A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection
Abstract
:1. Introduction
2. Raman Enhancement Mechanism of Non-Noble Metal SERS Substrates
3. Classification of Non-Noble Metal SERS Substrates
3.1. Carbon Materials-Based SERS Substrates
3.2. TMDs-Based SERS Substrates
3.3. Metal Oxide-Based Substrates
3.4. MOFs-Based Substrates
3.5. MXene-Based Substrates
3.6. Conjugated Polymers-Based Substrates
4. Non-Noble Metal Materials for Analytical Application
4.1. Detection of Pollutants
4.1.1. Detection of VOCs
4.1.2. Detection of Heavy Metal Ions
4.1.3. Detection of Antibiotics
4.1.4. Detection of Pesticide Residues
4.2. Detection of Biomarkers
4.2.1. Detection of Protein Tumor Markers
4.2.2. Detection of MicroRNAs
4.2.3. Detection of Cancer Cells
4.2.4. Detection of Other Biomarkers
5. Conclusions and Prospects
- (1)
- The lower detection sensitivity of most non-noble metal SERS substrates compared to noble metal SERS substrates (Au and Ag) is the main limiting factor for their applications. Therefore, the development of non-noble metal SERS substrates with high sensitivity can be made possible through the ability to rationally tune the multi-parametric combination of resonance conditions for the target;
- (2)
- The enhancement mechanism of non-noble metal SERS substrates is still needed to fully understand. Although more and more non-noble metal nanomaterials have been proposed, their enhancement mechanisms are different due to their various nanostructure and physicochemical properties. So far, the understanding of enhancement mechanisms is far from enough. In order to accurately control the SERS enhancement of non-noble metal nanomaterials, it is important to systematically research the enhancement mechanism of various non-noble metal nanomaterials;
- (3)
- In complex environments, background interference caused various characteristic peaks in the SERS spectrum, resulting in difficult-to-distinguish characteristic peaks of analytes. In addition to the specific recognition strategies of binding antigens and antibodies as well as aptamers to improve the selectivity of detection, various functionalized SERS tags that have aroused widespread interest in SERS anti-interference detection may alleviate this dilemma.
Funding
Conflicts of Interest
References
- Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor Materials in Analytical Applications of Surface-Enhanced Raman Scattering. J. Raman Spectrosc. 2016, 47, 51–58. [Google Scholar] [CrossRef]
- Pillai, I.C.L.; Li, S.; Romay, M.; Lam, L.; Lu, Y.; Huang, J.; Dillard, N.; Zemanova, M.; Rubbi, L.; Wang, Y. Cardiac Fibroblasts Adopt Osteogenic Fates and Can Be Targeted to Attenuate Pathological Heart Calcification. Cell Stem Cell 2017, 20, 218–232. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, X.M.; Nie, S.M. Single-Molecule and Single-Nanoparticle SERS: From Fundamental Mechanisms to Biomedical Applications. Chem. Soc. Rev. 2008, 37, 912–920. [Google Scholar] [CrossRef]
- Xia, M. A Review on Applications of Two-Dimensional Materials in Surface-Enhanced Raman Spectroscopy. Int. J. Spectrosc. 2018, 2018, 4861472. [Google Scholar] [CrossRef] [Green Version]
- Park, M.; Hwang, C.S.H.; Jeong, K.H. Nanoplasmonic Alloy of Au/Ag Nanocomposites on Paper Substrate for Biosensing Applications. ACS Appl. Mater. Interfaces 2018, 10, 290–295. [Google Scholar] [CrossRef] [PubMed]
- Chang, R.; Wang, T.; Liu, Q.; Tang, J.; Wu, D. Ag Nanoparticles@Agar Gel as a 3D Flexible and Stable SERS Substrate with Ultrahigh Sensitivity. Langmuir 2022, 38, 13822–13832. [Google Scholar] [CrossRef]
- Yang, B.; Jin, S.; Guo, S.; Park, Y.; Chen, L.; Zhao, B.; Jung, Y.M. Recent Development of SERS Technology: Semiconductor-Based Study. ACS Omega 2019, 4, 20101–20108. [Google Scholar] [CrossRef]
- Lan, L.L.; Gao, Y.M.; Fan, X.C.; Li, M.Z.; Hao, Q.; Qiu, T. The Origin of Ultrasensitive SERS Sensing Beyond Plasmonics. Front. Phys. 2021, 16, 43300. [Google Scholar] [CrossRef]
- Yin, Z.; Xu, K.; Jiang, S.; Luo, D.; Chen, R.; Xu, C.; Shum, P.; Liu, Y.J. Recent Progress on Two-Dimensional Layered Materials for Surface Enhanced Raman Spectroscopy and Their Applications. Mater. Today Phys. 2021, 18, 100378. [Google Scholar] [CrossRef]
- Wang, X.J.; Zhang, E.J.; Shi, H.M.; Tao, Y.F.; Ren, X.D. Semiconductor-Based Surface Enhanced Raman Scattering (SERS): From Active Materials to Performance Improvement. Analyst 2022, 147, 1257–1272. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, H.; Han, X.X.; Zhao, B. Metal-Semiconductor Heterostructures for Surface-Enhanced Raman Scattering: Synergistic Contribution of Plasmons and Charge Transfer. Mater. Horiz. 2021, 8, 370–382. [Google Scholar] [CrossRef] [PubMed]
