Development of a New Hydrogen Sulfide Fluorescent Probe Based on Coumarin–Chalcone Fluorescence Platform and Its Imaging Application
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Chemicals
2.2. Apparatus
2.3. Synthesis of Probes
2.3.1. Synthesis of Compound 1
2.3.2. Synthesis of Compound 2
2.3.3. Synthesis of Compound C-HS
2.4. Spectroscopic Test Method and Preparation of Test Solution
2.5. Cell Culture and MTT Analysis
2.6. Imaging Test
2.6.1. Imaging of Exogenous H2S
2.6.2. Imaging of Endogenous H2S
3. Results
3.1. Designing Strategy of Probe C-HS
3.2. Measurement of the Spectral Properties of Probe C-HS
3.2.1. Fluorescence Titration Test of the Interaction between Probe C-HS and H2S
3.2.2. Kinetic Test of the Interaction between Probe C-HS and H2S
3.2.3. Selective Testing of Probe C-HS
3.2.4. Fluorescence Response Spectra of Probe C-HS to Different pH
3.2.5. Photostability Test of Probe C-HS
3.2.6. Verification of Fluorescence Detection Mechanism of Probe C-HS
3.3. Application of Probe C-HS in Biology
3.3.1. Cell Toxicity Test of Probe C-HS
3.3.2. Cell Imaging Experiments
Exogenous Experiments
Endogenous Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Lv, X.; Guo, W. A Reaction-Based and Highly Selective Fluorescent Probe for Hydrogen Sulfide. Dye. Pigment. 2017, 139, 482–486. [Google Scholar] [CrossRef]
- Zhou, R.; Cui, G.; Qi, Q.; Huang, W.; Yang, L. The Synthesis and Bioimaging of a Biocompatible Hydrogen Sulfide Fluorescent Probe with High Sensitivity and Selectivity. Analyst 2020, 145, 2305–2310. [Google Scholar] [CrossRef]
- Men, J.; Yang, X.; Zhang, H.; Zhou, J. A Near-Infrared Fluorescent Probe Based on Nucleophilic Substitution–Cyclization for Selective Detection of Hydrogen Sulfide and Bioimaging. Dye. Pigment. 2018, 153, 206–212. [Google Scholar] [CrossRef]
- Chen, L.; Wu, D.; Lim, C.S.; Kim, D.; Nam, S.J.; Lee, W.; Kim, G.; Kim, H.M.; Yoon, J. A Two-Photon Fluorescent Probe for Specific Detection of Hydrogen Sulfide Based on a Familiar ESIPT Fluorophore Bearing AIE Characteristics. Chem. Commun. 2017, 53, 4791–4794. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Pacheco, A.; Takano, Y.; Day, J.J.; Hanaoka, K.; Xian, M. A Single Fluorescent Probe to Visualize Hydrogen Sulfide and Hydrogen Polysulfides with Different Fluorescence Signals. Angew. Chem. Int. Ed. 2016, 55, 9993–9996. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Wang, Z.; Zhao, M.; Hong, Y.; Jin, Q.; Yao, S.; Zheng, C.; Quan, Y.Y.; Ye, X.; Huang, Z.S. A NIR Fluorescent Probe for the Detection and Visualization of Hydrogen Sulfide in Colorectal Cancer Cell. Sens. Actuators B Chem. 2019, 298, 126898. [Google Scholar] [CrossRef]
- Qiao, Z.; Zhang, H.; Wang, K.W.; Zhang, Y. A Highly Sensitive and Responsive Fluorescent Probe Based on 6-Azide-Chroman Dye for Detection and Imaging of Hydrogen Sulfide in Cells. Talanta 2019, 195, 850–856. [Google Scholar] [CrossRef]
