3D-Printed Hydrodynamic Focusing Lab-on-a-Chip Device for Impedance Flow Particle Analysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Model and Simulation of the Hydrodynamic Flow-Focusing Cytometry Device
2.3. 3D-Printing and Assembly of the Hydrodynamic Flow-Focusing, Impedance Cytometry Device
2.4. Optical Validation of the Flow-Focusing Function in the 3D-Printed Device
2.5. Electrochemical Impedance Spectroscopy Characterization
3. Results and Discussion
3.1. Simulated Concentration Profiles in the 3D-Printed LOC
3.2. Flow-Focusing Validation in the 3D-Printed LOC
3.3. Influence of the Flow Ratio on the Electrochemical System Properties
3.4. Proof-of-Concept of the Impedimetric Detection of Flowing Microspheres
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, Y.; Xie, X.; Duan, Y.; Wang, L.; Cheng, Z.; Cheng, J. A Review of Impedance Measurements of Whole Cells. Biosens. Bioelectron. 2016, 77, 824–836. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Xue, C.; Zhao, Y.; Chen, D.; Wu, M.-H.; Wang, J. Microfluidic Impedance Flow Cytometry Enabling High-Throughput Single-Cell Electrical Property Characterization. Int. J. Mol. Sci. 2015, 16, 9804–9830. [Google Scholar] [CrossRef] [PubMed]
- Van Berkel, C.; Gwyer, J.D.; Deane, S.; Green, N.; Holloway, J.; Hollis, V.; Morgan, H. Integrated Systems for Rapid Point of Care (PoC) Blood Cell Analysis. Lab. Chip 2011, 11, 1249–1255. [Google Scholar] [CrossRef]
- Hassan, U.; Bashir, R. Electrical Cell Counting Process Characterization in a Microfluidic Impedance Cytometer. Biomed. Microdevices 2014, 16, 697–704. [Google Scholar] [CrossRef] [PubMed]
- Ateya, D.A.; Erickson, J.S.; Howell, P.B.; Hilliard, L.R.; Golden, J.P.; Ligler, F.S. The Good, the Bad, and the Tiny: A Review of Microflow Cytometry. Anal. Bioanal. Chem. 2008, 391, 1485–1498. [Google Scholar] [CrossRef] [PubMed]
- Chien, J.-C.; Ameri, A.; Yeh, E.-C.; Killilea, A.N.; Anwar, M.; Niknejad, A.M. A High-Throughput Flow Cytometry-on-a-CMOS Platform for Single-Cell Dielectric Spectroscopy at Microwave Frequencies. Lab. Chip 2018, 18, 2065–2076. [Google Scholar] [CrossRef] [PubMed]
- Liang, L.; Zuo, Y.F.; Wu, W.; Zhu, X.Q.; Yang, Y. Optofluidic Restricted Imaging, Spectroscopy and Counting of Nanoparticles by Evanescent Wave Using Immiscible Liquids. Lab. Chip 2016, 16, 3007–3014. [Google Scholar] [CrossRef]
- Hu, X.J.; Liu, H.L.; Jin, Y.X.; Liang, L.; Zhu, D.M.; Zhu, X.Q.; Guo, S.S.; Zhou, F.L.; Yang, Y. Precise Label-Free Leukocyte Subpopulation Separation Using Hybrid Acoustic-Optical Chip. Lab. Chip 2018, 18, 3405–3412. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.C.; Di Berardino, M.; Schade-Kampmann, G.; Hebeisen, M.; Pierzchalski, A.; Bocsi, J.; Mittag, A.; Tárnok, A. Microfluidic Impedance-Based Flow Cytometry. Cytometry A 2010, 77, 648–666. [Google Scholar] [CrossRef]
- Yan, S.; Yuan, D. Continuous Microfluidic 3D Focusing Enabling Microflow Cytometry for Single-Cell Analysis. Talanta 2021, 221, 121401. [Google Scholar] [CrossRef]
- Honrado, C.; Bisegna, P.; Swami, N.S.; Caselli, F. Single-Cell Microfluidic Impedance Cytometry: From Raw Signals to Cell Phenotypes Using Data Analytics. Lab. Chip 2021, 21, 22–54. [Google Scholar] [CrossRef] [PubMed]
- Benjamin Ho, C.M.; Huan Ng, S.; Holden Li, K.H.; Yoon, Y.-J. 3D Printed Microfluidics for Biological Applications. Lab. Chip 2015, 15, 3627–3637. [Google Scholar] [CrossRef]
- Zarei, M. Advances in Point-of-Care Technologies for Molecular Diagnostics. Biosens. Bioelectron. 2017, 98, 494–506. [Google Scholar] [CrossRef] [PubMed]
- Systematics. Solutions at Works. Available online: https://www.systematics.co.il/en/ (accessed on 22 April 2023).
