Low-Cost Carbon Paste Cu(II)-Exchanged Zeolite Amperometric Sensor for Hydrogen Peroxide Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.1.1. Preparation of the Modified Zeolite
2.1.2. Electrode Preparation
2.2. Methods
2.2.1. Physical and Chemical Characterization
2.2.2. Electrochemical Measurements
3. Results and Discussion
3.1. Physical and Chemical Characterization of Natural and Modified Zeolite Samples
3.2. Electrochemical and H2O2 Electrocatalytic Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Elsayed-Ali, O.H.; Abdel-Fattah, T.; Elsayed-Ali, H.E. Copper cation removal in an electrokinetic cell containing zeolite. J. Hazard. Mater. 2011, 185, 1550–1557. [Google Scholar] [CrossRef]
- Maicaneanu, A.; Bedelean, H.; Stanca, M. Zeoliti Naturali. Caracterizare si Aplicatii in Protectia Mediului; Editura Presa Universitara Clujeana: Cluj-Napoca, Romania, 2008; pp. 21–40. ISBN 9789736106736. [Google Scholar]
- Oliver-Tolentino, M.A.; Guzmán-Vargas, A.; Arce-Estrada, E.M.; Ramírez-Rosales, D.; Manzo-Robledo, A.; Lima, E. Understanding electrochemical stability of Cu+ on zeolite modified electrode with Cu-ZSM5. J. Electroanal. Chem. 2013, 692, 31–39. [Google Scholar] [CrossRef]
- He, P.; Wang, W.; Du, L.; Dong, F.; Deng, Y.; Zhang, T. Zeolite A functionalized with copper nanoparticles and graphene oxide for simultaneous electrochemical determination of dopamine and ascorbic acid. Anal. Chim. Acta 2012, 739, 25–30. [Google Scholar] [CrossRef]
- dos Santos, M.P.; Rahim, A.; Fattori, N.; Kubota, L.T.; Gushikem, Y. Novel amperometric sensor based on mesoporous silica chemically modified with ensal copper complexes for selective and sensitive dopamine determination. Sens. Actuators B Chem. 2012, 171–172, 712–718. [Google Scholar] [CrossRef]
- Rohani, T.; Taher, M.A. A new method for electrocatalytic oxidation of ascorbic acid at the Cu (II) zeolite-modified electrode. Talanta 2009, 78, 743–747. [Google Scholar] [CrossRef]
- Parpot, P.; Teixeira, C.; Almeida, A.M.; Ribeiro, C.; Neves, I.C.; Fonseca, A.M. Redox properties of (1-(2-pyridylazo)-2-naphthol)copper(II) encapsulated in Y Zeolite. Microporous Mesoporous Mater. 2009, 117, 297–303. [Google Scholar] [CrossRef]
- Walcarius, A. Factors affecting the analytical applications of zeolite modified electrodes: Indirect detection of nonelectroactive cations. Anal. Chim. Acta 1999, 388, 79–91. [Google Scholar] [CrossRef]
- Holkar, C.R.; Jadhav, A.J.; Pinjari, D.V.; Mahamuni, N.M.; Pandit, A.B. A critical review on textile wastewater treatments: Possible approaches. J. Environ. Manag. 2016, 182, 351–366. [Google Scholar] [CrossRef]
- Kopacz, W.; Okninski, A.; Kasztankiewicz, A.; Nowakowski, P.; Rarata, G.; Maksimowski, P. Hydrogen peroxide—A promising oxidizer for rocket propulsion and its application in solid rocket propellants. Fire Phys. Chem. 2022, 2, 56–66. [Google Scholar] [CrossRef]
- Sies, H. Role of metabolic H2O2 generation: Redox signaling and oxidative stress. J. Biol. Chem. 2014, 289, 8735–8741. [Google Scholar] [CrossRef] [PubMed]
- Mihailova, I.; Krasovska, M.; Sledevskis, E.; Gerbreders, V.; Mizers, V.; Ogurcovs, A. Assessment of oxidative stress by detection of H2O2 in Rye samples using a CuO- and Co3O4-nanostructure-based electrochemical sensor. Chemosensors 2023, 11, 532. [Google Scholar] [CrossRef]