- Yang, Y.; Feng, Y.; Jiang, Y.; Qiu, F.; Wang, Y.; Song, X.; Tang, X.; Zhang, G.; Liu, W. A Coumarin-Based Colorimetric Fluorescent Probe for Rapid Response and Highly Sensitive Detection of Hydrogen Sulfide in Living Cells. Talanta 2019, 197, 122–129. [Google Scholar] [CrossRef]
- Pak, Y.L.; Li, J.; Ko, K.C.; Kim, G.; Lee, J.Y.; Yoon, J. Mitochondria-Targeted Reaction-Based Fluorescent Probe for Hydrogen Sulfide. Anal. Chem. 2016, 88, 5476–5481. [Google Scholar] [CrossRef]
- Feng, W.; Mao, Z.; Liu, L.; Liu, Z. A Ratiometric Two-Photon Fluorescent Probe for Imaging Hydrogen Sulfide in Lysosomes. Talanta 2017, 167, 134–142. [Google Scholar] [CrossRef]
- Li, J.; Ding, D.; Wang, J.; Huang, L.; Zhan, J.; Lin, W. An Activatable Photoacoustic Probe for Imaging Upregulation of Hydrogen Sulfide in Inflammation. Sens. Actuators B Chem. 2022, 367, 132097. [Google Scholar] [CrossRef]
- Liu, K.; Liu, C.; Shang, H.; Ren, M.; Lin, W. A Novel Red Light Emissive Two-Photon Fluorescent Probe for Hydrogen Sulfide (H2S) in Nucleolus Region and Its Application for H2S Detection in Zebrafish and Live Mice. Sens. Actuators B Chem. 2018, 256, 342–350. [Google Scholar] [CrossRef]
- Park, C.S.; Ha, T.H.; Choi, S.; Nguyen, D.N.; Noh, S.; Kwon, O.S.; Lee, C.; Yoon, H. A Near-Infrared “Turn-on” Fluorescent Probe with a Self-Immolative Linker for the in Vivo Quantitative Detection and Imaging of Hydrogen Sulfide. Biosens. Bioelectron. 2017, 89, 919–926. [Google Scholar] [CrossRef]
- Sun, W.; Fan, J.; Hu, C.; Cao, J.; Zhang, H.; Xiong, X.; Wang, J.; Cui, S.; Sun, S.; Peng, X. A Two-Photon Fluorescent Probe with near-Infrared Emission for Hydrogen Sulfide Imaging in Biosystems. Chem. Commun. 2013, 49, 3890–3892. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhang, G.; Feng, L.; Li, J. A Ratiometric Fluorescent Probe for Sensitive and Selective Detection of Hydrogen Sulfide and Its Application for Bioimaging. Sens. Actuators B Chem. 2015, 216, 412–417. [Google Scholar] [CrossRef]
- Hou, F.; Zhu, L.; Zhang, H.; Qiao, Z.; Wei, N.; Zhang, Y. A Highly Selective and Sensitive Fluorescent Probe Based on the Chromone Fluorophore for Imaging Hydrogen Sulfide in Living Cells. New J. Chem. 2020, 44, 1537–1541. [Google Scholar] [CrossRef]
- Ren, M.; Deng, B.; Kong, X.; Zhou, K.; Liu, K.; Xu, G.; Lin, W. A TICT-Based Fluorescent Probe for Rapid and Specific Detection of Hydrogen Sulfide and Its Bio-Imaging Applications. Chem. Commun. 2016, 52, 6415–6418. [Google Scholar] [CrossRef]
- Wang, K.P.; Zhang, Q.L.; Wang, X.; Lei, Y.; Zheng, W.J.; Chen, S.; Zhang, Q.; Hu, H.Y.; Hu, Z.Q. A Fluorescent Probe Based on Tetrahydro[5]Helicene Derivative with Large Stokes Shift for Rapid and Highly Selective Recognition of Hydrogen Sulfide. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2019, 214, 487–495. [Google Scholar] [CrossRef]