- Alessandri, I.; Lombardi, J.R. Enhanced Raman Scattering with Dielectrics. Chem. Rev. 2016, 116, 14921–14981. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhao, X.; Gu, S.; Gao, K.; Xie, F.; Wang, X.; Tang, Z. A Novel Sensitive ACNTs-MoO2 SERS Substrate Boosted by Synergistic Enhancement Effect. Phys. Chem. Chem. Phys. 2021, 23, 20645–20653. [Google Scholar] [CrossRef]
- Ye, Y.; Yi, W.; Liu, W.; Zhou, Y.; Bai, H.; Li, J.; Xi, G. Remarkable Surface-Enhanced Raman Scattering of Highly Crystalline Monolayer Ti3C2 Nanosheets. Sci. China Mater. 2020, 63, 794–805. [Google Scholar] [CrossRef] [Green Version]
- Peng, Y.; Lin, C.; Long, L.; Masaki, T.; Tang, M.; Yang, L.; Liu, J.; Huang, Z.; Li, Z.; Luo, X. Charge-Transfer Resonance and Electromagnetic Enhancement Synergistically Enabling MXenes with Excellent SERS Sensitivity for SARS-CoV-2 S Protein Detection. Nano-Micro Lett. 2021, 13, 52. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.; Liu, H.; Li, X.; Chen, Y.; Gu, C.; Wei, G.; Zhou, J.; Jiang, T. Nonmetallic SERS-Based Immunosensor by Integrating MoS2 Nanoflower and Nanosheet Towards the Direct Serum Detection of Carbohydrate Antigen 19-9. Biosens. Bioelectron. 2021, 193, 113481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, B.; Zhu, C.; Zhang, X.; Tan, C.; Li, H.; Chen, B.; Yang, J.; Chen, J.; Huang, Y. Single-Layer Ttransition Metal Dichalcogenide Nanosheet-Based Nanosensors for Rapid, Sensitive, and Multiplexed Detection of DNA. Adv. Mater. 2015, 27, 935–939. [Google Scholar] [CrossRef]
- Wang, X.; She, G.; Xu, H.; Mu, L.; Shi, W. The Surface-Enhanced Raman Scattering from ZnO Nanorod Arrays and its Application for Chemosensors. Sens. Actuator B Chem. 2014, 193, 745–751. [Google Scholar] [CrossRef]
- Yu, J.; Lin, J.; Chen, M.; Meng, X.; Qiu, L.; Wu, J.; Xi, G.; Wang, X. Amorphous Ni(OH)2 Nanocages as Efficient SERS Substrates for Selective Recognition in Mixtures. Colloid Surf. A 2021, 631, 127652. [Google Scholar] [CrossRef]
- Zhang, J.; Xing, T.; Zhang, M.; Zhou, Y. Facile Preparation of Cu2-xS Supernanoparticles with an Unambiguous SERS Enhancement Mechanism. Chem. Eng. J. 2022, 434, 134457. [Google Scholar] [CrossRef]
- Karthick Kannan, P.; Shankar, P.; Blackman, C.; Chung, C.H. Recent Advances in 2D Inorganic Nanomaterials for SERS Sensing. Adv. Mater. 2019, 31, e1803432. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; He, H.; Xiao, D.; Yin, S.; Ji, W.; Jiang, S.; Luo, D.; Wang, B.; Liu, Y. Recent Advances of Plasmonic Nanoparticles and their Applications. Materials 2018, 11, 1833. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guerrini, L.; Graham, D. Molecularly-Mediated Assemblies of Plasmonic Nanoparticles for Surface-Enhanced Raman Spectroscopy Applications. Chem. Soc. Rev. 2012, 41, 7085–7107. [Google Scholar] [CrossRef] [PubMed]
- Lombardi, J.R.; Birke, R.L. Theory of Surface-Enhanced Raman Scattering in Semiconductors. J. Phys. Chem. C 2014, 118, 11120–11130. [Google Scholar] [CrossRef]
- Han, X.X.; Ji, W.; Zhao, B.; Ozaki, Y. Semiconductor-Enhanced Raman Scattering: Active Nanomaterials and Applications. Nanoscale 2017, 9, 4847–4861. [Google Scholar] [CrossRef]
- Ji, W.; Li, L.; Song, W.; Wang, X.; Zhao, B.; Ozaki, Y. Enhanced Raman Scattering by ZnO Superstructures: Synergistic Effect of Charge Transfer and Mie Resonances. Angew. Chem. Int. Ed. 2019, 58, 14452–14456. [Google Scholar] [CrossRef] [PubMed]
- Demirel, G.; Usta, H.; Yilmaz, M.; Celik, M.; Alidagi, H.A.; Buyukserin, F. Surface-Enhanced Raman spectroscopy (SERS): An Adventure from Plasmonic Metals to Organic Semiconductors as SERS Platforms. J. Mater. Chem. C 2018, 6, 5314–5335. [Google Scholar] [CrossRef]
- Zheng, X.; Wu, X.; Zhang, L.; Kang, J.; Zhou, M.; Zhong, Y.; Zhang, J.; Wang, L. High Spin Fe3+-Related Bonding Strength and Electron Transfer for Sensitive and Stable SERS Detection. Chem. Sci. 2022, 13, 12560–12566. [Google Scholar] [CrossRef]
- Wang, X.; Shi, W.; She, G.; Mu, L. Using Si and Ge Nanostructures as Substrates for Surface-Enhanced Raman Scattering Based on Photoinduced Charge Transfer Mechanism. J. Am. Chem. Soc. 2011, 133, 16518–16523. [Google Scholar] [CrossRef]
- Yang, L.; Peng, Y.; Yang, Y.; Liu, J.; Huang, H.; Yu, B.; Zhao, J.; Lu, Y.; Huang, Z.; Li, Z. A Novel Ultra-Sensitive Semiconductor SERS Substrate Boosted by the Coupled Resonance Effect. Adv. Sci. 2019, 6, 1900310. [Google Scholar] [CrossRef] [Green Version]
