Sprayable Diacetylene-Containing Amphiphile Coatings for Visual Detection of Gas-Phase Hydrogen Peroxide
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparing PCDA-Containing Spray Formulation
2.2. Spray Processing of Formulations
2.3. Examining the Response of Spray-Coated Paper to Hydrogen Peroxide Vapor
3. Results
3.1. Assessment of Color Response as a Function of Cumulative Exposure to Hydrogen Peroxide Vapor over Time
3.2. Impact of Formulations’ Iron(III) Chloride Content on Sensitivity of Color Response to Hydrogen Peroxide Vapor
3.3. Impact of Formulations’ PCDA Concentration on Sensitivity of Color Response to Hydrogen Peroxide Vapor
3.4. Assessing Long-Term Cumulative Exposure to Hydrogen Peroxide Vapor for Different Formulations
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nagaraja, C.; Shashibhushan, B.; Asif, M.; Manjunath, P. Hydrogen peroxide in exhaled breath condensate: A clinical study. Lung India 2012, 29, 123–127. [Google Scholar] [CrossRef]
- Loukides, S.; Horvath, I.; Wodehouse, T.; Cole, P.J.; Barnes, P.J. Elevated levels of expired breath hydrogen peroxide in bronchiectasis. Am. J. Respir. Crit. Care Med. 1998, 158, 991–994. [Google Scholar] [CrossRef]
- Brieger, K.; Schiavone, S.; Miller, F.J., Jr.; Krause, K.-H. Reactive oxygen species: From health to disease. Swiss Med. Wkly. 2012, 142, w13659. [Google Scholar] [CrossRef]
- Blackley, B.H.; Nett, R.J.; Cox-Ganser, J.M.; Harvey, R.R.; Virji, M.A. Eye and airway symptoms in hospital staff exposed to a product containing hydrogen peroxide, peracetic acid, and acetic acid. Am. J. Ind. Med. 2023, 66, 655–669. [Google Scholar] [CrossRef]
- Giaretta, J.E.; Duan, H.; Oveissi, F.; Farajikhah, S.; Dehghani, F.; Naficy, S. Flexible sensors for hydrogen peroxide detection: A critical review. ACS Appl. Mater. Interfaces 2022, 14, 20491–20505. [Google Scholar] [CrossRef]
- Li, N.; Huang, J.; Wang, Q.; Gu, Y.; Wang, P. A reaction based one-and two-photon fluorescent probe for selective imaging H2O2 in living cells and tissues. Sens. Actuators B Chem. 2018, 254, 411–416. [Google Scholar] [CrossRef]
- Chang, M.C.; Pralle, A.; Isacoff, E.Y.; Chang, C.J. A selective, cell-permeable optical probe for hydrogen peroxide in living cells. J. Am. Chem. Soc. 2004, 126, 15392–15393. [Google Scholar] [CrossRef]
- Guo, H.; Chen, G.; Gao, M.; Wang, R.; Liu, Y.; Yu, F. Imaging of endogenous hydrogen peroxide during the process of cell mitosis and mouse brain development with a near-infrared ratiometric fluorescent probe. Anal. Chem. 2018, 91, 1203–1210. [Google Scholar] [CrossRef]
- Zheng, D.-J.; Yang, Y.-S.; Zhu, H.-L. Recent progress in the development of small-molecule fluorescent probes for the detection of hydrogen peroxide. TrAC Trends Anal. Chem. 2019, 118, 625–651. [Google Scholar] [CrossRef]
- Lu, S.; Jia, C.; Duan, X.; Zhang, X.; Luo, F.; Han, Y.; Huang, H. Polydiacetylene vesicles for hydrogen peroxide detection. Colloids Surf. A Physicochem. Eng. Asp. 2014, 443, 488–491. [Google Scholar] [CrossRef]
- Jia, C.; Tang, J.; Lu, S.; Han, Y.; Huang, H. Enhanced sensitivity for hydrogen peroxide detection: Polydiacetylene vesicles with phenylboronic acid head group. J. Fluoresc. 2016, 26, 121–127. [Google Scholar] [CrossRef]
- Kim, M.; Shin, Y.J.; Hwang, S.W.; Shin, M.J.; Shin, J.S. Chromatic detection of glucose using polymerization of diacetylene vesicle. J. Appl. Polym. Sci. 2018, 135, 46394. [Google Scholar] [CrossRef]
- Maier, D.; Laubender, E.; Basavanna, A.; Schumann, S.; Güder, F.; Urban, G.A.; Dincer, C. Toward continuous monitoring of breath biochemistry: A paper-based wearable sensor for real-time hydrogen peroxide measurement in simulated breath. ACS Sens. 2019, 4, 2945–2951. [Google Scholar] [CrossRef]
- Oberländer, J.; Kirchner, P.; Boyen, H.G.; Schöning, M.J. Detection of hydrogen peroxide vapor by use of manganese (IV) oxide as catalyst for calorimetric gas sensors. Phys. Status Solidi 2014, 211, 1372–1376. [Google Scholar] [CrossRef]
- Lee, D.-J.; Choi, S.-W.; Byun, Y.T. Room temperature monitoring of hydrogen peroxide vapor using platinum nanoparticles-decorated single-walled carbon nanotube networks. Sens. Actuators B Chem. 2018, 256, 744–750. [Google Scholar] [CrossRef]
- Hennemann, J.; Kohl, C.D.; Reisert, S.; Kirchner, P.; Schöning, M.J. Copper oxide nanofibres for detection of hydrogen peroxide vapour at high concentrations. Phys. Status Solidi 2013, 210, 859–863. [Google Scholar] [CrossRef]
