Effect of pH on Electrochemical Impedance Response of Tethered Bilayer Lipid Membranes: Implications for Quantitative Biosensing
Abstract
:1. Introduction
2. Materials and Methods
2.1. tBLM Preparation
2.2. EIS Measurments
2.3. Calculation of Defect Density Distribution and Sub Membrane Capacitance
2.4. Surface-Enhanced Infrared Absorption Spectroscopy (SEIRAS) Measurement
2.5. Formation of SAM and tBLM for SEIRAS Measurement
3. Results and Discussion
3.1. EIS and Data Analysis
- The pH does not change the defect density () and the probability density function for randomly distributed defects, thus the pH-induced change of the position fmin on EIS phase plot originates from the variation of sub membrane resistance , (constant ).
- The change in sub membrane resistance () is negligible, therefore, fmin varies because of changes in and , (constant .
- The does not change while can vary freely, therefore, the position of fmin is affected by variation of and to some extent by later redistribution of defects induced by pH variation (constant , variable and ).
3.2. Pristine tBLMs with Natural Defects
3.3. tBLMs Reconstituted with Defects Induced by Pore-Forming Toxins
3.3.1. VLY Reconstituted tBLMs
3.3.2. MEL Reconstituted tBLMs
3.4. SEIRAS
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agmon, E.; Stockwell, B.R. Lipid homeostasis and regulated cell death. Curr. Opin. Chem. Biol. 2017, 39, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Miyamoto, V.K.; Thompson, T.E. Some electrical properties of lipid bilayer membranes. J. Colloid Interface Sci. 1967, 25, 16–25. [Google Scholar] [CrossRef]
- Penkauskas, T.; Preta, G. Biological applications of tethered bilayer lipid membranes. Biochimie 2019, 157, 131–141. [Google Scholar]
- Raguse, B.; Braach-Maksvytis, V.; Cornell, B.A.; King, L.G.; Osman, P.D.; Pace, R.J.; Wieczorek, L. Tethered lipid bilayer membranes: Formation and ionic reservoir characterization. Langmuir 1998, 14, 648–659. [Google Scholar] [CrossRef]
- Shenoy, S.; Moldovan, R.; Fitzpatrick, J.; Vanderah, D.J.; Deserno, M.; Lösche, M. In-plane homogeneity and lipid dynamics in tethered bilayer lipid membranes (tBLMs). Soft Matter 2010, 6, 1263–1274. [Google Scholar]
- McGillivray, D.J.; Valincius, G.; Vanderah, D.J.; Febo-Ayala, W.; Woodward, J.T.; Heinrich, F.; Kasianowicz, J.J.; Lösche, M. Molecular-scale structural and functional characterization of sparsely tethered bilayer lipid membranes. Biointerphases 2007, 2, 21–33. [Google Scholar] [CrossRef] [Green Version]
- Köper, I. Insulating tethered bilayer lipid membranes to study membrane proteins. Mol. Biosyst. 2007, 3, 651–657. [Google Scholar] [CrossRef]
- Alghalayini, A.; Garcia, A.; Berry, T.; Cranfield, C.G. The use of tethered bilayer lipid membranes to identify the mechanisms of antimicrobial peptide interactions with lipid bilayers. Antibiotics 2019, 8, 12. [Google Scholar] [CrossRef] [Green Version]