- Miyamoto, F.; Saeki, M.; Yoshizawa, T. Improved protocol for an oxygen electrode method for determining hydrogen peroxide in foods. J. AOAC Int. 1997, 3, 681–687. [Google Scholar] [CrossRef]
- Shariati-Rad, M.; Narges, S.; Farzaneh, J. Determination of hydrogen sulfide and hydrogen peroxide in complex samples of milk and urine by spectroscopic standard addition data and chemometrics methods. RSC Adv. 2017, 46, 28626–28636. [Google Scholar] [CrossRef]
- Cibati, A.; Gonzalez-Olmos, R.; Rodriguez-Mozaz, S.; Buttiglieri, G. Unravelling the performance of UV/H2O2 on the removal of pharmaceuticals in real industrial, hospital, grey and urban wastewaters. Chemosphere 2022, 290, 133315–133323. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xu, Y.; Ma, X.; Li, G. A third-generation hydrogen peroxide biosensor fabricated with hemoglobin and Triton X-100. Sens. Actuators B Chem. 2005, 106, 284–288. [Google Scholar] [CrossRef]
- Wulansarie, R.; Rozaq, M.; Bismo, S.; Dyah, W.; Rengg, P. Degradation of Congo Red dye in wastewater using ozonation method with H2O2 catalyst. J. Ilmu Lingkung. 2024, 22, 150–154. [Google Scholar] [CrossRef]
- Xin, S.; Huo, S.; Zhang, C.; Ma, X.; Liu, W.; Xin, Y.; Gao, M. Coupling nitrogen/oxygen self-doped biomass porous carbon cathode catalyst with CuFeO2/biochar particle catalyst for the heterogeneous visible-light driven photo-electro-Fenton degradation of tetracycline. Appl. Catal. B-Environ. 2022, 305, 121024–121040. [Google Scholar] [CrossRef]
- Ito, Y.; Tonogai, Y.; Suzuki, H.; Ogawa, S.; Yokoyama, T.; Hashizume, T.; Santo, H.; Tanaka, K.I.; Nishigakki, K.; Iwaida, M. Improved 4-Aminoantipyrine Colorimetry for Detection of Residual Hydrogen Peroxide in Noodles, Fish Paste, Dried Fish, and Herring Roe. J. Assoc. Off. Anal. Chem. 1981, 64, 1448–1452. [Google Scholar] [CrossRef]
- Vinayagam, R.; Nagendran, V.; Goveas, L.C.; Narasimhan, M.K.; Varadavenkatesan, T.; Chandrasekar, N.; Selvaraj, R. Structural characterization of marine macroalgae derived silver nanoparticles and their colorimetric sensing of hydrogen peroxide. Mater. Chem. Phys. 2024, 313, 128787–128795. [Google Scholar] [CrossRef]
- Monakhova, Y.B.; Diehl, W.K. Rapid 1H NMR determination of hydrogen peroxide in cosmetic products and chemical reagents. Anal. Methods 2016, 8, 4632–4639. [Google Scholar] [CrossRef]
- Lu, J.; Lau, C.; Morizono, M.; Ohta, K.; Kai, M. A chemiluminescence reaction between hydrogen peroxide and acetonitrile and its applications. Anal. Chem. 2001, 73, 5979–5983. [Google Scholar] [CrossRef]
- Tahirovic, A.; Copra, A.; Omanovic-Miklicanin, E.; Kalcher, K. A chemiluminescence sensor for the determination of hydrogen peroxide. Talanta 2007, 72, 1378–1385. [Google Scholar] [CrossRef] [PubMed]
- Klassen, N.V.; Marchington, D.; McGowan, H.C. H2O2 determination by the I3-method and by KMnO4 titration. Anal. Chem. 1994, 66, 2921–2925. [Google Scholar] [CrossRef]
- Rubio-Clemente, A.; Cardona, A.; Chica, E.; Peñuela, G.A. Sensitive Spectrophotometric Determination of Hydrogen Peroxide in Aqueous Samples from Advanced Oxidation Processes: Evaluation of Possible Interference. Afinidad 2017, LXXIV, 579. Available online: https://raco.cat/index.php/afinidad/article/view/328470 (accessed on 4 December 2023).
