Near-Perfect Infrared Transmission Based on Metallic Hole and Disk Coupling Array for Mid-Infrared Refractive Index Sensing
Abstract
:1. Introduction
2. Results and Discussions
2.1. Principle of Coupling EOT
2.2. Structures and Simulation
2.3. Analysis of Refractive Index Sensing
2.4. Fabrication and Testing
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohammadi, R.; Ochs, M.; Andrieu-Brunsen, A.; Vogel, N. Effect of Asymmetry on Plasmon Hybridization and Sensing Capacities of Hole-Disk Arrays. J. Phys. Chem. C 2020, 124, 2609–2618. [Google Scholar] [CrossRef]
- Nishijima, Y.; Balčytis, A.; Seniutinas, G.; Juodkazis, S.; Arakawa, T.; Okazaki, S.; Petruškevičius, R. Plasmonic Hydrogen Sensor at Infrared Wavelengths. Sens. Mater. 2017, 29, 1269–1274. [Google Scholar]
- Wang, B.; Yu, P.; Wang, W.; Zhang, X.; Kuo, H.-C.; Xu, H.; Wang, Z.M. High-Q Plasmonic Resonances: Fundamentals and Applications. Adv. Opt. Mater. 2021, 9, 2001520. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, J.; Zhu, J.; Yi, Z.; Yu, J. Refractive index sensing of double Fano resonance excited by nano-cube array coupled with multilayer all-dielectric film. Chin. Phys. B 2021, 31, 024210. [Google Scholar] [CrossRef]
- Chen, Z.; Hu, R.; Cui, L.; Yu, L.; Wang, L.; Xiao, J. Plasmonic wavelength demultiplexers based on tunable Fano resonance in coupled-resonator systems. Opt. Commun. 2014, 320, 6–11. [Google Scholar] [CrossRef]
- Zhou, Z.-K.; Su, X.-R.; Peng, X.-N.; Wang, Q.-Q.; Zhang, Q.; Shan, X.; Zhang, Z. 1 Tuning gold nanorod-nanoparticle hybrids into plasmonic Fano resonance for enhanced lightening and transmission. Phys. Rev. Lett. 2010, 11, 49–55. [Google Scholar]
- Luk’yanchuk, B.; Zheludev, N.I.; Maier, S.A.; Halas, N.J.; Nordlander, P.; Giessen, H.; Chong, C.T. The Fano resonance in plasmonic nanostructures and metamaterials. Nat. Mater. 2010, 9, 707–715. [Google Scholar] [CrossRef]
- Wang, X.; Wu, Y.; Wen, X.; Zhu, J.; Bai, X.; Qi, Y.; Yang, H. Surface plasmons and SERS application of Au nanodisk array and Au thin film composite structure. Opt. Quantum Electron. 2020, 52, 238. [Google Scholar] [CrossRef]
- Wu, Y.; Wang, X.; Wen, X.; Zhu, J.; Bai, X.; Jia, T.; Yang, H.; Zhang, L.; Qi, Y. Surface-enhanced Raman scattering based on hybrid surface plasmon excited by Au nanodisk and Au film coupling structure. Phys. Lett. A 2020, 384, 126544. [Google Scholar] [CrossRef]
- Barnes, W.L.; Dereux, A.; Ebbesen, T.W. Surface plasmon subwavelength optics. Nature 2003, 424, 824–830. [Google Scholar] [CrossRef]
- Genet, C.; Ebbesen, T.W. Light in tiny holes. Nature 2007, 445, 39–46. [Google Scholar] [CrossRef] [PubMed]
- Lezec, H.J.; Thio, T. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt. Express 2004, 12, 3629–3651. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Butun, S.; Aydin, K. Large-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films. ACS Photonics 2015, 2, 183–188. [Google Scholar] [CrossRef]
- Biswas, R.; Paul, D. LSPR enhanced gasoline sensing with a U-bent optical fiber. J. Phys. D Appl. Phys. 2016, 49, 305104. [Google Scholar]
- Lo, Y.-L.; Chuang, C.-H.; Lin, Z.-W. Ultrahigh sensitivity polarimetric strain sensor based upon D-shaped optical fiber and surface plasmon resonance technology. Opt. Lett. 2011, 36, 2489–2491. [Google Scholar] [CrossRef] [PubMed]
- Papiya, D.; Vinod Kumar, S.; Massimo, O.; Guido, P. Reflectance-based low-cost disposable optical fiber surface plasmon resonance probe with enhanced biochemical sensitivity. Opt. Eng. 2016, 55, 046114. [Google Scholar]
- Sage, A.T.; Besant, J.D.; Lam, B.; Sargent, E.H.; Kelley, S.O. Ultrasensitive Electrochemical Biomolecular Detection Using Nanostructured Microelectrodes. Acc. Chem. Res. 2014, 47, 2417–2425. [Google Scholar] [CrossRef]