- Liang, X.; Li, N.; Zhang, R.; Yin, P.; Zhang, C.; Yang, N.; Liang, K.; Kong, B. Carbon-Based SERS Biosensor: From Substrate Design to Sensing and Bioapplication. NPG Asia Mater. 2021, 13, 8. [Google Scholar] [CrossRef]
- Chen, M.; Liu, D.; Du, X.; Lo, K.H.; Wang, S.; Zhou, B.; Pan, H. 2D Materials: Excellent Substrates for Surface-Enhanced Raman Scattering (SERS) in Chemical Sensing and Biosensing. TrAC-Trends Anal. Chem. 2020, 130, 115983. [Google Scholar] [CrossRef]
- Ling, X.; Xie, L.; Fang, Y.; Xu, H.; Zhang, H.; Kong, J.; Dresselhaus, M.S.; Zhang, J.; Liu, Z. Can Graphene Be Used as a Substrate for Raman Enhancement? Nano Lett. 2010, 10, 553–561. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Santos, M.C.D.; Carvalho, B.R.; Lv, R.; Li, Q.; Fujisawa, K.; Elías, A.L.; Lei, Y.; Perea-López, N.; Endo, M.; et al. Ultrasensitive Molecular Sensor Using N-Doped Graphene through Enhanced Raman Scattering. Sci. Adv. 2016, 2, e1600322. [Google Scholar] [CrossRef] [Green Version]
- Ghopry, S.A.; Alamri, M.A.; Goul, R.; Sakidja, R.; Wu, J.Z. Extraordinary Sensitivity of Surface-Enhanced Raman Spectroscopy of Molecules on MoS2 (WS2) Nanodomes/Graphene Van Der Waals Heterostructure Substrates. Adv. Opt. Mater. 2019, 7, 1801249. [Google Scholar] [CrossRef]
- Singh, N.S.; Mayanglambam, F.; Nemade, H.B.; Giri, P.K. Facile Synthetic Route to Exfoliate High Quality and Super-Large Lateral Size Graphene-Based Sheets and Their Applications in SERS and CO2 Gas Sensing. RSC Adv. 2021, 11, 9488–9504. [Google Scholar] [CrossRef]
- Khan, K.; Tareen, A.K.; Aslam, M.; Wang, R.; Zhang, Y.; Mahmood, A.; Ouyang, Z.; Zhang, H.; Guo, Z. Recent Developments in Emerging Two-Dimensional Materials and Their Applications. J. Mater. Chem. C 2020, 8, 387–440. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, T.; Chen, J.; Wang, C.; Zhang, H.; Shao, Y. Two-Dimensional Nanomaterial-Based Plasmonic Sensing Applications: Advances and Challenges. Coord. Chem. Rev. 2020, 410, 213218. [Google Scholar] [CrossRef]
- Ling, X.; Fang, W.; Lee, Y.H.; Araujo, P.T.; Zhang, X.; Rodriguez-Nieva, J.F.; Lin, Y.; Zhang, J.; Kong, J.; Dresselhaus, M.S. Raman Enhancement Effect on Two-Dimensional Layered Materials: Graphene, h-BN and MoS2. Nano Lett. 2014, 14, 3033–3040. [Google Scholar] [CrossRef]
- Lee, Y.; Kim, H.; Lee, J.; Yu, S.H.; Hwang, E.; Lee, C.; Ahn, J.H.; Cho, J.H. Enhanced Raman Scattering of Rhodamine 6G Films on Two-Dimensional Transition Metal Dichalcogenides Correlated to Photoinduced Charge Transfer. Chem. Mater. 2015, 28, 180–187. [Google Scholar] [CrossRef]
- Li, X.; Guo, S.; Su, J.; Ren, X.; Fang, Z. Efficient Raman Enhancement in Molybdenum Disulfide by Tuning the Interlayer Spacing. ACS Appl. Mater. Interfaces 2020, 12, 28474–28483. [Google Scholar] [CrossRef] [PubMed]
- Majee, B.P.; Srivastava, V.; Mishra, A.K. Surface-Enhanced Raman Scattering Detection Based on an Interconnected Network of Vertically Oriented Semiconducting Few-Layer MoS2 Nanosheets. ACS Appl. Nano Mater. 2020, 3, 4851–4858. [Google Scholar] [CrossRef]
- Zuo, P.; Jiang, L.; Li, X.; Ran, P.; Li, B.; Song, A.; Tian, M.; Ma, T.; Guo, B.; Qu, L. Enhancing Charge Transfer with Foreign Molecules through Femtosecond Laser Induced MoS2 Defect Sites for Photoluminescence Control and SERS Enhancement. Nanoscale 2019, 11, 485–494. [Google Scholar] [CrossRef] [PubMed]
- Su, R.; Yang, S.; Han, D.; Hu, M.; Liu, Y.; Yang, J.; Gao, M. Ni and O Co-Modified MoS2 as Universal SERS Substrate for the Detection of Different Kinds of Substances. J. Colloid Interface Sci. 2023, 635, 1–11. [Google Scholar] [CrossRef]
- Li, M.; Fan, X.; Gao, Y.; Qiu, T. W18O49/Monolayer MoS2 Heterojunction-Enhanced Raman Scattering. J. Phys. Chem. Lett. 2019, 10, 4038–4044. [Google Scholar] [CrossRef]
- Peng, Y.; Lin, C.; Li, Y.; Gao, Y.; Wang, J.; He, J.; Huang, Z.; Liu, J.; Luo, X.; Yang, Y. Identifying Infectiousness of SARS-CoV-2 by Ultra-Sensitive SnS2 SERS Biosensors with Capillary Effect. Matter 2022, 5, 694–709. [Google Scholar] [CrossRef]
- Fraser, J.P.; Postnikov, P.; Miliutina, E.; Kolska, Z.; Valiev, R.; Svorcik, V.; Lyutakov, O.; Ganin, A.Y.; Guselnikova, O. Application of a 2D Molybdenum Telluride in SERS Detection of Biorelevant Molecules. ACS Appl. Mater. Interfaces 2020, 12, 47774–47783. [Google Scholar] [CrossRef]
- Wang, K.; Guo, Z.; Li, Y.; Guo, Y.; Liu, H.; Zhang, W.; Zou, Z.; Zhang, Y.; Liu, Z. Few-Layer NbTe2 Nanosheets as Substrates for Surface-Enhanced Raman Scattering Analysis. ACS Appl. Nano Mater. 2020, 3, 11363–11371. [Google Scholar] [CrossRef]
- Samriti; Rajput, V.; Gupta, R.K.; Prakash, J. Engineering Metal Oxide Semiconductor Nanostructures for Enhanced Charge Transfer: Fundamentals and Emerging SERS Applications. J. Mater. Chem. C 2022, 10, 73–95. [Google Scholar] [CrossRef]