- Li, J.; Dasgupta, P.K.; Tarver, G.A. Pulsed excitation source multiplexed fluorometry for the simultaneous measurement of multiple analytes. Continuous measurement of atmospheric hydrogen peroxide and methyl hydroperoxide. Anal. Chem. 2003, 75, 1203–1210. [Google Scholar] [CrossRef] [PubMed]
- Oh, W.K.; Jeong, Y.S.; Kim, S.; Jang, J. Fluorescent polymer nanoparticle for selective sensing of intracellular hydrogen peroxide. ACS Nano 2012, 6, 8516–8524. [Google Scholar] [CrossRef] [PubMed]
- Geng, Y.; Wang, Z.; Zhou, J.; Zhu, M.; Liu, J.; James, T.D. Recent progress in the development of fluorescent probes for imaging pathological oxidative stress. Chem. Soc. Rev. 2023, 52, 3873–3926. [Google Scholar] [CrossRef] [PubMed]
- Ye, S.; Hu, J.J.; Zhao, Q.A.; Yang, D. Fluorescent probes for in vitro and in vivo quantification of hydrogen peroxide. Chem. Sci. 2020, 11, 11989–11997. [Google Scholar] [CrossRef] [PubMed]
- Sun, H.; Xu, Q.; Ren, M.; Kong, F. A biocompatible chitosan-based fluorescent polymer for efficient H2O2 detection in living cells and water samples. Int. J. Biol. Macromol. 2024, 257, 128760–128769. [Google Scholar] [CrossRef]
- Li, H.; Wu, Y.; Xu, Z.; Wang, Y. In situ anchoring Cu nanoclusters on Cu-MOF: A new strategy for a combination of catalysis and fluorescence toward the detection of H2O2 and 2,4-DNP. Chem. Eng. J. 2024, 479, 147508–147517. [Google Scholar] [CrossRef]
- Rajamanikandan, R.; Ilanchelian, M.; Ju, H. Highly selective uricase-based quantification of uric acid using hydrogen peroxide sensitive poly-(vinylpyrrolidone) templated copper nanoclusters as a fluorescence probe. Chemosensors 2023, 11, 268. [Google Scholar] [CrossRef]
- Botero-Cadavid, J.F.; Brolo, A.G.; Wild, P.; Djilali, N. Detection of hydrogen peroxide using an optical fiber-based sensing probe. Sens. Actuators B Chem. 2013, 185, 166–173. [Google Scholar] [CrossRef]
- Tarvin, M.; McCord, B.; Mount, K.; Sherlach, K.; Miller, M.L. Optimization of two methods for the analysis of hydrogen peroxide: High performance liquid chromatography with fluorescence detection and high performance liquid chromatography with electrochemical detection in direct current mode. J. Chromatogr. A 2010, 1217, 7564–7572. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y. An amperometric hydrogen peroxide sensor based on reduced graphene oxide/carbon nanotubes/Pt NPs modified glassy carbon electrode. Int. J. Electrochem. Sci. 2020, 15, 8771–8785. [Google Scholar] [CrossRef]
- Zhou, C.; Cheng, R.; Liu, B.; Fang, Y.; Nan, K.; Wu, W.; Xu, Y. Cascade selective recognition of H2O2 and ascorbic acid in living cells using carbon-based nanozymes with peroxidase-like activity. Sens. Actuators B Chem. 2024, 402, 135118–135128. [Google Scholar] [CrossRef]
- Wang, G.; Liu, J.; Dong, H.; Geng, L.; Sun, J.; Liu, J.; Dong, J.; Guo, Y.; Sun, X. A dual-mode biosensor featuring single-atom Fe nanozyme for multi-pesticide detection in vegetables. Food Chem. 2024, 437, 137882–137893. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Tian, Z.; Zhang, X.; Qi, C. A novel strategy for realizing highly sensitive nonenzymatic detection of H2O2 based on regulating crystallinity of CoO nanosheets. Microchem. J. 2023, 195, 109540–109547. [Google Scholar] [CrossRef]
- Ates, A.; Oskay, K.O. Evaluation of iron containing biochar composites prepared by different preparation methods for H2O2 sensing. J. Taiwan Inst. Chem. E 2023, 152, 105180–105195. [Google Scholar] [CrossRef]