- Lord, H.; Kelley, S. Nanomaterials for ultrasensitive electrochemical nucleic acids biosensing. J. Mater. Chem. 2009, 19, 3127–3134. [Google Scholar] [CrossRef]
- Guan, S.; Li, R.; Sun, X.; Xian, T.; Yang, H. Construction of novel ternary Au/LaFeO3/Cu2O composite photocatalysts for RhB degradation via photo-Fenton catalysis. Mater. Technol. 2021, 36, 603–615. [Google Scholar] [CrossRef]
- Liu, C.; Wang, J.; Wang, F.; Su, W.; Yang, L.; Lv, J.; Fu, G.; Li, X.; Liu, Q.; Sun, T.; et al. Surface plasmon resonance (SPR) infrared sensor based on D-shape photonic crystal fibers with ITO coatings. Opt. Commun. 2020, 464, 125496. [Google Scholar] [CrossRef]
- Liu, C.; Yang, L.; Liu, Q.; Wang, F.; Sun, Z.; Sun, T.; Mu, H.; Chu, P.K. Analysis of a Surface Plasmon Resonance Probe Based on Photonic Crystal Fibers for Low Refractive Index Detection. Plasmonics 2018, 13, 779–784. [Google Scholar] [CrossRef]
- Sharma, A.K.; Gupta, B.D. Influence of temperature on the sensitivity and signal-to-noise ratio of a fiber-optic surface-plasmon resonance sensor. Appl. Opt. 2006, 45, 151–161. [Google Scholar] [CrossRef] [PubMed]
- Pereira-Barros, M.A.; Nic Daeid, N.; Adegoke, O. Rapid and selective aptamer-based fluorescence detection of salivary lysozyme using plasmonic metal-enhanced fluorescence of ZnSSe alloyed quantum dots-gold nanoparticle nanohybrid. J. Photochem. Photobiol. A Chem. 2021, 418, 113384. [Google Scholar] [CrossRef]
- Akceoglu, G.A.; Saylan, Y.; Inci, F. Point-of-Care Diagnostics: A Snapshot of Microfluidics in Point-of-Care Diagnostics: Multifaceted Integrity with Materials and Sensors (Adv. Mater. Technol. 7/2021). Adv. Mater. Technol. 2021, 6, 2170037. [Google Scholar] [CrossRef]
- Prikulis, J.; Hanarp, P.; Olofsson, L.; Sutherland, D.; Käll, M. Optical Spectroscopy of Nanometric Holes in Thin Gold Films. Nano Lett. 2004, 4, 1003–1007. [Google Scholar]
- Wang, Y.; Luong, H.; Zhang, Z.; Zhao, Y. Coupling between plasmonic nanohole array and nanorod array: The emerging of a new extraordinary optical transmission mode and epsilon-near-zero property. J. Phys. D Appl. Phys. 2020, 53, 275202. [Google Scholar] [CrossRef]
- Du, Z.; Liu, H. Mid-infrared refractive index photonic crystal fiber sensor based on surface plasmon resonance for ultra-high sensitivity. Laser Phys. 2023, 33, 016201. [Google Scholar] [CrossRef]
- Hosseini, E.; Mir, A.; Farmani, A. Black Phosphorous-Based Nanostructures for Refractive Index Sensing with High Figure of Merit in the Mid-infrared. Plasmonics 2022, 17, 639–646. [Google Scholar]
- Kirlar, M.; Turkmen, M. Ultra narrowband perfect absorber for refractive index sensing applications in mid-infrared region. J. Electromagn. Waves Appl. 2023, 37, 803–813. [Google Scholar] [CrossRef]
- Wu, C.; Khanikaev, A.B.; Adato, R.; Arju, N.; Yanik, A.A.; Altug, H.; Shvets, G. Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 2012, 11, 69–75. [Google Scholar] [CrossRef]
- Singh, A.; Lin, Y.-C.; Sheehan, C.; Dattelbaum, A.; Gupta, G.; Mohite, A. Millimeter-scale gate-tunable graphene nanoribbon devices as a platform for mid-infrared and bio sensing applications. Appl. Mater. Today 2016, 4, 40–44. [Google Scholar] [CrossRef]
- Lertvachirapaiboon, C.; Baba, A.; Ekgasit, S.; Shinbo, K.; Kato, K.; Kaneko, F. Transmission surface plasmon resonance techniques and their potential biosensor applications. Biosens. Bioelectron. 2018, 99, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Chen, Y.; Yan, S.; Yang, W. Nanostructured surface plasmon resonance sensors: Toward narrow linewidths. Heliyon 2023, 9, e16598. [Google Scholar] [CrossRef] [PubMed]
- Hansen, P.M.; Bhatia, V.K.; Harrit, N.; Oddershede, L. Expanding the Optical Trapping Range of Gold Nanoparticles. Nano Letters 2005, 5, 1937–1942. [Google Scholar] [CrossRef]