- Li, J.; Ding, D.; Wang, J.; Xu, L.; Tan, D.; Lin, W. Development of a Multi-Task Formaldehyde Specific Fluorescent Probe for Bioimaging in Living Systems and Decoration Materials Analysis. Chem. Eng. J. 2022, 448, 137634. [Google Scholar] [CrossRef]
- Niu, L.Y.; Chen, Y.Z.; Zheng, H.R.; Wu, L.Z.; Tung, C.H.; Yang, Q.Z. Design Strategies of Fluorescent Probes for Selective Detection among Biothiols. Chem. Soc. Rev. 2015, 44, 6143–6160. [Google Scholar] [CrossRef]
- Lin, V.S.; Chen, W.; Xian, M.; Chang, C.J. Chemical Probes for Molecular Imaging and Detection of Hydrogen Sulfide and Reactive Sulfur Species in Biological Systems. Chem. Soc. Rev. 2015, 44, 4596–4618. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jung, H.S.; Chen, X.; Kim, J.S.; Yoon, J. Recent Progress in Luminescent and Colorimetric Chemosensors for Detection of Thiols. Chem. Soc. Rev. 2013, 42, 6019–6031. [Google Scholar] [CrossRef] [PubMed]
- Yin, C.; Huo, F.; Zhang, J.; Martínez-Máñez, R.; Yang, Y.; Lv, H.; Li, S. Thiol-Addition Reactions and Their Applications in Thiol Recognition. Chem. Soc. Rev. 2013, 42, 6032–6059. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, R.; Liu, J.; Li, L.; Wang, P.; Yao, S.Q.; Xu, Z.; Sun, H. A Minimalist Fluorescent Probe for Differentiating Cys, Hcy and GSH in Live Cells. Chem. Sci. 2016, 7, 256–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, H.; Zhang, C.; Liu, R.; Yi, L.; Sun, H. A Highly Selective and Sensitive Fluorescent Thiol Probe through Dual-Reactive and Dual-Quenching Groups. Chem. Commun. 2015, 51, 2029–2032. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Xu, L.; Chen, W.; Huang, J.; Huang, C.; Sheng, J.; Song, X. Simultaneous Discrimination of Cysteine, Homocysteine, Glutathione, and H 2 S in Living Cells through a Multisignal Combination Strategy. Anal. Chem. 2019, 91, 1904–1911. [Google Scholar] [CrossRef]
- Lippert, A.R.; New, E.J.; Chang, C.J. Reaction-Based Fluorescent Probes for Selective Imaging of Hydrogen Sulfide in Living Cells. J. Am. Chem. Soc. 2011, 133, 10078–10080. [Google Scholar] [CrossRef]
- Wu, Q.; Yin, C.; Wen, Y.; Zhang, Y.; Huo, F. An ICT Lighten Ratiometric and NIR Fluorogenic Probe to Visualize Endogenous/Exogenous Hydrogen Sulphide and Imaging in Mice. Sens. Actuators B Chem. 2019, 288, 507–511. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, C.; Yang, Z.; Chen, J.; He, Y.; Jiao, Y.; He, W.; Qiu, L.; Cen, J.; Guo, Z. A Ratiometric Fluorescent Probe for Rapid Detection of Hydrogen Sulfide in Mitochondria. Angew. Chem. Int. Ed. 2013, 52, 1688–1691. [Google Scholar] [CrossRef]
- Wu, R.; Chen, Z.; Huo, H.; Chen, L.; Su, L.; Zhang, X.; Wu, Y.; Yao, Z.; Xiao, S.; Du, W.; et al. Ratiometric Detection of H2S in Liver Injury by Activated Two-Wavelength Photoacoustic Imaging. Anal. Chem. 2022, 94, 10797–10804. [Google Scholar] [CrossRef]