- He, Z.; Jin, Y.; Yuan, X.; Xue, K.; Hu, J.; Xiong, X. ZIF in situ transformation hollow porous self-supporting CoZn-LDH@CuO electrode for electrochemical sensing of glucose and H2O2. Microchem. J. 2023, 195, 109457–109467. [Google Scholar] [CrossRef]
- Ahsan, M.; Dutta, A.; Akermi, M.; Alam, M.M.; Nizam Uddin, S.M.; Khatun, N.; Hasnat, M.A. Sulfur adlayer on gold surface for attaining H2O2 reduction in alkaline medium: Catalysis, kinetics, and sensing activities. J. Electroanal. Chem. 2023, 934, 117281–117290. [Google Scholar] [CrossRef]
- Zhang, A.; Liu, Y.; Wu, J.; Zhu, J.; Cheng, S.; Wang, Y.; Hao, Y.; Zeng, S. Electrocatalytic selectivity to H2O2 enabled by two-electron pathway on Cu-deficient Au@Cu2−xS-CNTs electrocatalysts. Chem. Eng. J. 2023, 454, 140317–140329. [Google Scholar] [CrossRef]
- Jiang, L.; Wang, H.; Rao, Z.; Zhu, J.; Li, G.; Huang, Q.; Wang, Z.; Liu, H. In situ electrochemical reductive construction of metal oxide/metal-organic framework heterojunction nanoarrays for hydrogen peroxide sensing. J. Colloid Interface Sci. 2022, 622, 871–879. [Google Scholar] [CrossRef]
- Han, J.; Kim, J.; Kim, B.-K.; Park, K. Hydrogel-based electrodeposition of copper nanoparticles for selective detection for hydrogen peroxide. Chemosensors 2023, 11, 384. [Google Scholar] [CrossRef]
- Oliveira, M.R.F.; Herrasti, P.; Furtado, R.F.; Melo, A.M.A.; Alves, C.R. Polymeric composite including magnetite nanoparticles for hydrogen peroxide detection. Chemosensors 2023, 11, 323. [Google Scholar] [CrossRef]
- Yang, Z.; Gao, Y.; Zuo, L.; Long, C.; Yang, C.; Zhang, X. Tailoring heteroatoms in conjugated microporous polymers for boosting oxygen electrochemical reduction to hydrogen peroxide. ACS Catal. 2023, 13, 4790–4798. [Google Scholar] [CrossRef]
- Ma, X.; Tang, K.-L.; Lu, K.; Zhang, C.; Shi, W.; Zhao, W. Structural engineering of hollow microflower-like CuS@C hybrids as versatile electrochemical sensing platform for highly sensitive hydrogen peroxide and hydrazine detection. ACS Appl. Mater. Interfaces 2021, 13, 40942–40952. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Jiang, G.; Wang, Y.; Tan, M.; Cao, Y.; Tian, E.; Zhang, L.; Chen, X.; Zhao, M.; Jiang, Y.; et al. Detecting residual chemical disinfectant using an atomic Co–Nx–C anchored neuronal-like carbon catalyst modified amperometric sensor. Environ. Sci. Nano 2022, 9, 1759–1769. [Google Scholar] [CrossRef]
- Bedelean, H.; Maicaneanu, A.; Burca, S.; Stanca, M. Investigations on some zeolitic volcanic tuffs from Cluj County (Romania), used for zinc ions removal from aqueous solution. Stud. Univ. Babes-Bolyai Geol. 2010, 55, 9–15. [Google Scholar] [CrossRef]
- Maicaneanu, A.; Bedelean, H.; Burca, S.; Stanca, M. Evaluation of ammonium removal performances of some zeolitic volcanic tuffs from Transylvania, Romania. Sep. Sci. Technol. 2011, 46, 1621–1630. [Google Scholar] [CrossRef]
- Rouquerol, E.; Rouquerol, J.; Sing, K. Adsorption by Powders and Porous Solids. Principles, Methodology and Applications; Academic Press: San Diego, CA, USA, 1999; pp. 18–20. [Google Scholar] [CrossRef]
- Gligor, D.; Varodi, C.; Maicaneanu, A.; Muresan, L.M. Carbon Nanotubes-Graphite Paste Electrode Modified with Cu(II)-Exchanged Zeolite for H2O2 Detection. Stud. Univ. Babsş-Bolyai Chem. 2010, 55, 293–302. Available online: https://chem.ubbcluj.ro/~studiachemia/issues/chemia2006_2015/Chemia2010_2T2.pdf (accessed on 4 December 2023).
