A Theoretical Examination of Various Complexes of a Proposed Novel Chemosensor Material—Graphene/SiC
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Basic Analysis of Adsorption
3.2. Chemosensor Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E.; et al. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30. [Google Scholar] [CrossRef] [PubMed]
- Huang, L.; Chang, Q.; Guo, G.; Liu, Y.; Xie, Y.; Wang, T.; Ling, B.; Yang, H. Synthesis of high-quality graphene films on nickel foils by rapid thermal chemical vapor deposition. Carbon 2012, 50, 551. [Google Scholar] [CrossRef]
- Park, J.; Xiong, W.; Gao, Y.; Qian, M.; Xie, Z.; Mitchell, M.; Zhou, Y.; Han, G.; Jiang, L.; Lu, Y. Fast growth of graphene patterns by laser direct writing. Appl. Phys. Lett. 2011, 98, 123109. [Google Scholar] [CrossRef]
- Berger, C.; Song, Z.; Li, T.; Li, X.; Ogbazghi, A.; Feng, R.; Dai, Z.; Marchenko, A.; Conrad, E.; First, P.; et al. Ultrathin Epitaxial Graphite: 2D Electron Gas Properties and a Route toward Graphene-based Nanoelectronics. J. Phys. Chem. 2004, 108, 19912. [Google Scholar] [CrossRef]
- Nevius, M.; Conrad, M.; Wang, F.; Celis, A.; Nair, M.; Taleb-Ibrahimi, A.; Tejeda, A.; Conrad, E. Semiconducting Graphene from Highly Ordered Substrate Interactions. Phys. Rev. Lett. 2015, 115, 136802. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Conrad, E.H.; de Heer, W.A. Numerical Data and Functional Relationships in Science and Technology—New Series; Subvolume III/45B; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar] [CrossRef]
- Kolev, S.; Atanasov, V.; Aleksandrov, H.; Milenov, T. Band gap modulation of graphene on SiC. Eur. Phys. J. B 2018, 91, 272. [Google Scholar] [CrossRef]
- Kolev, S.; Atanasov, V.; Aleksandrov, H.; Popov, V.; Milenov, T. Semiconducting graphene. Bul. Chem. Commun. 2019, 51, 552–556. [Google Scholar] [CrossRef]
- Kolev, S.K.; Aleksandrov, H.A.; Atanasov, V.A.; Popov, V.N.; Milenov, T.I. Interaction of Graphene with Out-of-Plane Aromatic Hydrocarbons. J. Phys. Chem. C 2019, 123, 21448–21456. [Google Scholar] [CrossRef]
- MSDS of Benzene. Available online: https://www.airgas.com/msds/001062.pdf (accessed on 26 September 2024).
- MSDS of TCDD. Available online: https://www.bio.vu.nl/~microb/Protocols/chemicals/MSDS/tetrachlorodibenzo-p-dioxin%20(2,3,7,8-).pdf (accessed on 26 September 2024).
- VandeVondele, J.; Krack, M.; Mohamed, F.; Parrinello, M.; Chassaing, T.; Hutter, J. Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comput. Phys. Commun. 2005, 167, 103–128. [Google Scholar] [CrossRef]
- Kuehne, T.D.; Iannuzzi, M.; Del Ben, M.; Rybkin, V.V.; Seewald, P.; Stein, F.; Laino, T.; Khaliullin, R.Z.; Schuett, O.; Schiffmann, F.; et al. CP2K: An electronic structure and molecular dynamics software package—Quickstep: Efficient and accurate electronic structure calculations. J. Chem. Phys. 2020, 152, 194103. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- VandeVondele, J.; Hutter, J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J. Chem. Phys. 2007, 127, 114105. [Google Scholar] [CrossRef] [PubMed]
- Lippert, G.; Hutter, J.; Parrinello, M. The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor. Chem. Acc. 1999, 103, 124–140. [Google Scholar] [CrossRef]
- Lippert, G.; Hutter, J.; Parrinello, M. A hybrid Gaussian and plane wave density functional scheme. Mol. Phys. 1997, 92, 477–487. [Google Scholar] [CrossRef]
- Goedecker, S.; Teter, M.; Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 1996, 54, 1703–1710. [Google Scholar] [CrossRef]