- Yamada, H.; Yamamoto, Y.; Tan, N. Surface-Enhanced Raman Scattering (SERS) of Adsorbed Molecules on Smooth Surfaces of Metals and a Metal Oxide. Chem. Phys. Lett. 1982, 86, 397–400. [Google Scholar] [CrossRef]
- Yamada, H.; Yamamoto, Y. Surface Enhanced Raman Scattering (SERS) of Chemisorbed Species on Various Kinds of Metals and Semiconductors. Surf. Sci. 1983, 134, 71–90. [Google Scholar] [CrossRef]
- Chen, J.; Sun, K.; Zhang, Y.; Wu, D.; Jin, Z.; Xie, F.; Zhao, X.; Wang, X. Plasmonic MoO2 Nanospheres Assembled on Graphene Oxide for Highly Sensitive SERS Detection of Organic Pollutants. Anal. Bioanal Chem. 2019, 411, 2781–2791. [Google Scholar] [CrossRef] [PubMed]
- Wu, H.; Zhou, X.; Li, J.; Li, X.; Li, B.; Fei, W.; Zhou, J.; Yin, J.; Guo, W. Ultrathin Molybdenum Dioxide Nanosheets as Uniform and Reusable Surface-Enhanced Raman Spectroscopy Substrates with High Sensitivity. Small 2018, 14, e1802276. [Google Scholar] [CrossRef]
- Miao, P.; Wu, J.; Du, Y.; Sun, Y.; Xu, P. Phase Transition Induced Raman Enhancement on Vanadium Dioxide (VO2) nanosheets. J. Mater. Chem. C 2018, 6, 10855–10860. [Google Scholar] [CrossRef]
- Li, Y.; Bai, H.; Zhai, J.; Yi, W.; Li, J.; Yang, H.; Xi, G. Alternative to Noble Metal Substrates: Metallic and Plasmonic Ti3O5 Hierarchical Microspheres for Surface Enhanced Raman Spectroscopy. Anal. Chem. 2019, 91, 4496–4503. [Google Scholar] [CrossRef]
- Lin, J.; Ren, W.; Li, A.; Yao, C.; Chen, T.; Ma, X.; Wang, X.; Wu, A. Crystal-Amorphous Core-Shell Structure Synergistically Enabling TiO2 Nanoparticles’ Remarkable SERS Sensitivity for Cancer Cell Imaging. ACS Appl. Mater. Interfaces 2020, 12, 4204–4211. [Google Scholar] [CrossRef]
- Zheng, X.; Zhong, H.; Wang, Z.; Li, J.; Hu, Y.; Li, H.; Jia, J.; Zhang, S.; Ren, F. Fabrication of Stable Substoichiometric WOx Films with High SERS Sensitivity by Thermal Treatment. Vacuum 2022, 198, 110884. [Google Scholar] [CrossRef]
- Zhong, X.; Sun, Y.; Chen, X.; Zhuang, G.; Li, X.; Wang, J.G. Mo Doping Induced More Active Sites in Urchin-Like W18O49 Nanostructure with Remarkably Enhanced Performance for Hydrogen Evolution Reaction. Adv. Funct. Mater. 2016, 26, 5778–5786. [Google Scholar] [CrossRef]
- Xie, X.; Gao, N.; Huang, Y.; Fang, Y. SERS Monitored Kinetic Process of Gaseous Thiophenol Compound in Plasmonic MOF Nanoparticles. ACS Appl. Mater. Interfaces 2022, 14, 51468–51475. [Google Scholar] [CrossRef]
- Zhang, Y.; Xue, C.; Xu, Y.; Cui, S.; Ganeev, A.A.; Kistenev, Y.V.; Gubal, A.; Chuchina, V.; Jin, H.; Cui, D. Metal-Organic Frameworks Based Surface-Enhanced Raman Spectroscopy Technique for Ultra-Sensitive Biomedical Trace Detection. Nano Res. 2023, 16, 2968–2979. [Google Scholar] [CrossRef]
- Meng, J.; Liu, X.; Niu, C.; Pang, Q.; Li, J.; Liu, F.; Liu, Z.; Mai, L. Advances in Metal-Organic Framework Coatings: Versatile Synthesis and Broad Applications. Chem. Soc. Rev. 2020, 49, 3142–3186. [Google Scholar] [CrossRef] [PubMed]
- Sugikawa, K.; Nagata, S.; Furukawa, Y.; Kokado, K.; Sada, K. Stable and Functional Gold Nanorod Composites with a Metal-Organic Framework Crystalline Shell. Chem. Mater. 2013, 25, 2565–2570. [Google Scholar] [CrossRef]
- He, L.; Liu, Y.; Liu, J.; Xiong, Y.; Zheng, J.; Liu, Y.; Tang, Z. Core-Shell Noble-Metal@Metal-Organic-Framework Nanoparticles with Highly Selective Sensing Property. Angew. Chem. Int. Ed. 2013, 52, 3741–3745. [Google Scholar] [CrossRef]
- Hu, Y.; Liao, J.; Wang, D.; Li, G. Fabrication of Gold Nanoparticle-Embedded Metal-Organic Framework for Highly Sensitive Surface-Enhanced Raman Scattering Detection. Anal. Chem. 2014, 86, 3955–3963. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.H.; Ho, C.H.; Wu, C.Y.; Chien, C.H.; Lin, C.H.; Lee, S. Metal-Organic Frameworks: A Novel SERS Substrate. J. Raman Spectrosc. 2013, 44, 1506–1511. [Google Scholar] [CrossRef]
- Sun, H.; Cong, S.; Zheng, Z.; Wang, Z.; Chen, Z.; Zhao, Z. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability. J. Am. Chem. Soc. 2019, 141, 870–878. [Google Scholar] [CrossRef]
- Fu, J.H.; Zhong, Z.; Xie, D.; Guo, Y.J.; Kong, D.X.; Zhao, Z.X.; Zhao, Z.X.; Li, M. SERS-Active MIL-100(Fe) Sensory Array for Ultrasensitive and Multiplex Detection of VOCs. Angew. Chem. Int. Ed. 2020, 59, 20489–20498. [Google Scholar] [CrossRef]
- Zheng, T.; Zhou, Y.; Feng, E.; Tian, Y. Surface-enhanced Raman Scattering on 2D Nanomaterials: Recent Developments and Applications. Chin. J. Chem. 2021, 39, 745–756. [Google Scholar] [CrossRef]