- Mir, M.A.; Tirumkudulu, M.S. A Low-Cost Flow Cell for Flow Cytometry. Biosens. Bioelectron. 2022, 211, 114334. [Google Scholar] [CrossRef] [PubMed]
- Jue, E.; Schoepp, N.G.; Witters, D.; Ismagilov, R.F. Evaluating 3D Printing to Solve the Sample-to-Device Interface for LRS and POC Diagnostics: Example of an Interlock Meter-Mix Device for Metering and Lysing Clinical Urine Samples. Lab. Chip 2016, 16, 1852–1860. [Google Scholar] [CrossRef] [PubMed]
- Bishop, G.W.; Satterwhite-Warden, J.E.; Bist, I.; Chen, E.; Rusling, J.F. Electrochemiluminescence at Bare and DNA-Coated Graphite Electrodes in 3D-Printed Fluidic Devices. ACS Sens. 2016, 1, 197–202. [Google Scholar] [CrossRef] [PubMed]
- Hampson, S.M.; Rowe, W.; Christie, S.D.R.; Platt, M. 3D Printed Microfluidic Device with Integrated Optical Sensing for Particle Analysis. Sens. Actuators B Chem. 2018, 256, 1030–1037. [Google Scholar] [CrossRef]
- Duarte, L.C.; Figueredo, F.; Ribeiro, L.E.B.; Cortón, E.; Coltro, W.K.T. Label-Free Counting of Escherichia Coli Cells in Nanoliter Droplets Using 3D Printed Microfluidic Devices with Integrated Contactless Conductivity Detection. Anal. Chim. Acta 2019, 1071, 36–43. [Google Scholar] [CrossRef]
- Costa, B.M.d.C.; Griveau, S.; Bedioui, F.; Orlye, F.D.; da Silva, J.A.F.; Varenne, A. Stereolithography Based 3D-Printed Microfluidic Device with Integrated Electrochemical Detection. Electrochim. Acta 2022, 407, 139888. [Google Scholar] [CrossRef]
- Wang, H.; Enders, A.; Preuss, J.-A.; Bahnemann, J.; Heisterkamp, A.; Torres-Mapa, M.L. 3D Printed Microfluidic Lab-on-a-Chip Device for Fiber-Based Dual Beam Optical Manipulation. Sci. Rep. 2021, 11, 14584. [Google Scholar] [CrossRef] [PubMed]
- Tang, W.; Tang, D.; Ni, Z.; Xiang, N.; Yi, H. Microfluidic Impedance Cytometer with Inertial Focusing and Liquid Electrodes for High-Throughput Cell Counting and Discrimination. Anal. Chem. 2017, 89, 3154–3161. [Google Scholar] [CrossRef] [PubMed]
- Prinyakupt, J.; Pluempitiwiriyawej, C. Segmentation of White Blood Cells and Comparison of Cell Morphology by Linear and Naïve Bayes Classifiers. Biomed. Eng. Online 2015, 14, 63. [Google Scholar] [CrossRef] [PubMed]
- Winkler, T.E.; Ben-Yoav, H.; Ghodssi, R. Hydrodynamic Focusing for Microfluidic Impedance Cytometry: A System Integration Study. Microfluid. Nanofluid. 2016, 20, 134. [Google Scholar] [CrossRef]
- King, M.R. Chapter 7—Biomedical Applications of Microchannel Flows. In Heat Transfer and Fluid Flow in Minichannels and Microchannels; Kandlikar, S.G., Garimella, S., Li, D., Colin, S., King, M.R., Eds.; Elsevier Science Ltd.: Oxford, UK, 2006; pp. 409–442. ISBN 978-0-08-044527-4. [Google Scholar]
- Dolomite. 3D Flow Focusing Chip. Available online: https://www.dolomite-microfluidics.com/product/3d-flow-focusing-chip/ (accessed on 23 April 2023).
- Dieujuste, D.; Qiang, Y.; Du, E. A Portable Impedance Microflow Cytometer for Measuring Cellular Response to Hypoxia. Biotechnol. Bioeng. 2021, 118, 4041–4051. [Google Scholar] [CrossRef] [PubMed]
- Hunt, B. Diffusion in Laminar Pipe Flow. Int. J. Heat Mass Transf. 1977, 20, 393–401. [Google Scholar] [CrossRef]
- Rapp, B.E. Chapter 9—Fluids. In Microfluidics: Modelling, Mechanics and Mathematics; Rapp, B.E., Ed.; Micro and Nano Technologies; Elsevier: Oxford, UK, 2017; pp. 243–263. ISBN 978-1-4557-3141-1. [Google Scholar]
- Randviir, E.P.; Banks, C.E. Electrochemical Impedance Spectroscopy: An Overview of Bioanalytical Applications. Anal. Methods 2013, 5, 1098–1115. [Google Scholar] [CrossRef]
Flow Ratio | ||||||||
---|---|---|---|---|---|---|---|---|
- | ||||||||
- | ||||||||
- | ||||||||
- | ||||||||
- |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Desagani, D.; Kleiman, S.; Zagardan, T.; Ben-Yoav, H. 3D-Printed Hydrodynamic Focusing Lab-on-a-Chip Device for Impedance Flow Particle Analysis. Chemosensors 2023, 11, 283. https://doi.org/10.3390/chemosensors11050283
Desagani D, Kleiman S, Zagardan T, Ben-Yoav H. 3D-Printed Hydrodynamic Focusing Lab-on-a-Chip Device for Impedance Flow Particle Analysis. Chemosensors. 2023; 11(5):283. https://doi.org/10.3390/chemosensors11050283
Chicago/Turabian StyleDesagani, Dayananda, Shani Kleiman, Teddy Zagardan, and Hadar Ben-Yoav. 2023. "3D-Printed Hydrodynamic Focusing Lab-on-a-Chip Device for Impedance Flow Particle Analysis" Chemosensors 11, no. 5: 283. https://doi.org/10.3390/chemosensors11050283
APA StyleDesagani, D., Kleiman, S., Zagardan, T., & Ben-Yoav, H. (2023). 3D-Printed Hydrodynamic Focusing Lab-on-a-Chip Device for Impedance Flow Particle Analysis. Chemosensors, 11(5), 283. https://doi.org/10.3390/chemosensors11050283