A Nanodiamond-Based Electrochemical Sensor for the Determination of Paracetamol in Pharmaceutical Samples
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Apparatus
2.3. Preparation of Working Electrode
2.4. Preparation of Samples
3. Results and Discussion
3.1. Morphological and Structural Characterizations
3.2. Electrochemical Characterizations
3.3. Electrochemical Detection of Paracetamol
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol. 2012, 7, 11–23. [Google Scholar] [CrossRef] [PubMed]
- Kulakova, I.I. Surface chemistry of nanodiamonds. Phys. Solid State 2004, 46, 636–643. [Google Scholar] [CrossRef]
- Silva, L.R.G.; Carvalho, J.H.S.; Stefano, J.S.; Oliveira, G.G.; Prakash, J.; Janegitz, B.C. Electrochemical sensors and biosensors based on nanodiamonds: A review. Mater. Today Commun. 2023, 35, 106142. [Google Scholar] [CrossRef]
- Petrov, I.L.; Shenderova, O.A. History of Russian patents on detonation nanodiamonds. In Ultrananocrystalline Diamond; Elsevier: Amsterdam, The Netherlands, 2006; pp. 559–588. [Google Scholar]
- Chauhan, S.; Jain, N.; Nagaich, U. Nanodiamonds with powerful ability for drug delivery and biomedical applications: Recent updates on in vivo study and patents. J. Pharm. Anal. 2020, 10, 1–12. [Google Scholar] [CrossRef]
- Prabhakar, N.; Rosenholm, J.M. Nanodiamonds for advanced optical bioimaging and beyond. Curr. Opin. Colloid Interface Sci. 2019, 39, 220–231. [Google Scholar] [CrossRef]
- Gu, W.; Peters, N.; Yushin, G. Functionalized carbon onions, detonation nanodiamond and mesoporous carbon as cathodes in Li-ion electrochemical energy storage devices. Carbon 2013, 53, 292–301. [Google Scholar] [CrossRef]
- Basso, L.; Cazzanelli, M.; Orlandi, M.; Miotello, A. Nanodiamonds: Synthesis and Application in Sensing, Catalysis, and the Possible Connection with Some Processes Occurring in Space. Appl. Sci. 2020, 10, 4094. [Google Scholar] [CrossRef]
- Qin, J.-X.; Yang, X.-G.; Lv, C.-F.; Li, Y.-Z.; Chen, X.-X.; Zhang, Z.-F.; Zang, J.-H.; Yang, X.; Liu, K.-K.; Dong, L.; et al. Humidity Sensors Realized via Negative Photoconductivity Effect in Nanodiamonds. J. Phys. Chem. Lett. 2021, 12, 4079–4084. [Google Scholar] [CrossRef] [PubMed]
- Wong, A.; Materón, E.M.; Freitas, T.A.; Faria, R.C.; Gonçalves, D.; Del Pilar Taboada Sotomayor, M. Voltammetric sensing of tryptophan in dark chocolate bars, skimmed milk and urine samples in the presence of dopamine and caffeine. J. Appl. Electrochem. 2022, 52, 1249–1257. [Google Scholar] [CrossRef]
- Camargo, J.R.; Baccarin, M.; Raymundo-Pereira, P.A.; Campos, A.M.; Oliveira, G.G.; Fatibello-Filho, O.; Oliveira, O.N.; Janegitz, B.C. Electrochemical biosensor made with tyrosinase immobilized in a matrix of nanodiamonds and potato starch for detecting phenolic compounds. Anal. Chim. Acta 2018, 1034, 137–143. [Google Scholar] [CrossRef]
- Dai, W.; Li, M.; Gao, S.; Li, H.; Li, C.; Xu, S.; Wu, X.; Yang, B. Fabrication of Nickel/nanodiamond/boron-doped diamond electrode for non-enzymatic glucose biosensor. Electrochim. Acta 2016, 187, 413–421. [Google Scholar] [CrossRef]
- Simioni, N.B.; Oliveira, G.G.; Vicentini, F.C.; Lanza, M.R.V.; Janegitz, B.C.; Fatibello-Filho, O. Nanodiamonds stabilized in dihexadecyl phosphate film for electrochemical study and quantification of codeine in biological and pharmaceutical samples. Diam. Relat. Mater. 2017, 74, 191–196. [Google Scholar] [CrossRef]
- Simioni, N.B.; Silva, T.A.; Oliveira, G.G.; Fatibello, O. A nanodiamond-based electrochemical sensor for the determination of pyrazinamide antibiotic. Sens. Actuators B-Chem. 2017, 250, 315–323. [Google Scholar] [CrossRef]