- Jadhav, S.R.; Sui, D.; Garavito, R.M.; Worden, R.M. Fabrication of highly insulating tethered bilayer lipid membrane using yeast cell membrane fractions for measuring ion channel activity. J. Colloid Interface Sci. 2008, 322, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Alobeedallah, H.; Cornell, B.; Coster, H. The effect of cholesterol on the voltage–current characteristics of tethered lipid membranes. J. Membr. Biol. 2020, 253, 319–330. [Google Scholar] [CrossRef]
- Song, H.; Sinner, E.-K.; Knoll, W. Peptid-tethered bilayer lipid membranes and their interaction with Amyloid ß-peptide. Biointerphases 2007, 2, 151–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guidelli, R.; Becucci, L. Functional activity of peptide ion channels in tethered bilayer lipid membranes. Electrochem. Sci. Adv. 2022, 2, e2100180. [Google Scholar]
- Vockenroth, I.K.; Atanasova, P.P.; Jenkins, A.T.A.; Koeper, I. Incorporation of α-hemolysin in different tethered bilayer lipid membrane architectures. Langmuir 2008, 24, 496–502. [Google Scholar] [CrossRef]
- Zieleniecki, J.L.; Nagarajan, Y.; Waters, S.; Rongala, J.; Thompson, V.; Hrmova, M.; Köper, I. Cell-free synthesis of a functional membrane transporter into a tethered bilayer lipid membrane. Langmuir 2016, 32, 2445–2449. [Google Scholar] [CrossRef] [PubMed]
- Vockenroth, I.K.; Ohm, C.; Robertson, J.W.; McGillivray, D.J.; Lösche, M.; Köper, I. Stable insulating tethered bilayer lipid membranes. Biointerphases 2008, 3, FA68–FA73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tun, T.N.; Jenkins, A.T.A. An electrochemical impedance study of the effect of pathogenic bacterial toxins on tethered bilayer lipid membrane. Electrochem. Commun. 2010, 12, 1411–1415. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.; Burke, P.J. Versatile Bottom-Up Synthesis of Tethered Bilayer Lipid Membranes on Nanoelectronic Biosensor Devices. ACS Appl. Mater. Interfaces 2017, 9, 14618–14632. [Google Scholar] [CrossRef] [PubMed]
- Krishna, G.; Schulte, J.; Cornell, B.A.; Pace, R.J.; Osman, P.D. Tethered bilayer membranes containing ionic reservoirs: Selectivity and conductance. Langmuir 2003, 19, 2294–2305. [Google Scholar] [CrossRef]
- Valincius, G.; Meškauskas, T.; Ivanauskas, F. Electrochemical impedance spectroscopy of tethered bilayer membranes. Langmuir 2012, 28, 977–990. [Google Scholar] [CrossRef]
- Cranfield, C.G.; Berry, T.; Holt, S.A.; Hossain, K.R.; Le Brun, A.P.; Carne, S.; Al Khamici, H.; Coster, H.; Valenzuela, S.M.; Cornell, B. Evidence of the Key Role of H(3)O(+) in Phospholipid Membrane Morphology. Langmuir 2016, 32, 10725–10734. [Google Scholar] [CrossRef] [PubMed]
- Silin, V.I.; Hoogerheide, D.P. pH dependent electrical properties of the inner- and outer-leaflets of biomimetic cell membranes. J. Colloid Interface Sci. 2021, 594, 279–289. [Google Scholar] [CrossRef]
- Santos, H.A.; Vila-Viçosa, D.; Teixeira, V.H.; Baptista, A.M.; Machuqueiro, M. Constant-pH MD simulations of DMPA/DMPC lipid bilayers. J. Chem. Theory Comput. 2015, 11, 5973–5979. [Google Scholar] [CrossRef] [PubMed]