- Sarycheva, A.; Makaryan, T.; Maleski, K.; Satheeshkumar, E.; Melikyan, A.; Minassian, H.; Yoshimura, M.; Gogotsi, Y. Two-Dimensional Titanium Carbide (MXene) as Surface-Enhanced Raman Scattering Substrate. J. Phys. Chem. C 2017, 121, 19983–19988. [Google Scholar] [CrossRef]
- Soundiraraju, B.; George, B.K. Two-Dimensional Titanium Nitride (Ti2N) MXene: Synthesis, Characterization, and Potential Application as Surface-Enhanced Raman Scattering Substrate. ACS Nano 2017, 11, 8892–8900. [Google Scholar] [CrossRef]
- Yang, K.; Zhu, K.; Wang, Y.; Qian, Z.; Zhang, Y.; Yang, Z.; Wang, Z.; Wu, L.; Zong, S.; Cui, Y. Ti3C2Tx MXene-Loaded 3D Substrate toward On-Chip Multi-Gas Sensing with Surface-Enhanced Raman Spectroscopy (SERS) Barcode Readout. ACS Nano 2021, 15, 12996–13006. [Google Scholar] [CrossRef] [PubMed]
- Malik, A.H.; Habib, F.; Qazi, M.J.; Ganayee, M.A.; Ahmad, Z.; Yatoo, M.A. A Short Review Article on Conjugated Polymers. J. Polym. Res. 2023, 30, 115. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, C.; Gu, J.; Wu, Y.; Zhu, C.; Li, L.; Gao, H.; Yin, W.; Wang, Z.; Zhang, Y. SERS Detection of Benzoic Acid in Milk by Using Ag-COF SERS Substrate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2022, 267, 120534. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zhang, R.; Yu, B.; Liang, A.; Jiang, Z. A Highly Sensitive Gold Nanosol SERS Aptamer Assay for Glyphosate with a New COF Nanocatalytic Reaction of Glycol-Au (III). Sens. Actuator B Chem. 2021, 344, 130288. [Google Scholar] [CrossRef]
- Chen, J.; Liu, C.; Hu, D.; Wang, F.; Wu, H.; Gong, X.; Liu, X.; Song, L.; Sheng, Z.; Zheng, H. Single-Layer MoS2 Nanosheets with Amplified Photoacoustic Effect for Highly Sensitive Photoacoustic Imaging of Orthotopic Brain Tumors. Adv. Funct. Mater. 2016, 26, 8715–8725. [Google Scholar] [CrossRef]
- Lin, C.; Liang, S.; Peng, Y.; Long, L.; Li, Y.; Huang, Z.; Long, N.V.; Luo, X.; Liu, J.; Li, Z. Visualized SERS Imaging of Single Molecule by Ag/Black Phosphorus Nanosheets. Nano-Micro Let. 2022, 14, 75. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, H.; Jia, Y.; Zhang, W.; Zhao, H.; Fan, W.; Zhang, W.; Zhong, H.; Ni, Y.; Guo, Z. A Two-Dimensional Fingerprint Nanoprobe Based on Black Phosphorus for Bio-SERS Analysis and Chemo-Photothermal Therapy. Nanoscale 2018, 10, 18795–18804. [Google Scholar] [CrossRef]
- Barhoumi, A.; Halas, N.J. Label-Free Detection of DNA Hybridization Using Surface Enhanced Raman Spectroscopy. J. Am. Chem. Soc. 2010, 132, 12792–12793. [Google Scholar] [CrossRef]
- Wu, D.; Chen, J.; Ruan, Y.; Sun, K.; Zhang, K.; Xie, W.; Xie, F.; Zhao, X.; Wang, X. A Novel Sensitive and Stable Surface Enhanced Raman Scattering Substrate Based on a MoS2 Quantum Dot/Reduced Graphene Oxide Hybrid System. J. Mater. Chem. C 2018, 6, 12547–12554. [Google Scholar] [CrossRef]
- Park, J.; Thomasson, J.A.; Gale, C.C.; Sword, G.A.; Lee, K.M.; Herrman, T.J.; Suh, C.P. Adsorbent-SERS Technique for Determination of Plant VOCs from Live Cotton Plants and Dried Teas. ACS Omega 2020, 5, 2779–2790. [Google Scholar] [CrossRef] [Green Version]
- Maharjan, S.; Yun, Y.J.; Okello, V.A.; Wiederrecht, G.P.; Gosztola, D.J.; Ayitou, A.J.L. Photometric Sensing of Heavy Metal Ions Using a Naphthoquinodimethyl-Bis-Thioamide Dye: Selectivity & Photophysics of the Metal Organic Complexes. J. Phtochem. Photobiol. A 2022, 424, 113648. [Google Scholar]
- Kamal, S.; Yang, T.C. Silver Enriched Silver Phosphate Microcubes as an Efficient Recyclable SERS Substrate for the Detection of Heavy Metal ions. J. Colloid Interface Sci. 2022, 605, 173–181. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, S.; Yang, X.; Yuan, R.; Chai, Y. A SERS Biosensor Cconstructed by Calcined ZnO Substrate with High-Efficiency Charge Transfer for Sensitive Detection of Pb2+. Sens. Actuator B Chem. 2021, 343, 130142. [Google Scholar] [CrossRef]
- Parveen, S.; Saifi, S.; Akram, S.; Husain, M.; Zulfequar, M. ZnO Nanoparticles Functionalized SWCNTs as Highly Sensitive SERS Substrate for Heavy Metal Ions Detection. Mater. Sci. Semicond. Process. 2022, 149, 106852. [Google Scholar] [CrossRef]
- Ji, W.; Wang, Y.; Tanabe, I.; Han, X.; Zhao, B.; Ozaki, Y. Semiconductor-Driven “Turn-Off” Surface-Enhanced Raman Scattering Spectroscopy: Application in Selective Determination of Chromium (VI) in Water. Chem. Sci. 2015, 6, 342–348. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xie, Z.; Feng, Y.; Wang, F.; Chen, D.; Zhang, Q.; Zeng, Y.; Lv, W.; Liu, G. Construction of Carbon Dots Modified MoO3/g-C3N4 Z-Scheme Photocatalyst with Enhanced Visible-Light Photocatalytic Activity for the Degradation of Tetracycline. Appl. Catal. B Environ. 2018, 229, 96–104. [Google Scholar] [CrossRef]
