Two-Dimensional Tellurium Nanosheets for the Efficient Nonenzymatic Electrochemical Detection of H2O2
Abstract
:1. Introduction
2. Material and Methods
2.1. Materials and Reagents
2.2. Synthesis of Te Nanosheets
2.3. Material Characterizations
2.4. Electrode Modification and Sensing Characterization
3. Results and Discussion
3.1. Microscopic and Spectroscopic Characterization of Te Nanosheets
3.2. Electrochemical Sensing Performance
3.3. Analysis of Real Samples
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, Y.; Huan, K.; Deng, D.; Tang, L.; Wang, J.; Luo, L. Facile Synthesis of ZnMn2O4@rGO Microspheres for Ultrasensitive Electrochemical Detection of Hydrogen Peroxide from Human Breast Cancer Cells. ACS Appl. Mater. Interfaces 2020, 12, 3430–3437. [Google Scholar] [CrossRef]
- Hsu, C.L.; Chang, K.S.; Kuo, J.C. Determination of Hydrogen Peroxide Residues in Aseptically Packaged Beverages Using an Amperometric Sensor Based on a Palladium Electrode. Food Control 2008, 19, 223–230. [Google Scholar] [CrossRef]
- Bai, J.; Jiang, X. A Facile One-Pot Synthesis of Copper Sulfide-Decorated Reduced Graphene Oxide Composites for Enhanced Detecting of H2O2 in Biological Environments. Anal. Chem. 2013, 85, 8095–8101. [Google Scholar] [CrossRef]
- Yao, S.; Xu, J.; Wang, Y.; Chen, X.; Xu, Y.; Hu, S. A Highly Sensitive Hydrogen Peroxide Amperometric Sensor Based on MnO2 Nanoparticles and Dihexadecyl Hydrogen Phosphate Composite Film. Anal. Chim. Acta 2006, 557, 78–84. [Google Scholar] [CrossRef]
- Woo, Y.A.; Lim, H.R.; Kim, H.J.; Chung, H. Determination of Hydrogen Peroxide Concentration in Antiseptic Solutions Using Portable Near-Infrared System. J. Pharm. Biomed. Anal. 2003, 33, 1049–1057. [Google Scholar] [CrossRef]
- Ksibi, M. Chemical Oxidation with Hydrogen Peroxide for Domestic Wastewater Treatment. Chem. Eng. J. 2006, 119, 161–165. [Google Scholar] [CrossRef]
- Silva, R.A.B.; Montes, R.H.O.; Richter, E.M.; Munoz, R.A.A. Rapid and Selective Determination of Hydrogen Peroxide Residues in Milk by Batch Injection Analysis with Amperometric Detection. Food Chem. 2012, 133, 200–204. [Google Scholar] [CrossRef]
- King, D.W.; Cooper, W.J.; Rusak, S.A.; Peake, B.M.; Kiddle, J.J.; O’Sullivan, D.W.; Melamed, M.L.; Morgan, C.R.; Theberge, S.M. Flow Injection Analysis of H2O2 in Natural Waters Using Acridinium Ester Chemiluminescence: Method Development and Optimization Using a Kinetic Model. Anal. Chem. 2007, 79, 4169–4176. [Google Scholar] [CrossRef]
- Huang, X.; Nan, Z. Porous 2D FeS2 Nanosheets as a Peroxidase Mimic for Rapid Determination of H2O2. Talanta 2020, 216, 120995. [Google Scholar] [CrossRef]
- Dhara, K.; Mahapatra, D.R. Recent Advances in Electrochemical Nonenzymatic Hydrogen Peroxide Sensors Based on Nanomaterials: A Review. J. Mater. Sci. 2019, 54, 12319–12357. [Google Scholar] [CrossRef]
- Stone, J.R.; Yang, S.; Cadenas, E.; Keller, J.; Sen, C.K.; Yodoi, J. Hydrogen Peroxide: A Signaling Messenger. Antioxid. Redox Signal. 2006, 8, 243–270. [Google Scholar] [CrossRef] [PubMed]
- Spear, R.C.; Selvin, S. OSHA’s Permissible Exposure Limits: Regulatory Compliance Versus Health Risk. Risk Anal. 1989, 9, 579–586. [Google Scholar] [CrossRef] [PubMed]
- Forman, H.J.; Bernardo, A.; Davies, K.J.A. What Is the Concentration of Hydrogen Peroxide in Blood and Plasma? Arch. Biochem. Biophys. 2016, 603, 48–53. [Google Scholar] [CrossRef] [PubMed]