- Bedelean, I.; Stoici, S. Zeoliti; Technical Publishing House: Bucharest, Romania, 1984; pp. 59–120. [Google Scholar]
- Abreu, N.J.; Valdés, H.; Zaror, C.A.; Azzolina-Jury, F.; Meléndrez, M.F. Ethylene adsorption onto natural and transition metal modified Chilean zeolite: An operando DRIFTS approach. Microporous Mesoporous Mater. 2018, 274, 138–148. [Google Scholar] [CrossRef]
- Ma, Y.-K.; Rigolet, S.; Michelin, L.; Paillaud, J.-L.; Mintova, S.; Khoerunnisa, F.; Daou, T.J.; Ng, E.-P. Facile and fast determination of Si/Al ratio of zeolites using FTIR spectroscopy technique. Microporous Mesoporous Mater. 2021, 311, 110683–110687. [Google Scholar] [CrossRef]
- Inglezakis, V.J. The concept of “capacity” in zeolite ion-exchange systems. J. Colloid Interface Sci. 2005, 281, 68–79. [Google Scholar] [CrossRef] [PubMed]
- Fanfan, P.N.; Mabon, N.; Thonart, P.; Lognay, G.; Copin, A.; Barthelemy, J.-P. Investigations on Cationic Exchange Capacity and Unused Bed Zone According to Operational Conditions in a Fixed bed Reactor for Water Lead Removal by a Natural Zeolite. Biotechnol. Agron. Soc. Environ. 2006, 10, 93–99. Available online: https://popups.uliege.be/1780-4507/index.php?id=1160 (accessed on 4 December 2023).
- Bard, A.J.; Faulkner, L.R. Electrochemical Methods: Fundamentals and Applications, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2000. [Google Scholar]
- Laviron, E. General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. J. Electroanal. Chem. 1979, 101, 19–28. [Google Scholar] [CrossRef]
- Makino, N.; Mochizuki, Y.; Bannai, S.; Sugit, Y. Kinetic Studies on the Removal of Extracellular Hydrogen Peroxide by Cultured Fibroblasts. J. Biol. Chem. 1994, 269, 1020–1025. Available online: https://pubmed.ncbi.nlm.nih.gov/8288557 (accessed on 4 December 2023). [CrossRef] [PubMed]
- Maicaneanu, A.; Varodi, C.; Bedelean, H.; Gligor, D. Physical-chemical and electrochemical characterization of Fe-exchanged natural zeolite applied for obtaining of hydrogen peroxide amperometric sensors. Chem. Erde Geochem. 2014, 74, 653–660. [Google Scholar] [CrossRef]
- Xue, F.; Qin, R.; Zhu, R.; Zhou, X. Sn species modified mesoporous zeolite TS-1 with oxygen vacancy for enzyme-free electrochemical H2O2 detecting. Dalton Trans. 2022, 51, 18169–18175. [Google Scholar] [CrossRef]
- Muresan, L.M. Zeolite-modified electrodes with analytical applications. Pure Appl. Chem. 2011, 83, 325–343. [Google Scholar] [CrossRef]
- Mosquera, N.; Aguirre, M.J.; Domingo, R.-L.; García, C.; Arce, R.; Bollo, S. Co2SnO4/carbon paste electrode as electrochemical sensor for hydrogen peroxide. J. Chil. Chem. Soc. 2017, 62, 3525–3528. [Google Scholar] [CrossRef]