- Van Den Bogaart, G.; Guzmán, J.V.; Mika, J.T.; Poolman, B. On the mechanism of pore formation by melittin. J. Biol. Chem. 2008, 283, 33854–33857. [Google Scholar] [CrossRef] [Green Version]
- Sabapathy, T.; Deplazes, E.; Mancera, R.L. Revisiting the interaction of melittin with phospholipid bilayers: The effects of concentration and ionic strength. Int. J. Mol. Sci. 2020, 21, 746. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Terwilliger, C.; Eisenberg, D. The structure of melittin. J. Biol. Chem. 1982, 257, 6–016. [Google Scholar] [CrossRef]
- Ambrulevicius, F.; Valincius, G. Electrochemical impedance spectrum reveals structural details of distribution of pores and defects in supported phospholipid bilayers. Bioelectrochemistry 2022, 146, 108092. [Google Scholar] [CrossRef]
- Zvirbliene, A.; Pleckaityte, M.; Lasickiene, R.; Kucinskaite-Kodze, I.; Zvirblis, G. Production and characterization of monoclonal antibodies against vaginolysin: Mapping of a region critical for its cytolytic activity. Toxicon 2010, 56, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Raila, T.; Penkauskas, T.; Ambrulevičius, F.; Jankunec, M.; Meškauskas, T.; Valinčius, G. AI-based atomic force microscopy image analysis allows to predict electrochemical impedance spectra of defects in tethered bilayer membranes. Sci. Rep. 2022, 12, 1127. [Google Scholar] [CrossRef] [PubMed]
- Raila, T.; Ambrulevičius, F.; Penkauskas, T.; Jankunec, M.; Meškauskas, T.; Vanderah, D.J.; Valincius, G. Clusters of protein pores in phospholipid bilayer membranes can be identified and characterized by electrochemical impedance spectroscopy. Electrochim. Acta 2020, 364, 137179. [Google Scholar] [CrossRef]
- Yaguchi, M.; Uchida, T.; Motobayashi, K.; Osawa, M. Speciation of adsorbed phosphate at gold electrodes: A combined surface-enhanced infrared absorption spectroscopy and DFT study. J. Phys. Chem. Lett. 2016, 7, 3097–3102. [Google Scholar] [CrossRef]
- Ma, J.; Li, K.; Li, Z.; Qiu, Y.; Si, W.; Ge, Y.; Sha, J.; Liu, L.; Xie, X.; Yi, H. Drastically reduced ion mobility in a nanopore due to enhanced pairing and collisions between dehydrated ions. J. Am. Chem. Soc. 2019, 141, 4264–4272. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, S.; Molugu, T.R.; Doktorova, M.; Heberle, F.A.; Scott, H.L.; Kelley, E.G.; Nagao, M.; Dzikovski, B.G.; Standaert, R.F.; Barrera, F.N. Stiffening of Phosphocholine Membranes by Cholesterol. Biophys. J. 2020, 118, 86a. [Google Scholar] [CrossRef]
- Chakraborty, S.; Doktorova, M.; Molugu, T.R.; Heberle, F.A.; Scott, H.L.; Dzikovski, B.; Nagao, M.; Stingaciu, L.-R.; Standaert, R.F.; Barrera, F.N. How cholesterol stiffens unsaturated lipid membranes. Proc. Natl. Acad. Sci. USA 2020, 117, 21896–21905. [Google Scholar] [CrossRef]
- Reddy, A.S.; Warshaviak, D.T.; Chachisvilis, M. Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochim. Biophys. Acta (BBA)—Biomembr. 2012, 1818, 2271–2281. [Google Scholar] [CrossRef] [Green Version]