- Lyublinskaya, O.; Antunes, F. Measuring Intracellular Concentration of Hydrogen Peroxide with the Use of Genetically Encoded H2O2 Biosensor HyPer. Redox Biol. 2019, 24, 101200. [Google Scholar] [CrossRef] [PubMed]
- Sies, H. Hydrogen Peroxide as a Central Redox Signaling Molecule in Physiological Oxidative Stress: Oxidative Eustress. Redox Biol. 2017, 11, 613–619. [Google Scholar] [CrossRef]
- Varma, S.D.; Devamanoharan, P.S. Hydrogen Peroxide in Human Blood. Free Radic. Res. Commun. 1991, 14, 125–131. [Google Scholar] [CrossRef]
- Loukides, S.; Horvath, I.; Wodehouse, T.; Cole, P.J.; Barnes, P.J. Elevated Levels of Expired Breath Hydrogen Peroxide in Bronchiectasis. Am. J. Respir. Crit. Care Med. 1998, 158, 991–994. [Google Scholar] [CrossRef]
- Wierusz-Wysockaa, B.; Wysocki, H.; Byks, H.; Zozuliriska, D.; Wykrȩtowicz, A.; Kahnierczak, M. Metabolic Control Quality and Free Radical Activity in Diabetic Patients. Diabetes Res. Clin. Pract. 1995, 27, 193–197. [Google Scholar] [CrossRef]
- Nagaraja, C.; Shashibhushan, B.L.; Sagar; Asif, M.; Manjunath, P.H. Hydrogen Peroxide in Exhaled Breath Condensate: A Clinical Study. Lung India 2012, 29, 123–127. [Google Scholar] [CrossRef]
- Taher, M.M.; Lakshmaiah, N. Folic Acid Stability in Hydrogen Peroxide-Potassium Thiocyanate-Treated Milk. Food Chem. 1992, 44, 343–347. [Google Scholar] [CrossRef]
- Haddadin, M.S.; Ibrahim+, S.A.; Robinson, R.K. Preservation of Raw Milk by Activation of the Natural Lactoperoxidase Systems. Food Control 1996, 7, 149–152. [Google Scholar] [CrossRef]
- Bögner, D.; Bögner, M.; Schmachtl, F.; Bill, N.; Halfer, J.; Slater, M.J. Hydrogen Peroxide Oxygenation and Disinfection Capacity in Recirculating Aquaculture Systems. Aquac. Eng. 2021, 92, 102140. [Google Scholar] [CrossRef]
- Bopitiya, D.; Christensen, D.; Martin, M.; Zhang, J.; Bennett, L.E. Production of Hydrogen Peroxide in Formulated Beverages Is Associated with the Presence of Ascorbic Acid Combined with Selected Redox-Active Functional Ingredients. Food Chem. 2021, 338, 127947. [Google Scholar] [CrossRef] [PubMed]
- Giaretta, J.E.; Duan, H.; Oveissi, F.; Farajikhah, S.; Dehghani, F.; Naficy, S. Flexible Sensors for Hydrogen Peroxide Detection: A Critical Review. ACS Appl. Mater. Interfaces 2022, 14, 20491–20505. [Google Scholar] [CrossRef] [PubMed]
- Su, S.C.; Chou, S.S.; Chang, P.C.; Hwang, D.F. Identification of Hydrogen Peroxide as a Causative Agent in Noodles Implicated in Food Poisoning. J. Food Drug Anal. 2001, 9, 220–223. [Google Scholar] [CrossRef]
- Watt, B.E.; Proudfoot, A.T.; Vale, J.A. Hydrogen Peroxide Poisoning. Toxicol. Rev. 2004, 23, 51–57. [Google Scholar] [CrossRef] [PubMed]
- Gökçal, B.; Kip, Ç.; Şahinbaş, D.; Çelik, E.; Tuncel, A. Silica Microspheres Functionalized with the Iminodiacetic Acid/Copper(II) Complex as a Peroxidase Mimic for Use in Metal Affinity Chromatography-Based Colorimetric Determination of Histidine-Tagged Proteins. Microchim. Acta 2020, 187, 121. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Zhang, H.; Li, S.; Guo, S.; Shen, L.; Zhou, T.; Zhong, H.; Wu, L.; Meng, Q.; Zhang, Y. Oxygen-Vacancy-Enhanced Peroxidase-like Activity of Reduced Co3O4 Nanocomposites for the Colorimetric Detection of H2O2 and Glucose. Inorg. Chem. 2020, 59, 3152–3159. [Google Scholar] [CrossRef]