- Norouzi, B.; Malekan, A.; Moradian, M. Nickel-zeolite modified carbon paste electrode as electrochemical sensor for hydrogen peroxide. Russ. J. Electrochem. 2016, 52, 330–339. [Google Scholar] [CrossRef]
- Rostami, S.; Azizi, S.N.; Ghasemi, S. Using of silver nanoparticles incorporated in nanoporous ZSM-5 hierarchical zeolite prepared from bagasse as a new sensor for electrocatalytic determination of H2O2 in biological samples. J. Electroanal. Chem. 2017, 799, 583–594. [Google Scholar] [CrossRef]
Sample | Shift b | IR Signal Attribution | |||
---|---|---|---|---|---|
Z | Cu–Z | Z a | |||
Wavenumber (cm−1) | 3620 | 3620 | 3610 | - | O–H bond stretching |
3446 | 3446 | - | - | O–H bond stretching | |
1637 | 1637 | 1635 | - | H–O–H angular deformation | |
1209 | shoulder | 1210 | ↓↓ | (Si, Al)–O asymmetric internal stretching | |
1055 | 1074 | 1070 | ↑ | (Si, Al)–O asymmetric external stretching | |
796 | 788 | 790 | ↓ | (Si, Al)–O external symmetric stretching | |
733 | 726 | 740 | ↓ | (Si, Al)–O external symmetric stretching | |
669 | 674 | 670 | ↑ | (Si, Al)–O external symmetric stretching | |
606 | 607 | 602 | ↑ | ring-coupled (Si, Al)–O external vibration | |
467 | 459 | 465 | ↓ | O–(Si, Al)–O angular deformation |
pH | Slope | R/No. of Exp. Points | ||
---|---|---|---|---|
Oxidation | Reduction | Oxidation | Reduction | |
3 | 0.56 ± 0.02 | 0.62 ± 0.03 | 0.995/9 | 0.992/9 |
5 | 0.34 ± 0.01 | 0.51 ± 0.03 | 0.996/13 | 0.985/13 |
7 | 0.41 ± 0.02 | 0.60 ± 0.02 | 0.990/10 | 0.994/14 |
9 | 0.40 ± 0.03 | 0.57 ± 0.02 | 0.970/12 | 0.995/15 |
pH | Eappl (mV) | Detection Limit (μM) | Linear Domain (M) | S (mA/M) | Chi2 | R2 |
---|---|---|---|---|---|---|
3 | −50 | 10 | 10−5–5·10−3 | 0.75 | 1.8·10−13 | 0.989 |
7 | −150 | 10 | 10−5–3·10−2 | 0.87 | 4.1·10−14 | 0.999 |
9 | −400 | 31 | 2·10−5–10−3 | 27.8 | 1.0·10−11 | 0.999 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gligor, D.; Maicaneanu, S.A.; Varodi, C. Low-Cost Carbon Paste Cu(II)-Exchanged Zeolite Amperometric Sensor for Hydrogen Peroxide Detection. Chemosensors 2024, 12, 23. https://doi.org/10.3390/chemosensors12020023
Gligor D, Maicaneanu SA, Varodi C. Low-Cost Carbon Paste Cu(II)-Exchanged Zeolite Amperometric Sensor for Hydrogen Peroxide Detection. Chemosensors. 2024; 12(2):23. https://doi.org/10.3390/chemosensors12020023
Chicago/Turabian StyleGligor, Delia, Sanda Andrada Maicaneanu, and Codruta Varodi. 2024. "Low-Cost Carbon Paste Cu(II)-Exchanged Zeolite Amperometric Sensor for Hydrogen Peroxide Detection" Chemosensors 12, no. 2: 23. https://doi.org/10.3390/chemosensors12020023
APA StyleGligor, D., Maicaneanu, S. A., & Varodi, C. (2024). Low-Cost Carbon Paste Cu(II)-Exchanged Zeolite Amperometric Sensor for Hydrogen Peroxide Detection. Chemosensors, 12(2), 23. https://doi.org/10.3390/chemosensors12020023