- Qin, J.-X.; Yang, X.-G.; Lv, C.-F.; Li, Y.-Z.; Liu, K.-K.; Zang, J.-H.; Yang, X.; Dong, L.; Shan, C.-X. Nanodiamonds: Synthesis, properties, and applications in nanomedicine. Mater. Des. 2021, 210, 110091. [Google Scholar] [CrossRef]
- Shirani, A.; Hu, Q.; Su, Y.; Joy, T.; Zhu, D.; Berman, D. Combined Tribological and Bactericidal Effect of Nanodiamonds as a Potential Lubricant for Artificial Joints. ACS Appl. Mater. Interfaces 2019, 11, 43500–43508. [Google Scholar] [CrossRef]
- Miller, B.S.; Bezinge, L.; Gliddon, H.D.; Huang, D.; Dold, G.; Gray, E.R.; Heaney, J.; Dobson, P.J.; Nastouli, E.; Morton, J.J.L.; et al. Spin-enhanced nanodiamond biosensing for ultrasensitive diagnostics. Nature 2020, 587, 588–593. [Google Scholar] [CrossRef] [PubMed]
- Jozwiak-Bebenista, M.; Nowak, J.Z. Paracetamol: Mechanism of Action, Applications and Safety Concern. Acta Pol. Pharm. 2014, 71, 11–23. [Google Scholar]
- de Martino, M.; Chiarugi, A. Recent Advances in Pediatric Use of Oral Paracetamol in Fever and Pain Management. Pain Ther. 2015, 4, 149–168. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Ramachandran, A.; Jaeschke, H. Oxidative stress during acetaminophen hepatotoxicity: Sources, pathophysiological role and therapeutic potential. Redox Biol. 2016, 10, 148–156. [Google Scholar] [CrossRef]
- Jaeschke, H.; McGill, M.R.; Williams, C.D.; Ramachandran, A. Current issues with acetaminophen hepatotoxicity-A clinically relevant model to test the efficacy of natural products. Life Sci. 2011, 88, 737–745. [Google Scholar] [CrossRef]
- Olaleye, M.T.; Rocha, B.T.J. Acetaminophen-induced liver damage in mice: Effects of some medicinal plants on the oxidative defense system. Exp. Toxicol. Pathol. 2008, 59, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Fernandez, C.; Heger, Z.; Kizek, R.; Ramakrishnappa, T.; Borun, A.; Faisal, N.H. Pharmaceutical Electrochemistry: The Electrochemical Oxidation of Paracetamol and Its Voltammetric Sensing in Biological Samples Based on Screen Printed Graphene Electrodes. Int. J. Electrochem. Sci. 2015, 10, 7440–7452. [Google Scholar] [CrossRef]
- Mazer, M.; Perrone, J. Acetaminophen-induced nephrotoxicity: Pathophysiology, clinical manifestations. J. Med. Toxicol. 2008, 4, 2–6. [Google Scholar] [CrossRef]
- Knochen, M.; Giglio, J.; Reis, B.F. Flow-injection spectrophotometric determination of paracetamol in tablets and oral solutions. J. Pharm. Biomed. Anal. 2003, 33, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, M.K.; Ahmad, S.; Singh, D.; Shukla, I.C. Titrimetric Determination of Dipyrone and Paracetamol with Potassium Hexacyanoferrate(III) in an Acidic Medium. Analyst 1985, 110, 735–737. [Google Scholar] [CrossRef]
- dos Santos, W.T.P.; Gimenes, D.T.; de Almeida, E.G.N.; Eiras, S.D.; Albuquerque, Y.D.T.; Richter, E.M. Simple Flow Injection Amperometric System for Simultaneous Determination of Dipyrone and Paracetamol in Pharmaceutical Formulations. J. Braz. Chem. Soc. 2009, 20, 1249–1255. [Google Scholar] [CrossRef]
- Felix, F.S.; Brett, C.M.A.; Angnes, L. Carbon film resistor electrode for amperometric determination of acetaminophen in pharmaceutical formulations. J. Pharm. Biomed. Anal. 2007, 43, 1622–1627. [Google Scholar] [CrossRef]
- Vaughan, P.A.; Scott, L.D.L.; McAleer, J.F. Amperometric Biosensor for the Rapid-Determination of Acetaminophen in Whole-Blood. Anal. Chim. Acta 1991, 248, 361–365. [Google Scholar] [CrossRef]
- Xu, Z.M.; Yue, Q.; Zhuang, Z.J.; Xiao, D. Flow injection amperometric determination of acetaminophen at a gold nanoparticle modified carbon paste electrode. Microchim. Acta 2009, 164, 387–393. [Google Scholar] [CrossRef]