- Qu, L.L.; Liu, Y.Y.; Liu, M.K.; Yang, G.H.; Li, D.W.; Li, H.T. Highly Reproducible Ag NPs/CNT-Intercalated GO Membranes for Enrichment and SERS Detection of Antibiotics. ACS Appl. Mater. Interfaces 2016, 8, 28180–28186. [Google Scholar] [CrossRef]
- Singh, J.; Rishikesh; Kumar, S.; Soni, R.K. Synthesis of 3D-MoS2 Nanoflowers with Tunable Surface Area for the Application in Photocatalysis and SERS Based Sensing. J. Alloys Compd. 2020, 849, 156502. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, X.; Yi, W.; Li, W.; Bai, H.; Liu, J.; Xi, G. Plasmonic MoO2 Nanospheres as a Highly Sensitive and Stable Non-Noble Metal Substrate for Multicomponent Surface-Enhanced Raman Analysis. Anal. Chem. 2017, 89, 11765–11771. [Google Scholar] [CrossRef]
- Liang, P.; Cao, Y.; Dong, Q.; Wang, D.; Zhang, D.; Jin, S.; Yu, Z.; Ye, J.; Zou, M. A Balsam Pear-Shaped CuO SERS Substrate with Highly Chemical Enhancement for Pesticide Residue Detection. Mikrochim. Acta 2020, 187, 335. [Google Scholar] [CrossRef]
- Quan, Y.; Su, R.; Yang, S.; Chen, L.; Wei, M.; Liu, H.; Yang, J.; Gao, M.; Li, B. In-Situ Surface-Enhanced Raman Scattering Based on MTi20 Nanoflowers: Monitoring and Degradation of Contaminants. J. Hazard. Mater. 2021, 412, 125209. [Google Scholar] [CrossRef] [PubMed]
- Gokulakrishnan; Alex, K.V.; Sekhar, K.C.; Koppole, K. Highly Sensitive, Cost-Effective, and Flexible SERS Substrate Based on Green Synthesized GO/rGO for Pesticide Detection. ChemistrySelect 2022, 7, e202200348. [Google Scholar]
- Guo, C.; Sun, J.; Dong, J.; Cai, W.; Zhao, X.; Song, B.; Zhang, R. A Natural Anthocyanin-Based Multifunctional Theranostic Agent for Dual-Modal Imaging and Photothermal Anti-Tumor Therapy. J. Mater. Chem. B 2021, 9, 7447–7460. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Lin, H.; Guo, Z.; Lu, J.; Jia, Y.; Ye, M.; Su, F.; Niu, L.; Kang, W.; Wang, S. A Multiple Signal Amplification Sandwich-Type SERS Biosensor for Femtomolar Detection of MiRNA. Biosens. Bioelectron. 2019, 143, 111616. [Google Scholar] [CrossRef]
- Liu, X.; Zhou, Y.; Zheng, T.; Tian, Y. Surface-Enhanced Raman Scattering Technology Based on WO3 Film for Detection of VEGF. Chem. Res. Chin. Univ. 2021, 37, 900–905. [Google Scholar] [CrossRef]
- Atlas, G. Editorial: The 16th Annual Nucleic Acids Research Web Sserver Issue 2018. Nucleic Acids Res. 2018, 46, W1–W4. [Google Scholar]
- Brancati, G.; Grosshans, H. An Interplay of MiRNA Abundance and Target Site Architecture Determines MiRNA Activity and Specificity. Nucleic Acids Res. 2018, 46, 3259–3269. [Google Scholar] [CrossRef] [Green Version]
- Jiang, L.; Hu, Y.; Zhang, H.; Luo, X.; Yuan, R.; Yang, X. Charge-Transfer Resonance and Surface Defect-Dominated WO3 Hollow Microspheres as SERS Substrates for the MiRNA 155 Assay. Anal. Chem. 2022, 94, 6967–6975. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, T.; Tian, Y. Functionalized h-BN Nanosheets as a Theranostic Platform for SERS Real-Time Monitoring of MicroRNA and Photodynamic Therapy. Angew. Chem. Int. Ed. 2019, 58, 7757–7761. [Google Scholar] [CrossRef]
- Yu, L.; Ng, S.R.; Xu, Y.; Dong, H.; Wang, Y.J.; Li, C.M. Advances of Lab-on-a-Chip in Isolation, Detection and Post-Processing of Circulating Tumour Cells. Lab Chip 2013, 13, 3163–3182. [Google Scholar] [CrossRef] [PubMed]
- Feng, Z.; Wu, J.; Lu, Y.; Chan, Y.T.; Zhang, C.; Wang, D.; Luo, D.; Huang, Y.; Feng, Y.; Wang, N. Circulating Tumor Cells in the Early Detection of Human Cancers. Int. J. Biol. Sci. 2022, 18, 3251–3265. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Lin, J.; Wu, X.; Xu, X.; Zhang, D.; Xie, Y.; Pan, T.; He, Y.; Wu, A.; Shao, G. A TiO2-Based Bioprobe Enabling Excellent SERS Activity in the Detection of Diverse Circulating Tumor Cells. J. Mater. Chem. B 2022, 10, 3808–3816. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Lin, J.; Guo, Y.; Wu, X.; Xu, Y.; Zhang, D.; Zhang, X.; Yujiao, X.; Wang, J.; Yao, C. TiO2-Based Surface-Enhanced Raman Scattering Bio-Probe for Efficient Circulating Tumor Cell Detection on Microfilter. Biosens. Bioelectron. 2022, 210, 114305. [Google Scholar] [CrossRef] [PubMed]
- Feng, E.; Zheng, T.T.; He, X.X.; Chen, J.Q.; Tian, Y. A Novel Ternary Heterostructure with Dramatic SERS Activity for Evaluation of PD-L1 Expression at the Single-Cell Level. Sci. Adv. 2018, 4, eaau3494. [Google Scholar] [CrossRef] [Green Version]
- Haldavnekar, R.; Venkatakrishnan, K.; Tan, B. Non Plasmonic Semiconductor Quantum SERS Probe as a Pathway for in Vitro Cancer Detection. Nat. Commun. 2018, 9, 3065. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Zong, S.; Wu, L.; Zhu, D.; Cui, Y. SERS-Activated Platforms for Immunoassay: Probes, Encoding Methods, and Applications. Chem. Rev. 2017, 117, 7910–7963. [Google Scholar] [CrossRef]