- Ahammed, G.J.; Li, X.; Yang, Y.; Liu, C.; Zhou, G.; Wan, H.; Cheng, Y. Tomato WRKY81 Acts as a Negative Regulator for Drought Tolerance by Modulating Guard Cell H2O2–Mediated Stomatal Closure. Environ. Exp. Bot. 2020, 171, 103960. [Google Scholar] [CrossRef]
- Chen, M.; Liang, Z.; Zeng, G.; Wang, Y.; Mai, Z.; Chen, X.; Wu, G.; Chen, T. An ESIPT-Based NIR-Emitting Ratiometric Fluorescent Probe for Monitoring Hydrogen Peroxide in Living Cells and Zebrafish. Dye. Pigment. 2022, 198, 109995. [Google Scholar] [CrossRef]
- Ravanfar, R.; Abbaspourrad, A. Monitoring the Heme Iron State in Horseradish Peroxidase to Detect Ultratrace Amounts of Hydrogen Peroxide in Alcohols. RSC Adv. 2021, 11, 9901–9910. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Bai, X.; Wang, X.; Shiu, K.K.; Zhu, Y.; Jiang, H. Highly Sensitive Graphene-Pt Nanocomposites Amperometric Biosensor and Its Application in Living Cell H2O2 Detection. Anal. Chem. 2014, 86, 9459–9465. [Google Scholar] [CrossRef]
- Yagati, A.K.; Choi, J.W. Protein Based Electrochemical Biosensors for H2O2 Detection Towards Clinical Diagnostics. Electroanalysis 2014, 26, 1259–1276. [Google Scholar] [CrossRef]
- Canbay, E.; Şahin, B.; Kiran, M.; Akyilmaz, E. MWCNT-Cysteamine-Nafion Modified Gold Electrode Based on Myoglobin for Determination of Hydrogen Peroxide and Nitrite. Bioelectrochemistry 2015, 101, 126–131. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.; Chatterjee, S. Nanomaterials Based Electrochemical Sensors for Biomedical Applications. Chem. Soc. Rev. 2013, 42, 5425–5438. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.H.; Huang, K.J.; Wu, X. Recent Advances in Transition-Metal Dichalcogenides Based Electrochemical Biosensors: A Review. Biosens. Bioelectron. 2017, 97, 305–316. [Google Scholar] [CrossRef] [PubMed]
- Xiao, F.; Zhao, F.; Zhang, Y.; Guo, G.; Zeng, B. Ultrasonic Electrodeposition of Gold—Platinum Alloy Nanoparticles on Ionic Liquid—Chitosan Composite Film and Their Application in Fabricating Nonenzyme Hydrogen Peroxide Sensors. J. Phys. Chem. C 2009, 113, 849–855. [Google Scholar] [CrossRef]
- Zribi, R.; Ferlazzo, A.; Fazio, E.; Condorelli, M.; D’Urso, L.; Neri, G.; Corsaro, C.; Neri, F.; Compagnini, G.; Neri, G. Ag Nanoplates Modified-Screen Printed Carbon Electrode to Improve Electrochemical Performances Toward a Selective H2O2 Detection. IEEE Trans. Instrum. Meas. 2023, 72, 6002708. [Google Scholar] [CrossRef]
- Liu, J.; Yin, J.; Feng, B.; Xu, T.; Wang, F. Enhanced Electrocatalytic Activity and Stability toward the Oxygen Reduction Reaction with Unprotected Pt Nanoclusters. Nanomaterials 2018, 8, 955. [Google Scholar] [CrossRef]
- Yi, W.; Liu, J.; Chen, H.; Gao, Y.; Li, H. Copper/Nickel Nanoparticle Decorated Carbon Nanotubes for Nonenzymatic Glucose Biosensor. J. Solid State Electrochem. 2015, 19, 1511–1521. [Google Scholar] [CrossRef]
- Fernández, I.; Carinelli, S.; González-Mora, J.L.; Villalonga, R.; Salazar-Carballo, P.A. Nickel Oxide Nanoparticles/Carbon Nanotubes Nanocomposite for Non-Enzymatic Determination of Hydrogen Peroxide. Electroanalysis 2023, 35, e202200192. [Google Scholar] [CrossRef]