- Rojko, N.; Anderluh, G. How lipid membranes affect pore forming toxin activity. Acc. Chem. Res. 2015, 48, 3073–3079. [Google Scholar] [CrossRef]
- Gilbert, R.J. Cholesterol-dependent cytolysins. In Proteins Membrane Binding and Pore Formation; Springer: New York, NY, USA, 2010; pp. 56–66. [Google Scholar]
- Lee, M.-T.; Sun, T.-L.; Hung, W.-C.; Huang, H.W. Process of inducing pores in membranes by melittin. Proc. Natl. Acad. Sci. USA 2013, 110, 14243–14248. [Google Scholar] [CrossRef]
- Sabirovas, T.; Valiūnienė, A.; Valincius, G. Hybrid bilayer membranes on metallurgical polished aluminum. Sci. Rep. 2021, 11, 9648. [Google Scholar] [CrossRef]
- Wessman, P.; Strömstedt, A.A.; Malmsten, M.; Edwards, K. Melittin-lipid bilayer interactions and the role of cholesterol. Biophys. J. 2008, 95, 4324–4336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qian, S.; Heller, W.T. Melittin-induced cholesterol reorganization in lipid bilayer membranes. Biochim. Biophys. Acta (BBA)—Biomembr. 2015, 1848, 2253–2260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Deng, Z.; Lu, X.; Xu, C.; Yuan, B.; Yang, K. Lipid-specific interactions determine the organization and dynamics of membrane-active peptide melittin. Soft Matter 2020, 16, 3498–3504. [Google Scholar] [CrossRef] [PubMed]
- Lowe, L.A.; Kindt, J.T.; Cranfield, C.; Cornell, B.; Macmillan, A.; Wang, A. Subtle changes in pH affect the packing and robustness of fatty acid bilayers. Soft Matter 2022, 18, 3498–3504. [Google Scholar] [CrossRef]
- Ad, P.; Figaszewski, Z. Effect of pH on interfacial tension of bilayer lipid membrane. Biophys. J 2000, 78, 812–817. [Google Scholar]
- Aroti, A.; Leontidis, E.; Dubois, M.; Zemb, T. Effects of monovalent anions of the hofmeister series on DPPC lipid bilayers Part I: Swelling and in-plane equations of state. Biophys. J. 2007, 93, 1580–1590. [Google Scholar]
- Wu, X.; Wang, P.; Lewis, W.; Jiang, Y.-B.; Gale, P.A. Measuring anion binding at biomembrane interfaces. Nat. Commun. 2022, 13, 4623. [Google Scholar] [CrossRef]
- Redondo-Morata, L.; Giannotti, M.I.; Sanz, F. Structural impact of cations on lipid bilayer models: Nanomechanical properties by AFM-force spectroscopy. Mol. Membr. Biol. 2014, 31, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Sun, Z.; Low, T.; Hu, H.; Guo, X.; de Abajo, F.J.G.; Avouris, P.; Dai, Q. Nanomaterial-based plasmon-enhanced infrared spectroscopy. Adv. Mater. 2018, 30, 1704896. [Google Scholar]
- Li, J.; Zheng, B.; Zhang, Q.-W.; Liu, Y.; Shi, C.-F.; Wang, F.-B.; Wang, K.; Xia, X.-H. Attenuated total reflection surface-enhanced infrared absorption spectroscopy: A powerful technique for bioanalysis. J. Anal. Test. 2017, 1, 8. [Google Scholar] [CrossRef]
- Ataka, K.; Drauschke, J.; Stulberg, V.; Koksch, B.; Heberle, J. pH-induced insertion of pHLIP into a lipid bilayer: In-situ SEIRAS characterization of a folding intermediate at neutral pH. Biochim. Biophys. Acta (BBA)—Biomembr. 2022, 1864, 183873. [Google Scholar] [CrossRef] [PubMed]