- Huang, S.; Pandey, R.; Barman, I.; Kong, J.; Dresselhaus, M. Raman Enhancement of Blood Constituent Proteins Using Graphene. ACS Photonics 2018, 5, 2978–2982. [Google Scholar] [CrossRef]
- Dharmalingam, P.; Venkatakrishnan, K.; Tan, B. An Atomic-Defect Enhanced Raman scattering (DERS) Quantum Probe for Molecular Level Detection-Breaking the SERS Barrier. Appl. Mater. Today 2019, 16, 28–41. [Google Scholar] [CrossRef]
- Su, R.; Quan, Y.; Yang, S.; Hu, M.; Yang, J.; Gao, M. Destroying the Symmetric Structure to Promote Phase Transition: Improving the SERS Performance and Catalytic Activity of MoS2 Nanoflowers. J. Alloys Compd. 2021, 886, 161268. [Google Scholar] [CrossRef]
- Tang, Z.; Kong, N.; Zhang, X.; Liu, Y.; Hu, P.; Mou, S.; Liljestrom, P.; Shi, J.; Tan, W.; Kim, J.S. A Materials-Science Perspective on Tackling COVID-19. Nat. Rev. Mater. 2020, 5, 847–860. [Google Scholar] [CrossRef]
- Jiang, Y.; Hu, M.; Liu, A.A.; Lin, Y.; Liu, L.; Yu, B.; Zhou, X.; Pang, D.W. Detection of SARS-CoV-2 by CRISPR/Cas12a-Enhanced Colorimetry. ACS Sens. 2021, 6, 1086–1093. [Google Scholar] [CrossRef]
- Li, Y.; Chen, H.; Guo, Y.; Wang, K.; Zhang, Y.; Lan, P.; Guo, J.; Zhang, W.; Zhong, H.; Guo, Z. Lamellar Hafnium Ditelluride as an Ultrasensitive Surface-Enhanced Raman Scattering Platform for Label-Free Detection of Uric Acid. Photonics Res. 2021, 9, 1039–1047. [Google Scholar] [CrossRef]
- Sun, H.; Song, G.; Gong, W.; Lu, W.; Cong, S.; Zhao, Z. Stabilizing Photo-Induced Vacancy Defects in MOF Matrix for High-Performance SERS Detection. Nano Res. 2022, 15, 5347–5354. [Google Scholar] [CrossRef]
- Ferna’ndez, R.D.; Ruth, T.J.; Sossi, V.; Schulzer, M.; Calne, D.B.; Stoessl, A.J. Expectation and Dopamine Release: Mechanism of the Placebo Effect in Parkinson′s Disease. Science 2001, 293, 1164–1166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, A.; Neumeyer, J.L.; Baldessarini, R.J. Recent Progress in Development of Dopamine Receptor Subtype-Selective Agents: Potential Therapeutics for Neurological and Psychiatric Disorders. Chem. Rev. 2007, 107, 274–302. [Google Scholar] [CrossRef] [PubMed]
- Shim, J.E.; Kim, Y.J.; Choe, J.H.; Lee, T.G.; You, E.A. Single-Nanoparticle-Based Digital SERS Sensing Platform for the Accurate Quantitative Detection of SARS-CoV-2. ACS Appl. Mater. Interfaces 2022, 14, 38459–38470. [Google Scholar] [CrossRef]
- Wu, P.; Luo, X.; Xu, Y.; Zhu, J.; Jia, W.; Fang, N.; Cai, C.; Zhu, J.J. Long-Range SERS Detection of the SARS-CoV-2 Antigen on a Well-Ordered Gold Hexagonal Nanoplate Film. Anal. Chem. 2022, 94, 17541–17550. [Google Scholar] [CrossRef]
- Yue, W.; Xia, Z.; Zeng, Z.; Chen, Z.; Qiao, L.; Li, P.; He, Y.; Luo, X. In Situ Surface-Enhanced Raman Scattering Detection of a SARS-CoV-2 Biomarker Using Flexible and Transparent Polydimethylsiloxane Films with Embedded Au Nanoplates. ACS Appl. Nano Mater. 2022, 5, 12897–12906. [Google Scholar] [CrossRef]
- Hwang, C.S.H.; Lee, S.; Lee, S.; Kim, H.; Kang, T.; Lee, D.; Jeong, K.H. Highly Adsorptive Au-TiO2 Nanocomposites for the SERS Face Mask Allow the Machine-Learning-Based Quantitative Assay of SARS-CoV-2 in Artificial Breath Aerosols. ACS Appl. Mater. Interfaces 2022, 14, 54550–54557. [Google Scholar] [CrossRef]
- Zhao, T.; Liang, P.; Ren, J.; Zhu, J.; Yang, X.; Bian, H.; Li, J.; Cui, X.; Fu, C.; Xing, J. Gold-Silver Alloy Hollow Nanoshells-Based Lateral Flow Immunoassay for Colorimetric, Photothermal, and SERS Tri-Mode Detection of SARS-CoV-2 Neutralizing Antibody. Anal. Chim. Acta 2023, 1255, 341102. [Google Scholar] [CrossRef] [PubMed]
SERS Substrate | Enhancement Mechanism | Target | Linear Range | LOD | Ref |
---|---|---|---|---|---|
Honeycomb-like 3D Ti3C2Tx | Synergistic effect of strong adsorption capacity of substrate and EM | Benzaldehyde 2, 4-dinitrotoluene indole | / | 10 ppb 10 ppb 50 ppb | [71] |
ZnO SFs | Synergistic effect of CT and Mie resonance enhancement | Pb2+ | 10 pM–100 μM | 3.55 pM | [83] |
ZnO@SWCNTs | Synergistic effect of “hot spot” generated by intertube and interparticle coupling, as well as CT enhancement | Pb2+ | 0.01–100 μM | 0.225 nM | [84] |
ARS-TiO2 complexes | CT enhancement | Cr (VI) | 0.6–10 mM | 0.6 mM | [85] |
NbTe2 NTNs | Synergistic effect of CT enhancement and fluorescence quenching effect of substrate | Ciprofloxacin enrofloxacin | 351 ppm–35.1 ppb | 35.1 ppb 35.9 ppb | [48] |
