef] [PubMed]
- Naldoni, A.; Allieta, M.; Santangelo, S.; Marelli, M.; Fabbri, F.; Cappelli, S.; Bianchi, C.L.; Psaro, R.; Dal Santo, V. Effect of Nature and Location of Defects on Bandgap Narrowing in Black TiO2 Nanoparticles. J. Am. Chem. Soc. 2012, 134, 7600–7603. [Google Scholar] [CrossRef]
- Zhang, S.; Zheng, H.; Sun, Y.; Li, F.; Li, T.; Liu, X.; Zhou, Y.; Chen, W.; Ju, H. Oxygen vacancies enhanced photoelectrochemical aptasensing of 2, 3’, 5, 5’-tetrachlorobiphenyl amplified with Ag3VO4 nanoparticle-TiO2 nanotube array heterostructure. Biosens. Bioelectron. 2020, 167, 112477. [Google Scholar] [CrossRef] [PubMed]
- Cui, Z.; Guo, S.; Yan, J.; Li, F.; He, W. BiOBr nanosheets with oxygen vacancies and lattice strain for enhanced photoelectrochemical sensing of doxycycline. Appl. Surf. Sci. 2020, 512, 145695. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, B.; Wang, C.; Xi, J.; Zhao, F.; Zeng, B. Tailoring the Surface Oxygen Vacancies in Nanoporous BiOCl0.8I0.2 Nanoflowers for Photocathodic Sensing. ACS Appl. Nano Mater. 2020, 3, 6423–6431. [Google Scholar] [CrossRef]
- Yan, P.; Dong, J.; Mo, Z.; Xu, L.; Qian, J.; Xia, J.; Zhang, J.; Li, H. Enhanced photoelectrochemical sensing performance of graphitic carbon nitride by nitrogen vacancies engineering. Biosens. Bioelectron. 2020, 148, 111802. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, L.; Chen, Z.; Hu, J.; Li, S.; Wang, Z.; Liu, J.; Wang, X. Semiconductor heterojunction photocatalysts: Design, construction, and photocatalytic performances. Chem. Soc. Rev. 2014, 43, 5234–5244. [Google Scholar] [CrossRef]
- Zhang, L.; Jiang, D.; Shan, X.; Du, X.; Wei, M.; Zhang, Y.; Chen, Z. Visible light-driven self-powered aptasensors for ultrasensitive Microcystin-LR detection based on the carrier density effect of N-doped graphene hydrogel/hematite Schottky junctions. Analyst 2021, 146, 6220–6227. [Google Scholar] [CrossRef]
- Li, M.Y.; Zhang, G.X.; Feng, C.Q.; Wu, H.M.; Mei, H. Highly sensitive detection of chromium (VI) by photoelectrochemical sensor under visible light based on Bi SPR-promoted BiPO4/BiOI heterojunction. Sens. Actuator B-Chem. 2020, 305, 127449. [Google Scholar] [CrossRef]
- Zhao, M.; Yang, L.; Jiang, J.; Shi, N.; Huo, W.; Zhao, Z.; Yang, R.; Wang, J.; Zhao, Z.; Li, G.; et al. Highly Sensitive Detection of Ciprofloxacin by Photoelectrochemical Sensor Under Visible Light Based on BiPO4/BiOI Heterojunction. J. Electrochem. Soc. 2019, 166, B1742. [Google Scholar] [CrossRef]
- Xu, L.; Jiang, D.; Zhao, Y.; Yan, P.; Dong, J.; Qian, J.; Ao, H.; Li, J.; Yan, C.; Li, H. Integrated BiPO4 nanocrystal/BiOBr heterojunction for sensitive photoelectrochemical sensing of 4-chlorophenol. Dalton Trans. 2018, 47, 13353–13359. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, J.; Yang, Z.; Wang, C.; Wang, K.; Liu, Q.; Jiang, D.; Yan, Y.; Wang, K. One-pot synthesis of BiPO4 functionalized reduced graphene oxide with enhanced photoelectrochemical performance for selective and sensitive detection of chlorpyrifos. J. Mater. Chem. A 2015, 3, 13671–13678. [Google Scholar] [CrossRef]
- Zhang, Z.X.; Zhai, L.Y.; Li, M.Q.; Wu, J.H.; Li, L. A novel RGO/BiVO4 photoelectrochemical sensor for tetracycline hydrochloride detection. Chem. Phys. Lett. 2023, 814, 140291. [Google Scholar] [CrossRef]
- Qi, X.; Tao, S. MWCNT modified Ni–Fe LDH/BiVO4 heterojunction: Boosted visible-light-driven photoelectrochemical aptasensor for ofloxacin detection. RSC Adv. 2022, 12, 24269–24277. [Google Scholar] [CrossRef]