- Sasakura, K.; Hanaoka, K.; Shibuya, N.; Mikami, Y.; Kimura, Y.; Komatsu, T.; Ueno, T.; Terai, T.; Kimura, H.; Nagano, T. Development of a Highly Selective Fluorescence Probe for Hydrogen Sulfide. J. Am. Chem. Soc. 2011, 133, 18003–18005. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Fang, Y.; Yan, J.; Ren, X.; Zheng, C.; Wu, B.; Wang, S.; Li, Z.; Hua, H.; Wang, P.; et al. Small-Molecule Fluorescent Probes for H2S Detection: Advances and Perspectives. TrAC Trends Anal. Chem. 2021, 134, 116117. [Google Scholar] [CrossRef]
- Yu, F.; Han, X.; Chen, L. Fluorescent Probes for Hydrogen Sulfide Detection and Bioimaging. Chem. Commun. 2014, 50, 12234–12249. [Google Scholar] [CrossRef]
- Wang, L.; Yang, W.; Song, Y.; Hu, Y. Novel Turn-on Fluorescence Sensor for Detection and Imaging of Endogenous H2S Induced by Sodium Nitroprusside. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2020, 243, 118775. [Google Scholar] [CrossRef] [PubMed]
- Dhivya, R.; Kavitha, V.; Gomathi, A.; Keerthana, P.; Santhalakshmi, N.; Viswanathamurthi, P.; Haribabu, J. Dinitrobenzene Ether Reactive Turn-on Fluorescence Probes for the Selective Detection of H2S. Anal. Methods 2022, 14, 58–66. [Google Scholar] [CrossRef]
- Zhang, L.; Zheng, X.E.; Zou, F.; Shang, Y.; Meng, W.; Lai, E.; Xu, Z.; Liu, Y.; Zhao, J. A Highly Selective and Sensitive Near-Infrared Fluorescent Probe for Imaging of Hydrogen Sulphide in Living Cells and Mice. Sci. Rep. 2016, 6, 18868. [Google Scholar] [CrossRef] [Green Version]
- Jose, D.A.; Sakla, R.; Sharma, N.; Gadiyaram, S.; Kaushik, R.; Ghosh, A. Sensing and Bioimaging of the Gaseous Signaling Molecule Hydrogen Sulfide by Near-Infrared Fluorescent Probes. ACS Sens. 2020, 5, 3365–3391. [Google Scholar] [CrossRef]
- Sun, Y.; Shan, Y.; Sun, N.; Li, Z.; Wu, X.; Guan, R.; Cao, D.; Zhao, S.; Zhao, X. Cyanide and Biothiols Recognition Properties of a Coumarin Chalcone Compound as Red Fluorescent Probe. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2018, 205, 514–519. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, M.; Li, Z.; Teng, Y.; Wang, G.; Xue, Y. Photophysical Properties and Sensing Mechanism of Fluorescent Coumarin–Chalcone Hybrid for Biothiols: A Theoretical Study. J. Phys. Org. Chem. 2022, 35, e4324. [Google Scholar] [CrossRef]
- Xing, M.; Han, Y.; Zhu, Y.; Sun, Y.; Shan, Y.; Wang, K.N.; Liu, Q.; Dong, B.; Cao, D.; Lin, W. Two Ratiometric Fluorescent Probes Based on the Hydroxyl Coumarin Chalcone Unit with Large Fluorescent Peak Shift for the Detection of Hydrazine in Living Cells. Anal. Chem. 2022, 94, 12836–12844. [Google Scholar] [CrossRef]
- Xue, Y.; Liu, Y.; Wang, G.; An, L.; Teng, Y.; Chen, M.; Xie, Y.; Zhang, L. TDDFT Study on the Photophysical Properties of Coumarinyl Chalcones and Sensing Mechanism of a Derived Fluorescent Probe for Hydrogen Sulfide. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2020, 234, 118263. [Google Scholar] [CrossRef] [PubMed]