- Forbrig, E.; Staffa, J.K.; Salewski, J.; Mroginski, M.A.; Hildebrandt, P.; Kozuch, J. Monitoring the orientational changes of alamethicin during incorporation into bilayer lipid membranes. Langmuir 2018, 34, 2373–2385. [Google Scholar] [CrossRef] [PubMed]
- Dziubak, D.; Sek, S. Physicochemical Characterization of Sparsely Tethered Bilayer Lipid Membranes: Structure of Submembrane Water and Nanomechanical Properties. ChemElectroChem 2021, 8, 2564–2571. [Google Scholar] [CrossRef]
- Uchida, T.; Osawa, M.; Lipkowski, J. SEIRAS studies of water structure at the gold electrode surface in the presence of supported lipid bilayer. J. Electroanal. Chem. 2014, 716, 112–119. [Google Scholar] [CrossRef]
- Su, Z.; Juhaniewicz-Debinska, J.; Sek, S.; Lipkowski, J. Water structure in the submembrane region of a floating lipid bilayer: The effect of an ion channel formation and the channel blocker. Langmuir 2019, 36, 409–418. [Google Scholar] [CrossRef] [PubMed]
- Disalvo, E.A.; Frias, M. Water state and carbonyl distribution populations in confined regions of lipid bilayers observed by FTIR spectroscopy. Langmuir 2013, 29, 6969–6974. [Google Scholar] [CrossRef] [PubMed]
- Gabriunaite, I.; Valiūnienė, A.; Valincius, G. Formation and properties of phospholipid bilayers on fluorine doped tin oxide electrodes. Electrochim. Acta 2018, 283, 1351–1358. [Google Scholar] [CrossRef]
- Aleknavičienė, I.; Jankunec, M.; Penkauskas, T.; Valincius, G. Electrochemical properties of tethered lipid bilayers on thin film silver substrates. Electrochim. Acta 2021, 389, 138726. [Google Scholar] [CrossRef]
Membrane Composition | Average log(fmin) pH 4.4 | Average log(fmin) pH 7.1 | ∆log(fmin) pH 4.4 → 7.1 | SD |
---|---|---|---|---|
DOPC/Chol, 50:50 | –0.53 | 0.13 | 0.65 | ±0.08 (n = 6) |
TLE | –0.37 | 0.28 | 0.65 | ±0.08 (n = 5) |
DOPC/Chol, 70:30 | 0.05 | 0.70 | 0.65 | ±0.15 (n = 6) |
Membrane Composition | ∆log(fmin) MEL | ∆log(fmin) VLY |
---|---|---|
DOPC/Chol, 50:50 | 0.81 ± 0.61 (n = 8) | 2.73 ± 0.76 (n = 8) |
TLE | 1.11 ± 0.31 (n = 5) | Completely Damaged (n = 5) |
DOPC/Chol, 70:30 | 1.99 ± 0.47 (n = 7) | 0.05 ± 0.06 (n = 7) |
Condition | pH | Ndef (μm−2) | ρ (Ohm · cm · 104) | Ratio | |
---|---|---|---|---|---|
constant Ndef | VLY | 4.4 | 2.34 | 6.21 | 1.96 |
(Hypothesis 1) | 7.1 | 2.34 | 3.16 | ||
Pristine | 4.4 | 0.12 | 8.05 | 2.54 | |
7.1 | 0.12 | 3.16 | |||
constant ρ | VLY | 4.4 | 1.65 | 3.16 | 1.71 |
(Hypothesis 2) | 7.1 | 2.81 | 3.16 | ||
Pristine | 4.4 | 0.04 | 3.16 | 1.88 | |
7.1 | 0.09 | 3.16 | |||
constant Ndef variable defect density distribution (Hypothesis 3) | VLY | 4.4 | 2.70 | 5.66 | 1.79 |
7.1 | 2.70 | 3.16 | |||
Pristine | 4.4 | 0.10 | 6.07 | 1.92 | |
7.1 | 0.10 | 3.16 |
Membrane Composition | ∆log(fmin) MEL | ∆log(fmin) VLY |
---|---|---|
DOPC/Chol, 50:50 | –0.11 ± 0.49 (n = 8) | −0.33 ± 0.14 (n = 8) |
TLE | –0.53 ± 0.19 (n = 5) | Completely Damaged (n = 5) |
DOPC/Chol, 70:30 | –0.45 ± 0.24 (n = 7) | −0.58 ± 0.21 (n = 7) |