- Mrejen, M.; Israel, A.; Taha, H.; Palchan, M.; Lewis, A. Near-field characterization of extraordinary optical transmission in sub-wavelength aperture arrays. Opt. Express 2007, 15, 9129–9138. [Google Scholar] [CrossRef]
- Silalahi, H.M.; Tsai, Y.-H.; Lee, K.-L.; Wei, P.-K.; Huang, C.-Y. Large shift of resonance wavelengths of silver nanoslit arrays using electrowetting-on-dielectric cells. Opt. Lett. 2021, 46, 705–708. [Google Scholar] [CrossRef]
- Ung, B.; Sheng, Y. Optical surface waves over metallo-dielectric nanostructures: Sommerfeld integrals revisited. Opt. Express 2008, 16, 9073–9086. [Google Scholar] [CrossRef]
- Du, B.; Yang, Y.; Zhang, Y.; Jia, P.; Ebendorff-Heidepriem, H.; Ruan, Y.; Yang, D. Enhancement of extraordinary optical transmission and sensing performance through coupling between metal nanohole and nanoparticle arrays. J. Phys. D Appl. Phys. 2019, 52, 275201. [Google Scholar] [CrossRef]
- Wang, Z.; Hou, Y. High Optical Transmission in a Hybrid Plasmonic-Optical Structure with a Continuous Metal Film. Plasmonics 2018, 13, 1159–1163. [Google Scholar] [CrossRef]
- Li, Z.; Gao, J.; Gao, J.; Yang, H.; Liu, H.; Wang, X.; Wang, T.; Wang, K.; Li, Q.; Liu, X.; et al. Linewidth reduction effect of a cavity-coupled dual-passband plasmonic filter. Opt. Express 2020, 28, 8753–8763. [Google Scholar]
- Cheng, Y.; Zhang, H.; Mao, X.S.; Gong, R. Dual-band plasmonic perfect absorber based on all-metal nanostructure for refractive index sensing application. Mater. Lett. 2018, 219, 123–126. [Google Scholar] [CrossRef]
- Verma, S.K.; Srivastava, S.K. Giant Extra-Ordinary Near Infrared Transmission from Seemingly Opaque Plasmonic Metasurface: Sensing Applications. Plasmonics 2022, 17, 653–663. [Google Scholar] [CrossRef] [PubMed]
- Mobasser, S.; Poorgholam-Khanjari, S.; Bazgir, M.; Zarrabi, F.B. Highly Sensitive Reconfigurable Plasmonic Metasurface with Dual-Band Response for Optical Sensing and Switching in the Mid-Infrared Spectrum. J. Electron. Mater. 2021, 50, 120–128. [Google Scholar] [CrossRef]
Resonance wavelength (μm) | 3.97 | 4.58 | 5.60 | 6.36 | 8.59 | 10.89 |
Parameters (μm) P/D/(h1, h2) | 5.6/1.84/0.3 | 6.48/1.92/0.35 | 7.84/2.16/0.45 | 8.96/2.7/0.6 | 12.08/3.2/0.8 | 15.3/6.4/1.0 |
FWHM (nm) | 78 | 41 | 88 | 76 | 65 | 52 |
Tmax | 0.96 | 0.93 | 0.91 | 0.9 | 0.92 | 0.9 |
Principle | Wavelength (μm) | Sensitivity (Max) (μm/RIU) | FOM (Max) | References |
---|---|---|---|---|
Plasmonic perfect absorber (PA) based on graphene metamaterials | 22.5 | 5.6 | 10.8 | [41] |
Photonic crystal fiber | 3.4 | 9 | / | [27] |
EOT from two metal nano-slit arrays | 1.8–1.96 | 1.435 | 80 | [42] |
MIM plasmon absorber | 2.9 | 2.44 | 84 | [43] |
Coupled Al hole–disk array | 3.5 | 3.521 | 20 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, L.; Lai, J.; Meng, Q.; Chen, C.; Gao, Y. Near-Perfect Infrared Transmission Based on Metallic Hole and Disk Coupling Array for Mid-Infrared Refractive Index Sensing. Chemosensors 2024, 12, 3. https://doi.org/10.3390/chemosensors12010003
Xu L, Lai J, Meng Q, Chen C, Gao Y. Near-Perfect Infrared Transmission Based on Metallic Hole and Disk Coupling Array for Mid-Infrared Refractive Index Sensing. Chemosensors. 2024; 12(1):3. https://doi.org/10.3390/chemosensors12010003
Chicago/Turabian StyleXu, Lingyi, Jianjun Lai, Qinghua Meng, Changhong Chen, and Yihua Gao. 2024. "Near-Perfect Infrared Transmission Based on Metallic Hole and Disk Coupling Array for Mid-Infrared Refractive Index Sensing" Chemosensors 12, no. 1: 3. https://doi.org/10.3390/chemosensors12010003
APA StyleXu, L., Lai, J., Meng, Q., Chen, C., & Gao, Y. (2024). Near-Perfect Infrared Transmission Based on Metallic Hole and Disk Coupling Array for Mid-Infrared Refractive Index Sensing. Chemosensors, 12(1), 3. https://doi.org/10.3390/chemosensors12010003