- Cheng, Y.; Chen, C.; Hu, S.; Liu, X.; Zhang, L.; Huang, W.; Song, S.; Xia, L. A Facile Photoelectrochemical Sensor for High Sensitive Dopamine and Ascorbic Acid Detection Based on Bi surface Plasmon Resonance-Promoted BiVO4 Microspheres. J. Electrochem. Soc. 2020, 167, 027536. [Google Scholar] [CrossRef]
- Hao, N.; Chen, S.B.; Qian, J.; Zhang, Y.; Liu, Q.; Zhang, X.; Wang, K. A sensitive photoelectrochemical (PEC) platform fabricated with nitrogen doped graphene quantum dots decorated Bi2WO6 for detection of pentachlorophenol. J. Electroanal. Chem. 2017, 801, 410–415. [Google Scholar] [CrossRef]
- Li, Y.; Yu, X.; Li, R.; Zhao, F.; Liu, G.; Wang, X. Selective and sensitive visible-light-prompt photoelectrochemical sensor of paracetamol based on Bi2WO6 modified with Bi and copper sulfide. RSC Adv. 2021, 11, 2884–2891. [Google Scholar] [CrossRef]
- Tong, M.; Zhang, N.; Tan, Z.; Chi, L.; Zhang, K.; Chen, B.; Hu, F.; Guo, C. Oxygen vacancy-rich Bi2WO6 nanocrystals for fast and wide-range photoelectrochemical sensing of hydrogen peroxide. Microchem. J. 2023, 190, 108618. [Google Scholar] [CrossRef]
- Ge, L.; Xu, Y.H.; Ding, L.J.; You, F.H.; Liu, Q.; Wang, K. Perovskite-type BiFeO3/ultrathin graphite-like carbon nitride nanosheets p-n heterojunction: Boosted visible-light-driven photoelectrochemical activity for fabricating ampicillin aptasensor. Biosens. Bioelectron. 2019, 124, 33–39. [Google Scholar] [CrossRef]
- Zhou, Q.; Lin, Y.; Zhang, K.; Li, M.; Tang, D. Reduced graphene oxide/BiFeO3 nanohybrids-based signal-on photoelectrochemical sensing system for prostate-specific antigen detection coupling with magnetic microfluidic device. Biosens. Bioelectron. 2018, 101, 146–152. [Google Scholar] [CrossRef] [PubMed]
- Pang, Y.; Li, Y.; Xu, G.; Hu, Y.; Kou, Z.; Feng, Q.; Lv, J.; Zhang, Y.; Wang, J.; Wu, Y. Z-scheme carbon-bridged Bi2O3/TiO2 nanotube arrays to boost photoelectrochemical detection performance. Appl. Catal. B 2019, 248, 255–263. [Google Scholar] [CrossRef]
- Li, G.; Zhang, D.; Yu, J.C.; Leung, M.K.H. An Efficient Bismuth Tungstate Visible-Light-Driven Photocatalyst for Breaking Down Nitric Oxide. Environ. Sci. Technol. 2010, 44, 4276–4281. [Google Scholar] [CrossRef] [PubMed]
- Adhikari, S.; Kim, D.-H. Synthesis of Bi2S3/Bi2WO6 hierarchical microstructures for enhanced visible light driven photocatalytic degradation and photoelectrochemical sensing of ofloxacin. Chem. Eng. J. 2018, 354, 692–705. [Google Scholar] [CrossRef]
- Wang, Y.; Zu, M.; Zhou, X.; Lin, H.; Peng, F.; Zhang, S. Designing efficient TiO2-based photoelectrocatalysis systems for chemical engineering and sensing. Chem. Eng. J. 2020, 381, 122605. [Google Scholar] [CrossRef]
- Shen, S.; Chen, J.; Wang, M.; Sheng, X.; Chen, X.; Feng, X.; Mao, S.S. Titanium dioxide nanostructures for photoelectrochemical applications. Prog. Mater. Sci. 2018, 98, 299–385. [Google Scholar] [CrossRef]
- Kang, Q.; Yang, L.; Chen, Y.; Luo, S.; Wen, L.; Cai, Q.; Yao, S. Photoelectrochemical detection of pentachlorophenol with a Multiple Hybrid CdSexTe1−x/TiO2 Nanotube Structure-Based Label-Free Immunosensor. Anal. Chem. 2010, 82, 9749–9754. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, X.; Liang, Z.; Wu, Z.; Wang, W.; Han, D.; Niu, L. CdS/TiO2 Nanocomposite-Based Photoelectrochemical Sensor for a Sensitive Determination of Nitrite in Principle of Etching Reaction. Anal. Chem. 2021, 93, 820–827. [Google Scholar] [CrossRef]