- Yue, Y.; Huo, F.; Li, X.; Wen, Y.; Yi, T.; Salamanca, J.; Escobedo, J.O.; Strongin, R.M.; Yin, C. PH-Dependent Fluorescent Probe That Can Be Tuned for Cysteine or Homocysteine. Org. Lett. 2017, 19, 82–85. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jin, M.; Wei, L.; Yang, Y.; Run, M.; Yin, C. A New Turn-on Fluorescent Probe for the Detection of Palladium(0) and Its Application in Living Cells and Zebrafish. New J. Chem. 2019, 43, 548–551. [Google Scholar] [CrossRef]
- Zhu, J.-H.; Zhang, H.; Liao, Y.; Liu, J.-J.; Quan, Z.-J.; Wang, X.-C. A Multifunctional Fluorescent Probe for Highly Selective Detection of Hydrazine and Discovering the Interplay between AIE and ICT. Dye. Pigment. 2020, 175, 108111. [Google Scholar] [CrossRef]
- Qian, J.; Tang, B.Z. AIE Luminogens for Bioimaging and Theranostics: From Organelles to Animals. Chem 2017, 3, 56–91. [Google Scholar] [CrossRef] [Green Version]
- Sun, C.; Li, B.; Zhao, M.; Wang, S.; Lei, Z.; Lu, L.; Zhang, H.; Feng, L.; Dou, C.; Yin, D.; et al. J-Aggregates of Cyanine Dye for NIR-II in Vivo Dynamic Vascular Imaging beyond 1500 Nm. J. Am. Chem. Soc. 2019, 141, 19221–19225. [Google Scholar] [CrossRef]
- Cheng, H.B.; Li, Y.; Tang, B.Z.; Yoon, J. Assembly Strategies of Organic-Based Imaging Agents for Fluorescence and Photoacoustic Bioimaging Applications. Chem. Soc. Rev. 2020, 49, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Gui, R.; Jin, H.; Bu, X.; Fu, Y.; Wang, Z.; Liu, Q. Recent Advances in Dual-Emission Ratiometric Fluorescence Probes for Chemo/Biosensing and Bioimaging of Biomarkers. Coord. Chem. Rev. 2019, 383, 82–103. [Google Scholar] [CrossRef]
- Ueno, T.; Urano, Y.; Setsukinai, K.I.; Takakusa, H.; Kojima, H.; Kikuchi, K.; Ohkubo, K.; Fukuzumi, S.; Nagano, T. Rational Principles for Modulating Fluorescence Properties of Fluorescein. J. Am. Chem. Soc. 2004, 126, 14079–14085. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chi, H.; Gu, L.; Zhang, Q.; Tang, Y.; Guo, R.; Lin, W. Development of a New Hydrogen Sulfide Fluorescent Probe Based on Coumarin–Chalcone Fluorescence Platform and Its Imaging Application. Chemosensors 2023, 11, 428. https://doi.org/10.3390/chemosensors11080428
Chi H, Gu L, Zhang Q, Tang Y, Guo R, Lin W. Development of a New Hydrogen Sulfide Fluorescent Probe Based on Coumarin–Chalcone Fluorescence Platform and Its Imaging Application. Chemosensors. 2023; 11(8):428. https://doi.org/10.3390/chemosensors11080428
Chicago/Turabian StyleChi, Hanwen, Lei Gu, Qian Zhang, Yonghe Tang, Rui Guo, and Weiying Lin. 2023. "Development of a New Hydrogen Sulfide Fluorescent Probe Based on Coumarin–Chalcone Fluorescence Platform and Its Imaging Application" Chemosensors 11, no. 8: 428. https://doi.org/10.3390/chemosensors11080428
APA StyleChi, H., Gu, L., Zhang, Q., Tang, Y., Guo, R., & Lin, W. (2023). Development of a New Hydrogen Sulfide Fluorescent Probe Based on Coumarin–Chalcone Fluorescence Platform and Its Imaging Application. Chemosensors, 11(8), 428. https://doi.org/10.3390/chemosensors11080428