3D-MoS2 NFs | Synergistic effect of effective enrichment capability of substrate and CT enhancement | Oxytetracycline hydrochloride | / | / | [88] |
MoO2 nanospheres | LSPR effect in the visible and near-infrared (NIR) range | Clenbuterol hydrochloride methyl parathion 2,4-dichlorophenoxyacetic acid | 10−7–10−4 M | 10−7 M | [89] |
Balsam pear-shaped CuO | Synergistic effect of EM and CT enhancement | Paraquat | 10−7–10−3 M | 10−7 M | [90] |
MTi20 | Interfacial CT enhancement | α-endosulfan | 10−8–10−4 M | 10−8 M | [91] |
Flexible rGO | Synergistic effect of effective enrichment of substrate and CT enhancement | Thiabendazole | 10−9–10−3 M | 10−9 M | [92] |
SERS Substrates | Target | LODs | Reported SERS Performance | Ref | |
---|---|---|---|---|---|
Molecules | EF | ||||
SnS2 microspheres | SARS-CoV-2S protein | 10−14 M | MB | 3.0 × 108 | [46] |
Ta2C | 5 × 10−9 M | CV | 1.4 × 106 | [15] | |
Bumpy core–shell Au NPs | 7.1 × 10−16 M | 4-NBT | 2.1 × 108 to 2.2 × 109 | [116] | |
Au/MgF2/Au | 3.7 × 10−12 M | MB | 2.0 × 105 | [117] | |
Au NPLs/PDMS | 2.6 × 10−10 M | R6G | 6.4 × 107 | [118] | |
Au-TiO2 | 10−10 M | R6G | / | [119] | |
Au–Ag hollow nanoshells | 7.5 × 10−15 M | 4-MBA | / | [120] |
SERS Substrate | Enhancement Mechanism | Target | Linear Range | LOD | Ref |
---|---|---|---|---|---|
MoS2 NFs | Synergistic effect of effective enrichment of substrate and laser-induced CT resonances | CA-199 | 5 × 10−4–1 × 102 IU·mL−1 | 3.43 × 10−4 IU·mL−1 | [16] |
WO3 film | CT enhancement | VEGF | 10–250 pg/mL | 8.7 pg/mL. | [95] |
3D WO3 hollow microsphere | CT enhancement | miRNA 155 | 1 fM–100 pM | 0.18 fM | [98] |
CuPc@HG@BN | Interface dipole interaction | miR-21 | 1.6 fM–2.8 pM | 0.7 fM | [99] |
TiO2-AR -rBSA-FA | Synergistic effect of strong vibration coupling resonance and PICT enhancement | SY5Y H226KYSE-150 HeLa | / | 1 cell/mL | [102] |
B-TiO2-AR-PD-PEG-AB | Synergistic effect of interfacial PICT and PICT resonance as well as strong vibronic coupling in amorphous shell-molecule system | MCF-7MCF-7 drug-resistant (MCF-7/ADR) breast cancer cells | / | / | [103] |
B-TiO2-AR -PEG-FA | Synergistic effect of interfacial PICT and PICT resonance as well as strong vibronic coupling in amorphous shell-molecule system | MCF-7(folate receptor (FR) positive), A549 Raw264.7 (FR negative) | 1–100 cells/mL (MCF-7) | 2 cells/mL (MCF-7) | [56] |
MGT-ABs-CuPc | Synergistic effect of enrichment from a porous TiO2 shell and CT enhancement | HCC38 MDA-MB-231 MCF-7 | 5 × 102–5 × 105 cells 5 × 102–106 cells 5 × 103–5 × 104 cells | 3 cells / / | [104] |
3D ZnO quantum | Synergistic effect of SPR effect and CT enhancement | MDAMB231 HeLa NIH3T3 | / | / | [105] |
Graphene | Synergistic effect of CT enhancement and π-π interaction between probe and graphene | Hemoglobin albumin | / | / | [107] |
Quantum-size TiO2-x | Synergistic effect of effective enrichment of substrate and laser-induced CT resonances | ATP EGFR | / | / | [108] |
Ni-MoS2 NFs | Synergistic effect of effective enrichment of substrate and CT enhancement as well we interface dipole–dipole interaction | Bilirubin | 10−7–10−3 M | 10−7 M | [109] |
SnS2 microspheres | Synergistic effect of the molecular enrichment caused by capillary effect and CT enhancement | SARS-CoV-2 S protein, SARS-CoV S protein, SARS-CoV-2 RNA | 10−14–10−6 M 104–107 copies/mL 104–106 copies/mL | 10−14 M 107 copies/mL 106 copies/mL | [46] |
Ta2C | Synergistic effect of PICT resonance enhancement and EM | SARS-CoV-2 S protein | / | 5 × 10−9 M | [15] |
1T′-MoTe2 | CT enhancement | β-sitosterol | 10−9–10−4 M | 10−9 M | [47] |
Few-layered HfTe2 | CT enhancement | Uric acid | 100 μM–1 mM | 100 μM | [117] |
D-MIL-125-NH2 | Photo-induced oxygen vacancy detection in D-MIL-125-NH2 results in modified energy bands to boost both the inter-valence CT within MOFs and interfacial CT transitions | Dopamine | 6.6 × 10−4–6.6 × 10−7 M | 6.6 × 10−7 M | [118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Y.; Hu, Y.; Li, G. A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection. Chemosensors 2023, 11, 427. https://doi.org/10.3390/chemosensors11080427
Chen Y, Hu Y, Li G. A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection. Chemosensors. 2023; 11(8):427. https://doi.org/10.3390/chemosensors11080427
Chicago/Turabian StyleChen, Ying, Yuling Hu, and Gongke Li. 2023. "A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection" Chemosensors 11, no. 8: 427. https://doi.org/10.3390/chemosensors11080427
APA StyleChen, Y., Hu, Y., & Li, G. (2023). A Review on Non-Noble Metal Substrates for Surface-Enhanced Raman Scattering Detection. Chemosensors, 11(8), 427. https://doi.org/10.3390/chemosensors11080427