- Jia, S.; Li, X.; Zhang, B.; Yang, J.; Zhang, S.; Li, S.; Zhang, Z. TiO2/CuS heterostructure nanowire array photoanodes toward water oxidation: The role of CuS. Appl. Surf. Sci. 2019, 463, 829–837. [Google Scholar] [CrossRef]
- Jena, A.; Chen, C.-J.; Chang, H.; Hu, S.-F.; Liu, R.-S. Comprehensive view on recent developments in hydrogen evolution using MoS2 on a Si photocathode: From electronic to electrochemical aspects. J. Mater. Chem. A 2021, 9, 3767–3785. [Google Scholar] [CrossRef]
- Wei, J.; Qileng, A.; Yan, Y.; Lei, H.; Zhang, S.; Liu, W.; Liu, Y. A novel visible-light driven photoelectrochemical immunosensor based on multi-amplification strategy for ultrasensitive detection of microcystin-LR. Anal. Chim. Acta 2017, 994, 82–91. [Google Scholar] [CrossRef]
- Liu, Q.; Shi, T.; Cheng, Y.; Wen, Z.; Ding, C.; Li, Y.; Wang, K. Amplified photocurrent signal for fabricating photoelectrochemical sulfadimethoxine aptasensor based on carbon nitride photosensitization with visible/near-infrared light responsive zinc phthalocyanine. J. Hazard. Mater. 2021, 406, 124749. [Google Scholar] [CrossRef]
- Wang, J.; Liu, Z. Recent advances in two-dimensional layered materials for photoelectrochemical sensing. Trac-Trends Anal. Chem. 2020, 133, 116089. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, Y.; Yan, P.; Ouyang, Q.; Dong, J.; Qian, J.; Chen, J.; Xu, L.; Li, H. Co3O4 nanoparticles/graphitic carbon nitride heterojunction for photoelectrochemical aptasensor of oxytetracycline. Anal. Chim. Acta 2020, 1125, 299–307. [Google Scholar] [CrossRef]
- Liu, J.; Yan, K.; Zhang, J. A biophotoelectrocatalytic system for pollutant removal based on carbon fiber cloth supported TiO2 photoanode with oxygen vacancy defects and CuO/g-C3N4 photocathode. Carbon 2022, 200, 410–421. [Google Scholar] [CrossRef]
- Liu, M.; Yu, J.; Ding, X.; Zhao, G. Photoelectrochemical Aptasensor for the Sensitive Detection of Microcystin-LR Based on Graphene Functionalized Vertically-aligned TiO2 Nanotubes. Electroanalysis 2016, 28, 161–168. [Google Scholar] [CrossRef]
- do Prado, T.M.; Cincotto, F.H.; Fatibello-Filho, O.; Cruz de Moraes, F. Bismuth Vanadate/Reduced Graphene Oxide Nanocomposite Electrode for Photoelectrochemical Determination of Diclofenac in Urine. Electroanalysis 2018, 30, 2704–2711. [Google Scholar] [CrossRef]
- Lu, H.; Wang, G.; Dai, R.; Ding, X.; Liu, M.; Sun, H.; Sun, C.; Zhao, G. Visible-light-driven photoelectrochemical aptasensor based on reduced graphene oxide/Ti–Fe–O nanotube arrays for highly sensitive and selective determination of microcystin-LR. Electrochim. Acta 2019, 324, 134820. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, M.; Xu, Y.; Wen, Z.; Ding, C.; Guo, Y.; Hao, N.; Wang, K. Bi3+ engineered black anatase titania coupled with graphene for effective tobramycin photoelectrochemical detection. Sens. Actuator B-Chem. 2020, 321, 128464. [Google Scholar] [CrossRef]
- Zhou, Y.; Yin, H.; Ai, S. Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coordin. Chem. Rev. 2021, 447, 214156. [Google Scholar] [CrossRef]
- Seo, D.-B.; Trung, T.N.; Bae, S.-S.; Kim, E.-T. Improved Photoelectrochemical Performance of MoS2 through Morphology-Controlled Chemical Vapor Deposition Growth on Graphene. Nanomaterials 2021, 11, 1585. [Google Scholar] [CrossRef]