- Sobahi, N.; Imran, M.; Khan, M.E.; Mohammad, A.; Alam, M.M.; Yoon, T.; Mehedi, I.M.; Hussain, M.A.; Abdulaal, M.J.; Jiman, A.A. Electrochemical Sensing of H2O2 by Employing a Flexible Fe3O4/Graphene/Carbon Cloth as Working Electrode. Materials 2023, 16, 2770. [Google Scholar] [CrossRef] [PubMed]
- Xue, Y.; Maduraiveeran, G.; Wang, M.; Zheng, S.; Zhang, Y.; Jin, W. Hierarchical Oxygen-Implanted MoS2 Nanoparticle Decorated Graphene for the Non-Enzymatic Electrochemical Sensing of Hydrogen Peroxide in Alkaline Media. Talanta 2018, 176, 397–405. [Google Scholar] [CrossRef] [PubMed]
- Lyu, Y.P.; Wu, Y.S.; Wang, T.P.; Lee, C.L.; Chung, M.Y.; Lo, C.T. Hydrothermal and Plasma Nitrided Electrospun Carbon Nanofibers for Amperometric Sensing of Hydrogen Peroxide. Microchim. Acta 2018, 185, 371. [Google Scholar] [CrossRef] [PubMed]
- Qian, H.S.; Yu, S.H.; Gong, J.Y.; Luo, L.B.; Fei, L.F. High-Quality Luminescent Tellurium Nanowires of Several Nanometers in Diameter and High Aspect Ratio Synthesized by a Poly (Vinyl Pyrrolidone)—Assisted Hydrothermal Process. Langmuir 2006, 22, 3830–3835. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.H.; Yang, Z.; Chang, H.T. Preparation of Fluorescent Tellurium Nanowires at Room Temperature. Cryst. Growth Des. 2008, 8, 351–357. [Google Scholar] [CrossRef]
- Erande, M.B.; Late, D.J. Humidity and H2O2 Sensing Behavior of Te Nanowires. Adv. Device Mater. 2016, 2, 8–14. [Google Scholar] [CrossRef]
- Lee, T.I.; Lee, S.; Lee, E.; Sohn, S.; Lee, Y.; Lee, S.; Moon, G.; Kim, D.; Kim, Y.S.; Myoung, J.M.; et al. High-Power Density Piezoelectric Energy Harvesting Using Radially Strained Ultrathin Trigonal Tellurium Nanowire Assembly. Adv. Mater. 2013, 25, 2920–2925. [Google Scholar] [CrossRef]
- Liu, J.W.; Zhu, J.H.; Zhang, C.L.; Liang, H.W.; Yu, S.H. Mesostructured Assemblies of Ultrathin Superlong Tellurium Nanowires and Their Photoconductivity. J. Am. Chem. Soc. 2010, 132, 8945–8952. [Google Scholar] [CrossRef]
- Jin Bae, E.; Hun Kang, Y.; Jang, K.S.; Yun Cho, S. Enhancement of Thermoelectric Properties of PEDOT:PSS and Tellurium-PEDOT:PSS Hybrid Composites by Simple Chemical Treatment. Sci. Rep. 2016, 6, 18805. [Google Scholar] [CrossRef]
- Amani, M.; Tan, C.; Zhang, G.; Zhao, C.; Bullock, J.; Song, X.; Kim, H.; Shrestha, V.R.; Gao, Y.; Crozier, K.B.; et al. Solution-Synthesized High-Mobility Tellurium Nanoflakes for Short-Wave Infrared Photodetectors. ACS Nano 2018, 12, 7253–7263. [Google Scholar] [CrossRef] [PubMed]
- Shahzad, F.; Qamar, A.; Nabi, G. Self-Nucleated Tellurium Nanorods Patterned Growth: Their Applications for Excellent Field Emitters and Optical Devices. J. Lumin. 2023, 257, 119756. [Google Scholar] [CrossRef]
- Khatun, S.; Banerjee, A.; Pal, A.J. Nonlayered Tellurene as an Elemental 2D Topological Insulator: Experimental Evidence from Scanning Tunneling Spectroscopy. Nanoscale 2019, 11, 3591–3598. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Xing, C.; Huang, W.; Fan, T.; Li, Z.; Zhao, J.; Xiang, Y.; Guo, Z.; Li, J.; Yang, Z.; et al. Ultrathin 2D Nonlayered Tellurium Nanosheets: Facile Liquid-Phase Exfoliation, Characterization, and Photoresponse with High Performance and Enhanced Stability. Adv. Funct. Mater. 2018, 28, 1705833. [Google Scholar] [CrossRef]
