Research Progress on Molecularly Imprinted Materials for the Screening and Identification of Organic Pollutants
Abstract
:1. Introduction
2. The principle of MIPs
2.1. Concept of Molecular Imprinting Technology
2.2. Synthesis Mechanism of MIPs
2.3. Preparation of MIPs
2.3.1. Embedding Method
2.3.2. Surface Molecular Imprinting Method
3. Application of MIPs in the Screening and Identification of Emerging Pollutants
3.1. Sample Pretreatment
3.1.1. SPE
3.1.2. Magnetic MIPs
3.1.3. Dummy MIPs
3.2. Molecularly Imprinted Electrochemical Sensor
3.3. Molecularly Imprinted Optical Sensor
4. Summary and Outlook
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Du, C.Y.; Zhang, Y.; Zhang, Z.; Zhou, L.; Yu, G.L.; Wen, X.F.; Chi, T.Y.; Wang, G.L.; Su, Y.H.; Deng, F.F.; et al. Fe-based metal organic frameworks (Fe-MOFs) for organic pollutants removal via photo-Fenton: A review. Chem. Eng. J. 2022, 431, 133932. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, J.; Dong, X.X.; Lv, Y.K. Functionalized metal-organic frameworks for photocatalytic degradation of organic pollutants in environment. Chemosphere 2020, 242, 125144. [Google Scholar] [CrossRef] [PubMed]
- Dai, Y.J.; Zhang, N.X.; Xing, C.M.; Cui, Q.X.; Sun, Q.Y. The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: A review. Chemosphere 2019, 223, 12–27. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.T.; Tang, H.M.; Yao, B.; Gao, X.; Yang, X.; Zhou, Y.Y. Activation of peroxymonosulfate (PMS) by spinel ferrite and their composites in degradation of organic pollutants: A Review. Chem. Eng. J. 2021, 414, 128800. [Google Scholar] [CrossRef]
- Yu, F.; Yang, C.F.; Zhu, Z.L.; Bai, X.T.; Ma, J. Adsorption behavior of organic pollutants and metals on micro/nanoplastics in the aquatic environment. Sci. Total Environ. 2019, 694, 133643. [Google Scholar] [CrossRef] [PubMed]
- He, B.S.; Yan, X.H. Modifications of Au Nanoparticle-Functionalized Graphene for Sensitive Detection of Sulfanilamide. Sensors 2018, 18, 846. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Zhao, Q.; Jiang, L.Y.; Li, Z.Q.; Chen, Y.H.; Ding, L. Selective determination of sulfonamides from environmental water based on magnetic surface molecularly imprinting technology. Environ. Sci. Pollut. Res. 2017, 24, 9174–9186. [Google Scholar] [CrossRef]
- Yu, W.; Li, K.; Liu, Z.L.; Zhang, H.Q.; Jin, X.Q. Novelty aqueous two-phase extraction system based on ionic liquid for determination of sulfonamides in blood coupled with high-performance liquid chromatography. Microchem. J. 2018, 136, 263–269. [Google Scholar] [CrossRef]
- Kushikawa, R.T.; Silva, M.R.; Angelo, A.C.D.; Teixeira, M.F.S. Construction of an electrochemical sensing platform based on platinum nanoparticles supported on carbon for tetracycline determination. Sens. Actuators B-Chem. 2016, 228, 207–213. [Google Scholar] [CrossRef]
- Gong, X.; Huang, D.L.; Liu, Y.G.; Peng, Z.W.; Zeng, G.M.; Xu, P.; Cheng, M.; Wang, R.Z.; Wan, J. Remediation of contaminated soils by biotechnology with nanomaterials: Bio-behavior, applications, and perspectives. Crit. Rev. Biotechnol. 2018, 38, 455–468. [Google Scholar] [CrossRef]
- He, Q.G.; Liu, J.; Xia, Y.H.; Tuo, D.; Deng, P.H.; Tian, Y.L.; Wu, Y.Y.; Li, G.L.; Chen, D.C. Rapid and Sensitive Voltammetric Detection of Rhodamine B in Chili-Containing Foodstuffs Using MnO2 Nanorods/Electro-Reduced Graphene Oxide Composite. J. Electrochem. Soc. 2019, 166, B805–B813. [Google Scholar] [CrossRef]