Membrane Composition | ∆log(fmin) MEL | ∆log(fmin) VLY |
---|---|---|
DOPC/Chol, 50:50 | 0.54 ± 0.08 (n = 6) | 0.38 ± 0.10 (n = 8) |
TLE | 0.50 ± 0.22 (n = 6) | Completely Damaged (n = 5) |
DOPC/Chol, 70:30 | 0.38 ± 0.17 (n = 7) | 0.64 ± 0.24 (n = 7) |
Condition | pH | Ndef (μm−2) | ρ (Ohm · cm · 104) | Ratio | |
---|---|---|---|---|---|
constant Ndef | MEL | 4.4 | 5.60 | 7.62 | 2.24 |
(Hypothesis 1) | 7.1 | 5.60 | 3.16 | ||
Pristine | 4.4 | 0.09 | 7.74 | 2.45 | |
7.1 | 0.09 | 3.16 | |||
constant ρ | MEL | 4.4 | 5.31 | 3.16 | 2.30 |
(Hypothesis 2) | 7.1 | 12.19 | 3.16 | ||
Pristine | 4.4 | 0.09 | 3.16 | 2.29 | |
7.1 | 0.22 | 3.16 | |||
constant Ndef variable defect density distribution (Hypothesis 3) | MEL | 4.4 | 12.19 | 6.36 | 2.01 |
7.1 | 12.19 | 3.16 | |||
Pristine | 4.4 | 0.22 | 7.70 | 2.44 | |
7.1 | 0.22 | 3.16 |
Condition | pH | Ndef (μm−2) | ρ (Ohm · cm · 104) | Ratio | |
---|---|---|---|---|---|
constant Ndef | MEL | 4.4 | 1.12 | 11.98 | 3.79 |
(Hypothesis 1) | 7.1 | 1.12 | 3.16 | ||
Pristine | 4.4 | 0.04 | 9.61 | 3.04 | |
7.1 | 0.04 | 3.16 | |||
constant ρ | MEL | 4.4 | 0.29 | 3.16 | 3.12 |
(Hypothesis 2) | 7.1 | 0.93 | 3.16 | ||
Pristine | 4.4 | 0.01 | 3.16 | 2.90 | |
7.1 | 0.04 | 3.16 | |||
constant Ndef variable defect density distribution (Hypothesis 3) | MEL | 4.4 | 0.93 | 12.81 | 4.05 |
7.1 | 0.93 | 3.16 | |||
Pristine | 4.4 | 0.04 | 12.06 | 3.82 | |
7.1 | 0.04 | 3.16 |
No | pH | Wavenumber (cm−1) | ||||
---|---|---|---|---|---|---|
1 | 7.3 | 3280 | 3468 | 3591 | 0.35 | 0.08 |
2 | 4.5 | 3240 | 3419 | 3562 | 0.66 | 0.09 |
3 | 7.3 | 3276 | 3467 | 3593 | 0.43 | 0.08 |
4 | 4.5 | 3242 | 3414 | 3553 | 0.85 | 0.16 |
Si|H2O | 3224 | 3404 | 3585 | 0.74 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shivabalan, A.P.; Ambrulevicius, F.; Talaikis, M.; Pudzaitis, V.; Niaura, G.; Valincius, G. Effect of pH on Electrochemical Impedance Response of Tethered Bilayer Lipid Membranes: Implications for Quantitative Biosensing. Chemosensors 2023, 11, 450. https://doi.org/10.3390/chemosensors11080450
Shivabalan AP, Ambrulevicius F, Talaikis M, Pudzaitis V, Niaura G, Valincius G. Effect of pH on Electrochemical Impedance Response of Tethered Bilayer Lipid Membranes: Implications for Quantitative Biosensing. Chemosensors. 2023; 11(8):450. https://doi.org/10.3390/chemosensors11080450
Chicago/Turabian StyleShivabalan, Arun Prabha, Filipas Ambrulevicius, Martynas Talaikis, Vaidas Pudzaitis, Gediminas Niaura, and Gintaras Valincius. 2023. "Effect of pH on Electrochemical Impedance Response of Tethered Bilayer Lipid Membranes: Implications for Quantitative Biosensing" Chemosensors 11, no. 8: 450. https://doi.org/10.3390/chemosensors11080450
APA StyleShivabalan, A. P., Ambrulevicius, F., Talaikis, M., Pudzaitis, V., Niaura, G., & Valincius, G. (2023). Effect of pH on Electrochemical Impedance Response of Tethered Bilayer Lipid Membranes: Implications for Quantitative Biosensing. Chemosensors, 11(8), 450. https://doi.org/10.3390/chemosensors11080450