- Nguyen, D.A.; Park, D.Y.; Jeong, B.G.; Tran, T.U.; Im, H.; Jeong, M.S. Facile and Controllable Preparation of Tellurium Nanocrystals by Laser Irradiation. Appl. Surf. Sci. 2022, 581, 152398. [Google Scholar] [CrossRef]
- Manikandan, M.; Dhanuskodi, S.; Maheswari, N.; Muralidharan, G.; Revathi, C.; Rajendra Kumar, R.T.; Mohan Rao, G. High Performance Supercapacitor and Non-Enzymatic Hydrogen Peroxide Sensor Based on Tellurium Nanoparticles. Sens. Biosens. Res. 2017, 13, 40–48. [Google Scholar] [CrossRef]
- Teodoro, K.B.R.; Migliorini, F.L.; Christinelli, W.A.; Correa, D.S. Detection of Hydrogen Peroxide (H2O2) Using a Colorimetric Sensor Based on Cellulose Nanowhiskers and Silver Nanoparticles. Carbohydr. Polym. 2019, 212, 235–241. [Google Scholar] [CrossRef]
- Baluta, S.; Meloni, F.; Halicka, K.; Szyszka, A.; Zucca, A.; Pilo, M.I.; Cabaj, J. Differential Pulse Voltammetry and Chronoamperometry as Analytical Tools for Epinephrine Detection Using a Tyrosinase-Based Electrochemical Biosensor. RSC Adv. 2022, 12, 25342–25353. [Google Scholar] [CrossRef]
- Sanjay Kanna Sharma, T.; Jana, J.; Bhamu, K.C.; Song, J.; Sivaselvam, S.; Van Tam, T.; Kang, S.G.; Chung, J.S.; Hur, S.H.; Choi, W.M. Rational Synthesis of Alkaline Earth Metal Vanadates: Structural Origin of MgVO3 Honeycomb Lattice System and Its Electrochemical Analysis for the Detection of Sulfadiazine. Chem. Eng. J. 2023, 464, 142673. [Google Scholar] [CrossRef]
- Tsai, H.Y.; Lin, Z.H.; Chang, H.T. Tellurium-Nanowire-Coated Glassy Carbon Electrodes for Selective and Sensitive Detection of Dopamine. Biosens. Bioelectron. 2012, 35, 479–483. [Google Scholar] [CrossRef]
- Chirizzi, D.; Guascito, M.R.; Filippo, E.; Malitesta, C.; Tepore, A. A Novel Nonenzymatic Amperometric Hydrogen Peroxide Sensor Based on CuO@Cu2O Nanowires Embedded into Poly(Vinyl Alcohol). Talanta 2016, 147, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Guascito, M.R.; Chirizzi, D.; Malitesta, C.; Mazzotta, E.; Siciliano, M.; Siciliano, T.; Tepore, A.; Turco, A. Low-Potential Sensitive H2O2 Detection Based on Composite Micro Tubular Te Adsorbed on Platinum Electrode. Biosens. Bioelectron. 2011, 26, 3562–3569. [Google Scholar] [CrossRef] [PubMed]
- Guascito, M.R.; Chirizzi, D.; Malitesta, C.; Siciliano, T.; Tepore, A. Te Oxide Nanowires as Advanced Materials for Amperometric Nonenzymatic Hydrogen Peroxide Sensing. Talanta 2013, 115, 863–869. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shringi, A.K.; Kumar, R.; Dennis, N.F.; Yan, F. Two-Dimensional Tellurium Nanosheets for the Efficient Nonenzymatic Electrochemical Detection of H2O2. Chemosensors 2024, 12, 17. https://doi.org/10.3390/chemosensors12020017
Shringi AK, Kumar R, Dennis NF, Yan F. Two-Dimensional Tellurium Nanosheets for the Efficient Nonenzymatic Electrochemical Detection of H2O2. Chemosensors. 2024; 12(2):17. https://doi.org/10.3390/chemosensors12020017
Chicago/Turabian StyleShringi, Amit Kumar, Rajeev Kumar, Netanya F. Dennis, and Fei Yan. 2024. "Two-Dimensional Tellurium Nanosheets for the Efficient Nonenzymatic Electrochemical Detection of H2O2" Chemosensors 12, no. 2: 17. https://doi.org/10.3390/chemosensors12020017
APA StyleShringi, A. K., Kumar, R., Dennis, N. F., & Yan, F. (2024). Two-Dimensional Tellurium Nanosheets for the Efficient Nonenzymatic Electrochemical Detection of H2O2. Chemosensors, 12(2), 17. https://doi.org/10.3390/chemosensors12020017