- Salem, M.; Akir, S.; Massoudi, I.; Litaiem, Y.; Gaidi, M.; Khirouni, K. Photoelectrochemical and optical properties tuning of graphene-ZnO nanocomposites. J. Alloy. Compd. 2018, 767, 982–987. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Z.; Tang, P.; Luo, S.; Liu, Y.; Li, J.; Qi, X. One-pot synthesized Bi2Te3/graphene for a self-powered photoelectrochemical-type photodetector. Nanotechnology 2020, 31, 115201. [Google Scholar] [CrossRef] [PubMed]
- Yan, K.; Liu, Y.; Yang, Y.; Zhang, J. A Cathodic “Signal-off” Photoelectrochemical Aptasensor for Ultrasensitive and Selective Detection of Oxytetracycline. Anal. Chem. 2015, 87, 12215–12220. [Google Scholar] [CrossRef] [PubMed]
- Hao, N.; Zhang, X.; Zhou, Z.; Qian, J.; Liu, Q.; Chen, S.; Zhang, Y.; Wang, K. Three-dimensional nitrogen-doped graphene porous hydrogel fabricated biosensing platform with enhanced photoelectrochemical performance. Sens. Actuator B-Chem. 2017, 250, 476–483. [Google Scholar] [CrossRef]
- Jiang, D.; Du, X.; Liu, Q.; Hao, N.; Wang, K. MoS2/nitrogen doped graphene hydrogels p-n heterojunction: Efficient charge transfer property for highly sensitive and selective photoelectrochemical analysis of chloramphenicol. Biosens. Bioelectron. 2019, 126, 463–469. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Huang, Q.; Zhuge, W.; Liu, Y.; Zhang, C.; Yang, W.; Xiang, G. Blue-light photoelectrochemical sensor based on nickel tetra-amined phthalocyanine-graphene oxide covalent compound for ultrasensitive detection of erythromycin. Biosens. Bioelectron. 2018, 106, 212–218. [Google Scholar] [CrossRef]
- Tayebi, M.; Kolaei, M.; Tayyebi, A.; Masoumi, Z.; Belbasi, Z.; Lee, B.-K. Reduced graphene oxide (RGO) on TiO2 for an improved photoelectrochemical (PEC) and photocatalytic activity. Sol. Energy 2019, 190, 185–194. [Google Scholar] [CrossRef]
- Tian, J.; Zhao, H.; Quan, X.; Zhang, Y.; Yu, H.; Chen, S. Fabrication of graphene quantum dots/silicon nanowires nanohybrids for photoelectrochemical detection of microcystin-LR. Sens. Actuator B-Chem. 2014, 196, 532–538. [Google Scholar] [CrossRef]
- Liu, M.; Ding, X.; Yang, Q.; Wang, Y.; Zhao, G.; Yang, N. A pM leveled photoelectrochemical sensor for microcystin-LR based on surface molecularly imprinted TiO2@CNTs nanostructure. J. Hazard. Mater. 2017, 331, 309–320. [Google Scholar] [CrossRef]
- Li, Y.; Bu, Y.; Jiang, F.; Dai, X.; Ao, J.-P. Fabrication of ultra-sensitive photoelectrochemical aptamer biosensor: Based on semiconductor/DNA interfacial multifunctional reconciliation via 2D-C3N4. Biosens. Bioelectron. 2020, 150, 111903. [Google Scholar] [CrossRef]
- Hou, W.; Cronin, S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013, 23, 1612–1619. [Google Scholar] [CrossRef]
- Zhou, X.; Liu, G.; Yu, J.; Fan, W. Surface plasmon resonance-mediated photocatalysis by noble metal-based composites under visible light. J. Mater. Chem. 2012, 22, 21337–21354. [Google Scholar] [CrossRef]
- Tan, J.; Peng, B.; Tang, L.; Feng, C.; Wang, J.; Yu, J.; Ouyang, X.; Zhu, X. Enhanced photoelectric conversion efficiency: A novel h-BN based self-powered photoelectrochemical aptasensor for ultrasensitive detection of diazinon. Biosens. Bioelectron. 2019, 142, 111546. [Google Scholar] [CrossRef]
- Pei, F.; Feng, S.; Zhang, Y.; Wu, Y.; Chen, C.; Sun, Y.; Xie, Z.; Hao, Q.; Cao, Y.; Tong, Z.; et al. A photoelectrochemical immunosensor based on Z-scheme CdS composite heterojunction for aflatoxin B1. Biosens. Bioelectron. 2022, 214, 114500. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Ling, S.; Li, H.; Yan, P.; Xia, J.; Qiu, J.; Wang, K.; Li, H.; Yuan, S. Photoelectrochemical monitoring of 4-chlorophenol by plasmonic Au/graphitic carbon nitride composites. Sens. Actuator B-Chem. 2017, 240, 308–314. [Google Scholar] [CrossRef]