- Jalalvand, A.R.; Haseli, A.; Farzadfar, F.; Goicoechea, H.C. Fabrication of a novel biosensor for biosensing of bisphenol A and detection of its damage to DNA. Talanta 2019, 201, 350–357. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.L.; Ma, R.; Zhuang, L.; Hu, B.W.; Chen, J.R.; Liu, X.Y.; Wang, X.K. Recent developments of doped g-C3N4 photocatalysts for the degradation of organic pollutants. Crit. Rev. Environ. Sci. Technol. 2021, 51, 751–790. [Google Scholar] [CrossRef]
- Dong, G.P.; Zhang, Y.H.; Pan, Q.W.; Qiu, J.R. A fantastic graphitic carbon nitride (g-C3N4) material: Electronic structure, photocatalytic and photoelectronic properties. J. Photochem. Photobiol. C-Photochem. Rev. 2014, 20, 33–50. [Google Scholar] [CrossRef]
- Guo, W.J.; Pan, B.H.; Sakkiah, S.; Yavas, G.; Ge, W.G.; Zou, W.; Tong, W.D.; Hong, H.X. Persistent Organic Pollutants in Food: Contamination Sources, Health Effects and Detection Methods. Int. J. Environ. Res. Public Health 2019, 16, 4361. [Google Scholar] [CrossRef] [PubMed]
- Chong, M.N.; Jin, B.; Chow, C.W.K.; Saint, C. Recent developments in photocatalytic water treatment technology: A review. Water Res. 2010, 44, 2997–3027. [Google Scholar] [CrossRef] [PubMed]
- Almaqdi, K.A.; Morsi, R.; Alhayuti, B.; Alharthi, F.; Ashraf, S.S. LC-MSMS based screening of emerging pollutant degradation by different peroxidases. BMC Biotechnol. 2019, 19, 83. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Q.; Zhang, Y.Y.; Wang, N.; Zhu, L.H.; Tang, H.Q. Analysis of tetracyclines in chicken tissues and dung using LC-MS coupled with ultrasound-assisted enzymatic hydrolysis. Food Control 2014, 46, 324–331. [Google Scholar] [CrossRef]
- Kaykhaii, M.; Yavari, E.; Sargazi, G.; Ebrahimi, A.K. Highly Sensitive Determination of Bisphenol A in Bottled Water Samples by HPLC after Its Extraction by a Novel Th-MOF Pipette-Tip Micro-SPE. J. Chromatogr. Sci. 2020, 58, 373–382. [Google Scholar] [CrossRef]
- Desmarchelier, A.; Anizan, S.; Tien, M.M.; Savoy, M.C.; Bion, C. Determination of five tetracyclines and their epimers by LC-MS/MS based on a liquid-liquid extraction with low temperature partitioning. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2018, 35, 686–694. [Google Scholar] [CrossRef]
- Chisvert, A.; Benedé, J.L.; Salvador, A. Current trends on the determination of organic UV filters in environmental water samples based on microextraction techniques—A review. Anal. Chim. Acta 2018, 1034, 22–38. [Google Scholar] [CrossRef]
- Carasek, E.; Morés, L.; Merib, J. Basic principles, recent trends and future directions of microextraction techniques for the analysis of aqueous environmental samples. Trends Environ. Anal. Chem. 2018, 19, e00060. [Google Scholar] [CrossRef]
- Brahmbhatt, H.; Poma, A.; Pendergraff, H.M.; Watts, J.K.; Turner, N.W. Improvement of DNA recognition through molecular imprinting: Hybrid oligomer imprinted polymeric nanoparticles (oligoMIP NPs). Biomater. Sci. 2016, 4, 281–287. [Google Scholar] [CrossRef]
- Yilmaz, E.; Haupt, K.; Mosbach, K. The use of immobilized templates—A new approach in molecular imprinting. Angew. Chem. Int. Ed. 2000, 39, 2115–2118. [Google Scholar] [CrossRef]
- Chen, R.N.; Kang, S.H.; Li, J.; Lu, L.N.; Luo, X.P.; Wu, L. Comparison and recent progress of molecular imprinting technology and dummy template molecular imprinting technology. Anal. Methods 2021, 13, 4538–4556. [Google Scholar] [CrossRef]