- Sayed, M.; Ismail, M.; Khan, S.; Khan, H.M. A comparative study for the quantitative determination of paracetamol in tablets using UV-Visible spectrophotometry and high performance liquid chromatography. Phys. Chem. 2015, 17, 1–5. [Google Scholar]
- Narwade, S.S. Qualitative and Quantitative Analysis of Paracetamol in Different Drug Samples by HPLC Technique. IOSR J. Appl. Chem. 2014, 7, 46–49. [Google Scholar] [CrossRef]
- Biswas, S.; Chakraborty, D.; Das, R.; Bandyopadhyay, R.; Pramanik, P. A simple synthesis of nitrogen doped porous graphitic carbon: Electrochemical determination of paracetamol in presence of ascorbic acid and p-aminophenol. Anal. Chim. Acta 2015, 890, 98–107. [Google Scholar] [CrossRef] [PubMed]
- Kannan, A.; Sevvel, R. A highly selective and simultaneous determination of paracetamol and dopamine using poly-4-amino-6-hydroxy-2-mercaptopyrimidine (Poly-AHMP) film modified glassy carbon electrode. J. Electroanal. Chem. 2017, 791, 8–16. [Google Scholar] [CrossRef]
- Anvisa. Insumos farmacêuticos e especialidades: Monografias. Farm. Bras. 2019, II, 904. [Google Scholar]
- Baccarin, M.; Rowley-Neale, S.J.; Cavalheiro, É.; Smith, G.C.; Banks, C.E. Nanodiamond based surface modified screen-printed electrodes for the simultaneous voltammetric determination of dopamine and uric acid. Microchim. Acta 2019, 186, 200. [Google Scholar] [CrossRef]
- Bouali, W.; Kurtay, G.; Genç, A.A.; Ahmed, H.E.H.; Soylak, M.; Erk, N.; Karimi-Maleh, H. Nanodiamond (ND)-Based ND@CuAl2O4@Fe3O4 electrochemical sensor for Tofacitinib detection: A unified approach to integrate experimental data with DFT and molecular docking. Environ. Res. 2023, 238, 117166. [Google Scholar] [CrossRef]
- da Silva, V.A.O.P.; Tartare, V.A.P.; Kalinke, C.; Oliveira, P.R.d.; Souza, D.C.d.; Bonacin, J.A.; Janegitz, B.C. Lab-made 3D-printed contact angle measurement adjustable holder. Química Nova 2020, 43, 1312–1319. [Google Scholar]
- Pacheco, W.F.; Semaan, F.S.; Almeida, V.G.K.; Ritta, A.G.S.L.; Aucélio, R.Q. Voltammetry: A Brief Review About Concepts. Rev. Virtual Química 2013, 5, 516–537. [Google Scholar] [CrossRef]
- Ferreira, N.G.; Silva, L.L.G.; Corat, E.J.; Trava-Airoldi, V.J. Kinetics study of diamond electrodes at different levels of boron doping as quasi-reversible systems. Diam. Relat. Mater. 2002, 11, 1523–1531. [Google Scholar] [CrossRef]
- Nicholson, R.S. Theory and application of cyclic voltammetry for measurement of electrode reaction kinetics. Anal. Chem. 1965, 37, 1351–1355. [Google Scholar] [CrossRef]
- Lavagnini, I.; Antiochia, R.; Magno, F. An Extended Method for the Practical Evaluation of the Standard Rate Constant from Cyclic Voltammetric Data. Electroanal. Int. J. Devoted Fundam. Pract. Asp. Electroanal. 2004, 16, 505–506. [Google Scholar] [CrossRef]
- Sanghavi, B.J.; Srivastava, A.K. Simultaneous voltammetric determination of acetaminophen, aspirin and caffeine using an in situ surfactant-modified multiwalled carbon nanotube paste electrode. Electrochim. Acta 2010, 55, 8638–8648. [Google Scholar] [CrossRef]
- ShangGuan, X.D.; Zhang, H.F.; Zheng, J.B. Electrochemical behavior and differential pulse voltammetric determination of paracetamol at a carbon ionic liquid electrode. Anal. Bioanal. Chem. 2008, 391, 1049–1055. [Google Scholar] [CrossRef] [PubMed]
- Kang, X.; Wang, J.; Wu, H.; Liu, J.; Aksay, I.A.; Lin, Y. A graphene-based electrochemical sensor for sensitive detection of paracetamol. Talanta 2010, 81, 754–759. [Google Scholar] [CrossRef] [PubMed]