- Hartwigsen, C.; Goedecker, S.; Hutter, J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys. Rev. B 1998, 58, 3641–3662. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Broyden, C. The convergence of a class of double-rank minimization algorithms. J. Inst. Math. Appl. 1970, 6, 76–90. [Google Scholar] [CrossRef]
- Fletcher, R. A new approach to variable metric algorithms. Comp. J. 1970, 13, 317–322. [Google Scholar] [CrossRef]
- Goldfarb, D. A family of variable-metric methods derived by variational means. Math. Comp. 1970, 24, 23–26. [Google Scholar] [CrossRef]
- Shanno, D. Conditioning of quasi-Newton methods for function minimization. Math. Comp. 1970, 24, 647–656. [Google Scholar] [CrossRef]
- Kolev, S.; Balchev, I.; Cvetkov, K.; Tinchev, S.; Milenov, T. Ab-Initio molecular dynamics simulation of graphene sheet. J. Phys. Conf. Ser. 2017, 780, 012014. [Google Scholar] [CrossRef]
- Olson, J.R. Pharmacokinetics of Dioxins and Related Chemicals. In Dioxins and Health; Schecter, A., Ed.; Springer: Boston, MA, USA, 1994; pp. 154–196. [Google Scholar]
- Grimme, S.; Hansen, A.; Brandenburg, J.G.; Bannwarth, C. Dispersion-Corrected Mean-Field Electronic Structure Methods. Chem. Rev. 2016, 116, 5105–5154. [Google Scholar] [CrossRef]
- Xu, X.; Goddard, W.A. The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J. Chem. Phys. 2004, 121, 4068–4082. [Google Scholar] [CrossRef]
- Liao, L.; Peng, H.; Liu, Z. Chemistry Makes Graphene beyond Graphene. J. Am. Chem. Soc. 2014, 136, 12194–12200. [Google Scholar] [CrossRef]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
System | Orient | Ang1 | Ang2 | Distleast | Distmean | Estab [kJ/mol] |
---|---|---|---|---|---|---|
G/SiC | 177.87 | 176.57 | - | - | - | |
PhH/G/SiC | AB | 177.79 | 176.39 | 3.39 | 3.46 | 42 |
D/G/SiC | - | 178.08 | 176.88 | 3.49 | 3.91 | 88 |
TCDD/G/SiC | AB | 177.79 | 176.37 | 3.28 | 3.43 | 114 |
Ads | HOMO | LUMO | Eg | HOMOs | LUMOs | Egs | HOMOa | LUMOa | Ega |
---|---|---|---|---|---|---|---|---|---|
[A] | 0.00 | 1.14 | 1.14 | - | - | - | - | - | - |
PhH | −3.67 | 1.48 | 5.15 | 0.00 | 1.14 | 1.14 | −1.79 | 3.37 | 5.16 |
D | −1.60 | 1.43 | 3.03 | 0.00 | 1.13 | 1.13 | −1.08 | 1.74 | 2.82 |
TCDD | −1.80 | 1.43 | 3.23 | 0.00 | 1.12 | 1.12 | −0.78 | 2.44 | 3.22 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalchevski, D.A.; Kolev, S.; Dimov, D.; Trifonov, D.; Avramova, I.; Ivanova, P.; Milenov, T. A Theoretical Examination of Various Complexes of a Proposed Novel Chemosensor Material—Graphene/SiC. Chemosensors 2024, 12, 239. https://doi.org/10.3390/chemosensors12110239
Kalchevski DA, Kolev S, Dimov D, Trifonov D, Avramova I, Ivanova P, Milenov T. A Theoretical Examination of Various Complexes of a Proposed Novel Chemosensor Material—Graphene/SiC. Chemosensors. 2024; 12(11):239. https://doi.org/10.3390/chemosensors12110239
Chicago/Turabian StyleKalchevski, Dobromir A., Stefan Kolev, Dimitar Dimov, Dimitar Trifonov, Ivalina Avramova, Pavlina Ivanova, and Teodor Milenov. 2024. "A Theoretical Examination of Various Complexes of a Proposed Novel Chemosensor Material—Graphene/SiC" Chemosensors 12, no. 11: 239. https://doi.org/10.3390/chemosensors12110239
APA StyleKalchevski, D. A., Kolev, S., Dimov, D., Trifonov, D., Avramova, I., Ivanova, P., & Milenov, T. (2024). A Theoretical Examination of Various Complexes of a Proposed Novel Chemosensor Material—Graphene/SiC. Chemosensors, 12(11), 239. https://doi.org/10.3390/chemosensors12110239