- Geng, H.; Chen, X.; Sun, L.; Qiao, Y.; Song, J.; Shi, S.; Cai, Q. ZnCuInSe/Au/TiO2 sandwich nanowires-based photoelectrochemical biosensor for ultrasensitive detection of kanamycin. Anal. Chim. Acta 2021, 1146, 166–173. [Google Scholar] [CrossRef]
- Zhang, Z.; Ding, X.; Lu, G.; Du, B.; Liu, M. A highly sensitive and selective photoelectrochemical aptasensor for atrazine based on Au NPs/3DOM TiO2 photonic crystal electrode. J. Hazard. Mater. 2023, 451, 131132. [Google Scholar] [CrossRef]
- Wang, C.; Zhao, Y.; Xu, L.; Yan, P.; Qian, J.; Zhao, L.; Zhang, J.; Li, H. Specific electron-transfer and surface plasmon resonance integrated boosting visible-light photoelectrochemical sensor for 4-chlorophenol. J. Electroanal. Chem. 2019, 833, 251–257. [Google Scholar] [CrossRef]
- Yang, S.; Deng, K.; Zhang, J.; Bai, C.; Peng, J.; Fang, Z.; Xu, W. Synergy effect of Ag plasmonic resonance and heterostructure construction enhanced visible-light photoelectrochemical sensing for quercetin. Electrochim. Acta 2021, 371, 137772. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Feng, Y.-G.; Wang, A.-J.; Mei, L.-P.; Luo, X.; Feng, J.-J. A signal-on photoelectrochemical aptasensor for chloramphenicol assay based on 3D self-supporting AgI/Ag/BiOI Z-scheme heterojunction arrays. Biosens. Bioelectron. 2021, 181, 113158. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, X.; Gao, Y.; Yan, J.; Song, W. Integrating CuO/g-C3N4 p-n heterojunctioned photocathode with MoS2 QDs@Cu NWs multifunctional signal amplifier for ultrasensitive detection of AβO. Biosens. Bioelectron. 2021, 176, 112945. [Google Scholar] [CrossRef] [PubMed]
- Peng, J.; Zhuge, W.; Liu, Y.; Zhang, C.; Yang, W.; Huang, Y. Photoelectrochemical Dopamine Sensor Based on Cu-Doped Bi2WO6 Micro-Flowers Sensitized Cobalt Tetraaminophthalocyanine Functionalized Graphene Oxide. J. Electrochem. Soc. 2019, 166, B1612–B1619. [Google Scholar] [CrossRef]
- Wen, Z.; Zhu, W.; You, F.; Yuan, R.; Ding, L.; Hao, N.; Wei, J.; Wang, K. Ultrasensitive photoelectrochemical aptasensor for carbendazim detection based on in-situ constructing Schottky junction via photoreducing Pd nanoparticles onto CdS microsphere. Biosens. Bioelectron. 2022, 203, 114036. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhou, L.; Peng, J. Blue-light photoelectrochemical aptasensor for kanamycin based on synergistic strategy by Schottky junction and sensitization. Sens. Actuator B-Chem. 2021, 340, 129898. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhu, Y.; Zeng, T.; Qiao, L.; Zhang, M.; Song, K.; Yin, N.; Tao, Y.; Zhao, Y.; Zhang, C.; et al. Self-powered photoelectrochemical aptasensor based on hollow tubular g-C3N4/Bi/BiVO4 for tobramycin detection. Anal. Chim. Acta 2023, 1250, 340951. [Google Scholar] [CrossRef]
- Xu, Y.; Jiang, D.; Zhang, M.; Zhang, Z.; Qian, J.; Hao, N.; Ding, C.; Wang, K. High-performance photoelectrochemical aptasensor for enrofloxacin based on Bi-doped ultrathin polymeric carbon nitride nanocomposites with SPR effect and carbon vacancies. Sens. Actuator B-Chem. 2020, 316, 128142. [Google Scholar] [CrossRef]