- Mahmoud, B.G.; Khairy, M.; Rashwan, F.A.; Banks, C.E. Simultaneous Voltammetric Determination of Acetaminophen and Isoniazid (Hepatotoxicity-Related Drugs) Utilizing Bismuth Oxide Nanorod Modified Screen-Printed Electrochemical Sensing Platforms. Anal. Chem. 2017, 89, 2170–2178. [Google Scholar] [CrossRef]
- Mehretie, S.; Admassie, S.; Hunde, T.; Tessema, M.; Solomon, T. Simultaneous determination of N-acetyl-p-aminophenol and p-aminophenol with poly(3,4-ethylenedioxythiophene) modified glassy carbon electrode. Talanta 2011, 85, 1376–1382. [Google Scholar] [CrossRef]
- Awad, M.I.; Sayqal, A.; Pashameah, R.A.; Hameed, A.M.; Morad, M.; Alessa, H.; Shah, R.K.; Kassem, M.A. Enhanced Paracetamol Oxidation and Its Determination using Electrochemically Activated Glassy Carbon Electrode. Int. J. Electrochem. Sci. 2021, 16, 150864. [Google Scholar] [CrossRef]
- Li, M.Q.; Jing, L.H. Electrochemical behavior of acetaminophen and its detection on the PANI-MWCNTs composite modified electrode. Electrochim. Acta 2007, 52, 3250–3257. [Google Scholar] [CrossRef]
- Kassem, M.A.; Awad, M.I.; Morad, M.; Aljandali, B.A.; Pashameah, R.A.; Alessa, H.; Mohammed, G.I.; Sayqal, A. Sensor based on Copper Nanoparticles Modified Electrochemically Activated Glassy Carbon Electrode for Paracetamol Determination. Int. J. Electrochem. Sci. 2022, 17, 2. [Google Scholar] [CrossRef]
PAR (mg/Tablet) | |||
---|---|---|---|
Samples | Comparative Method a | Proposed Method a | Relative Error b (%) |
A | 496 ± 3 | 503 ± 2 | 1.4 |
B | 739 ± 8 | 752 ± 4 | 1.8 |
Electrode | Technique | Linear Range (mol L−1) | LOD (mol L−1) | Reference |
---|---|---|---|---|
PEDOT/GCE | DPV | 2.5 × 10−6 to 2.0 × 10−4 | 1.1 × 10−6 | [47] |
GCox/GCE | LSV | 3.0 × 10−3 to 6.5 × 10−3 | 2.8 × 10−3 | [48] |
PANI-MWCNT/GCE | SWV | 1.0 × 10−6 to 2.0 × 10−4 | 2.5 × 10−7 | [49] |
nano-Cu/GCox/GCE | SWV | 4.0 × 10−6 to 2.8 × 10−5 | 3.5 × 10−7 | [50] |
Graphene/GCE | SWV | 1.0 × 10−7 to 2.0 × 10−5 | 3.2 × 10−8 | [45] |
ND/GCE | SWV | 7.9 ×10−7 to 1.0 × 10−4 | 1.8 × 10−7 | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Oliveira Lopes, D.; Magalhães Marinho, F.; Batista Deroco, P.; Neumann, A.; Rocha Camargo, J.; Cristina de Freitas, R.; Ventosa Bertolim, L.; Fatibello Filho, O.; Campos Janegitz, B.; Oliveira, G.G.d. A Nanodiamond-Based Electrochemical Sensor for the Determination of Paracetamol in Pharmaceutical Samples. Chemosensors 2024, 12, 243. https://doi.org/10.3390/chemosensors12110243
de Oliveira Lopes D, Magalhães Marinho F, Batista Deroco P, Neumann A, Rocha Camargo J, Cristina de Freitas R, Ventosa Bertolim L, Fatibello Filho O, Campos Janegitz B, Oliveira GGd. A Nanodiamond-Based Electrochemical Sensor for the Determination of Paracetamol in Pharmaceutical Samples. Chemosensors. 2024; 12(11):243. https://doi.org/10.3390/chemosensors12110243
Chicago/Turabian Stylede Oliveira Lopes, Déborah, Felipe Magalhães Marinho, Patricia Batista Deroco, Amanda Neumann, Jessica Rocha Camargo, Rafaela Cristina de Freitas, Lucas Ventosa Bertolim, Orlando Fatibello Filho, Bruno Campos Janegitz, and Geiser Gabriel de Oliveira. 2024. "A Nanodiamond-Based Electrochemical Sensor for the Determination of Paracetamol in Pharmaceutical Samples" Chemosensors 12, no. 11: 243. https://doi.org/10.3390/chemosensors12110243
APA Stylede Oliveira Lopes, D., Magalhães Marinho, F., Batista Deroco, P., Neumann, A., Rocha Camargo, J., Cristina de Freitas, R., Ventosa Bertolim, L., Fatibello Filho, O., Campos Janegitz, B., & Oliveira, G. G. d. (2024). A Nanodiamond-Based Electrochemical Sensor for the Determination of Paracetamol in Pharmaceutical Samples. Chemosensors, 12(11), 243. https://doi.org/10.3390/chemosensors12110243