- Xu, M.; Bunes, B.R.; Zang, L. Paper-based vapor detection of hydrogen peroxide: Colorimetric sensing with tunable interface. ACS Appl. Mater. Interfaces 2011, 3, 642–647. [Google Scholar] [CrossRef]
- Aroutiounian, V.; Arakelyan, V.; Aleksanyan, M.; Sayunts, A.; Shahnazaryan, G.; Kacer, P.; Picha, P.; Kovarik, J.; Pekarek, J.; Joost, B. Nanostructured sensors for detection of hydrogen peroxide vapours. Sens. Transducers 2017, 213, 46. [Google Scholar]
- Banga, I.; Paul, A.; Muthukumar, S.; Prasad, S. HELP (Hydrogen peroxide electrochemical profiling): A novel biosensor for measuring hydrogen peroxide levels expressed in breath for monitoring airway inflammation using electrochemical methods. Biosens. Bioelectron. X 2022, 10, 100139. [Google Scholar] [CrossRef]
- Isailović, J.; Vidović, K.; Hočevar, S.B. Simple electrochemical sensors for highly sensitive detection of gaseous hydrogen peroxide using polyacrylic-acid-based sensing membrane. Sens. Actuators B Chem. 2022, 352, 131053. [Google Scholar] [CrossRef]
- Vahidpour, F.; Alghazali, Y.; Akca, S.; Hommes, G.; Schöning, M.J. An enzyme-based Interdigitated electrode-type biosensor for detecting low concentrations of H2o2 vapor/aerosol. Chemosensors 2022, 10, 202. [Google Scholar] [CrossRef]
- Jannah, F.; Lee, J.; Seong, H.-J.; Kim, J.-M.; Kim, Y.-P. A photodynamic color sensor using diacetylene vesicles for the rapid visualization of singlet oxygen. Sens. Actuators B Chem. 2023, 380, 133336. [Google Scholar] [CrossRef]
- Shiveshwarkar, P.; Jaworski, J. Spray-On Colorimetric Sensors for Distinguishing the Presence of Lead Ions. Chemosensors 2023, 11, 327. [Google Scholar] [CrossRef]
- Shiveshwarkar, P.; Siurano, S.V.; Kadyrova, M.; Tran, N.; Jaworski, J. Investigating the Characteristics and Responses of Diacetylene Based Materials as Spray-On Colorimetric Sensors. Macromol. Res. 2022, 30, 1–5. [Google Scholar] [CrossRef]
- Manatt, S.L.; Manatt, M.R. On the analyses of mixture vapor pressure data: The hydrogen peroxide/water system and its excess thermodynamic functions. Chem.–A Eur. J. 2004, 10, 6540–6557. [Google Scholar] [CrossRef]
- Scatchard, G.; Kavanagh, G.M.; Ticknor, L.B. Vapor-Liquid Equilibrium. VIII. Hydrogen Peroxide—Water Mixtures1. J. Am. Chem. Soc. 1952, 74, 3715–3720. [Google Scholar] [CrossRef]
- Zhao, L.; Lin, Z.-R.; Ma, X.-h.; Dong, Y.-H. Catalytic activity of different iron oxides: Insight from pollutant degradation and hydroxyl radical formation in heterogeneous Fenton-like systems. Chem. Eng. J. 2018, 352, 343–351. [Google Scholar] [CrossRef]
- Burns, J.M.; Craig, P.S.; Shaw, T.J.; Ferry, J.L. Multivariate examination of Fe (II)/Fe (III) cycling and consequent hydroxyl radical generation. Environ. Sci. Technol. 2010, 44, 7226–7231. [Google Scholar] [CrossRef]
- Meyerstein, D. Re-examining Fenton and Fenton-like reactions. Nat. Rev. Chem. 2021, 5, 595–597. [Google Scholar] [CrossRef]
- Yoon, B.; Jaworski, J.; Kim, J.-M. Size-dependent intercalation of alkylamines within polydiacetylene supramolecules. Supramol. Chem. 2013, 25, 54–59. [Google Scholar] [CrossRef]
- Koppenol, W.H. The Haber-Weiss cycle–70 years later. Redox Rep. 2001, 6, 229–234. [Google Scholar] [CrossRef]
- Qian, X.; Städler, B. Polydiacetylene-Based Biosensors for the Detection of Viruses and Related Biomolecules. Adv. Funct. Mater. 2020, 30, 2004605. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiveshwarkar, P.; Jaworski, J. Sprayable Diacetylene-Containing Amphiphile Coatings for Visual Detection of Gas-Phase Hydrogen Peroxide. Chemosensors 2024, 12, 71. https://doi.org/10.3390/chemosensors12050071
Shiveshwarkar P, Jaworski J. Sprayable Diacetylene-Containing Amphiphile Coatings for Visual Detection of Gas-Phase Hydrogen Peroxide. Chemosensors. 2024; 12(5):71. https://doi.org/10.3390/chemosensors12050071
Chicago/Turabian StyleShiveshwarkar, Priyanka, and Justyn Jaworski. 2024. "Sprayable Diacetylene-Containing Amphiphile Coatings for Visual Detection of Gas-Phase Hydrogen Peroxide" Chemosensors 12, no. 5: 71. https://doi.org/10.3390/chemosensors12050071
APA StyleShiveshwarkar, P., & Jaworski, J. (2024). Sprayable Diacetylene-Containing Amphiphile Coatings for Visual Detection of Gas-Phase Hydrogen Peroxide. Chemosensors, 12(5), 71. https://doi.org/10.3390/chemosensors12050071