- Tian, Y.; Cui, Q.; Xu, L.; Jiao, A.; Ma, H.; Wang, C.; Zhang, M.; Wang, X.; Li, S.; Chen, M. Alloyed AuPt nanoframes loaded on h-BN nanosheets as an ingenious ultrasensitive near-infrared photoelectrochemical biosensor for accurate monitoring glucose in human tears. Biosens. Bioelectron. 2021, 192, 113490. [Google Scholar] [CrossRef]
- Tang, L.; Ouyang, X.; Peng, B.; Zeng, G.; Zhu, Y.; Yu, J.; Feng, C.; Fang, S.; Zhu, X.; Tan, J. Highly sensitive detection of microcystin-LR under visible light using a self-powered photoelectrochemical aptasensor based on a CoO/Au/g-C3N4 Z-scheme heterojunction. Nanoscale 2019, 11, 12198–12209. [Google Scholar] [CrossRef] [PubMed]
- Okoth, O.K.; Yan, K.; Feng, J.; Zhang, J. Label-free photoelectrochemical aptasensing of diclofenac based on gold nanoparticles and graphene-doped CdS. Sens. Actuator B-Chem. 2018, 256, 334–341. [Google Scholar] [CrossRef]
- Altın, İ.; Sökmen, M.; Bıyıklıoğlu, Z. Sol gel synthesis of cobalt doped TiO2 and its dye sensitization for efficient pollutant removal. Mater. Sci. Semicond. Process. 2016, 45, 36–44. [Google Scholar] [CrossRef]
- Lima, F.M.D.; Freires, A.D.; Pereira, N.D.; Silva, G.G.; da Rocha, C.Q.; Damos, F.S.; Luz, R.D.S. Photoelectrochemical sensing of tannic acid based on the use of TiO2 sensitized with 5-methylphenazinium methosulfate and carboxy-functionalized CdTe quantum dots. Microchim. Acta 2018, 185, 521. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.S.; Lima, K.; Botelho, C.N.; Pereira, N.M.; Fernandes, R.N.; Silva, G.G.; Damos, F.S.; Luz, R.C.S. Photoelectrochemical sensor for determination of naringin at low oxidation potential using a modified FTO electrode with cadmium sulfide and titanium dioxide sensitized with chloroprotoporphyrin IX iron(III). J. Solid State Electrochem. 2020, 24, 1715–1726. [Google Scholar] [CrossRef]
- Wei, J.; Xie, X.; Chang, W.; Yang, Z.; Liu, Y. Ultrasensitive photoelectrochemical detection of microcystin-LR based on hybridization chain reaction assisted exciton-plasmon interaction and enzymatic biocatalytic precipitation. Sens. Actuator B-Chem. 2018, 276, 180–188. [Google Scholar] [CrossRef]
- Botelho, C.N.; Pereira, N.D.M.; Silva, G.G.; Silva de Menezes, A.; Brito Bezerra, C.W.; Damos, F.S.; Luz, R.D.C.S. Photoelectrochemical-assisted determination of caffeic acid exploiting a composite based on carbon nanotubes, cadmium telluride quantum dots, and titanium dioxide. Anal. Method 2019, 11, 4775–4784. [Google Scholar] [CrossRef]
- Yan, T.; Ding, H.; Feng, R.; Yuan, R.; Zhao, Y.; Sun, M.; Yan, L.; Wei, Q. Self-powered Aptasensors Made with the In2O3–In2S3–Ti3C2 Composite for Dual-mode Detection of Microcystin-LR. ACS Appl. Mater. Interfaces 2022, 14, 25308–25316. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mao, Y.; Liu, X.; Bao, Y.; Niu, L. Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment. Chemosensors 2023, 11, 412. https://doi.org/10.3390/chemosensors11070412
Mao Y, Liu X, Bao Y, Niu L. Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment. Chemosensors. 2023; 11(7):412. https://doi.org/10.3390/chemosensors11070412
Chicago/Turabian StyleMao, Yan, Xiaoxin Liu, Yu Bao, and Li Niu. 2023. "Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment" Chemosensors 11, no. 7: 412. https://doi.org/10.3390/chemosensors11070412
APA StyleMao, Y., Liu, X., Bao, Y., & Niu, L. (2023). Recent Advances in Photoelectrochemical Sensors for Analysis of Toxins and Abused Drugs in the Environment. Chemosensors, 11(7), 412. https://doi.org/10.3390/chemosensors11070412