- Ncube, S.; Madikizela, L.; Cukrowska, E.; Chimuka, L. Recent advances in the adsorbents for isolation of polycyclic aromatic hydrocarbons (PAHs) from environmental sample solutions. Trac-Trends Anal. Chem. 2018, 99, 101–116. [Google Scholar] [CrossRef]
- Mehdinia, A.; Dadkhah, S.; Kayyal, T.B.; Jabbari, A. Design of a surface-immobilized 4-nitrophenol molecularly imprinted polymer via pre-grafting amino functional materials on magnetic nanoparticles. J. Chromatogr. A 2014, 1364, 12–19. [Google Scholar] [CrossRef]
- Wang, Y.F.; Tian, M.J.; Yu, K.; Li, L.Y.; Zhang, Z.L.; Li, L. A versatile strategy to fabricate magnetic dummy molecularly imprinted mesoporous silica particles for specific magnetic separation of bisphenol A. New J. Chem. 2019, 43, 3400–3408. [Google Scholar] [CrossRef]
- Haupt, K.; Rangel, P.X.M.; Bui, B.T.S. Molecularly Imprinted Polymers: Antibody Mimics for Bioimaging and Therapy. Chem. Rev. 2020, 120, 9554–9582. [Google Scholar] [CrossRef]
- Singh, M.; Singh, S.; Singh, S.P.; Patel, S.S. Recent advancement of carbon nanomaterials engrained molecular imprinted polymer for environmental matrix. Trends Environ. Anal. Chem. 2020, 27, e00092. [Google Scholar] [CrossRef]
- Motaharian, A.; Hosseini, M.R.M.; Naseri, K. Determination of psychotropic drug chlorpromazine using screen printed carbon electrodes modified with novel MIP-MWCNTs nano-composite prepared by suspension polymerization method. Sens. Actuators B-Chem. 2019, 288, 356–362. [Google Scholar] [CrossRef]
- Farooq, S.; Nie, J.Y.; Cheng, Y.; Yan, Z.; Li, J.; Bacha, S.A.S.; Mushtaq, A.; Zhang, H. Molecularly imprinted polymers’ application in pesticide residue detection. Analyst 2018, 143, 3971–3989. [Google Scholar] [CrossRef]
- Song, X.L.; Li, J.H.; Wang, J.T.; Chen, L.X. Quercetin molecularly imprinted polymers: Preparation, recognition characteristics and properties as sorbent for solid-phase extraction. Talanta 2009, 80, 694–702. [Google Scholar] [CrossRef]
- Sun, X.L.; Wang, J.C.; Li, Y.; Yang, J.J.; Jin, J.; Shah, S.M.; Chen, J.P. Novel dummy molecularly imprinted polymers for matrix solid-phase dispersion extraction of eight fluoroquinolones from fish samples. J. Chromatogr. A 2014, 1359, 1–7. [Google Scholar] [CrossRef]
- Chen, J.L.; Zhao, W.H.; Tan, L.J.; Wang, J.F.; Li, H.P.; Wang, J.T. Separation and detection of trace atrazine from seawater using dummy-template molecularly imprinted solid-phase extraction followed by high-performance liquid chromatography. Mar. Pollut. Bull. 2019, 149, 110502. [Google Scholar] [CrossRef]
- Lian, Z.R.; Liang, Z.L.; Wang, J.T. Selective extraction and concentration of mebendazole in seawater samples using molecularly imprinted polymer as sorbent. Mar. Pollut. Bull. 2015, 91, 96–101. [Google Scholar] [CrossRef]
- Mirzajani, R.; Kardani, F. Fabrication of ciprofloxacin molecular imprinted polymer coating on a stainless steel wire as a selective solid-phase microextraction fiber for sensitive determination of fluoroquinolones in biological fluids and tablet formulation using HPLC-UV detection. J. Pharm. Biomed. Anal. 2016, 122, 98–109. [Google Scholar] [CrossRef]
- Lu, W.H.; Liu, J.; Li, J.H.; Wang, X.Y.; Lv, M.; Cui, R.; Chen, L.X. Dual-template molecularly imprinted polymers for dispersive solid-phase extraction of fluoroquinolones in water samples coupled with high performance liquid chromatography. Analyst 2019, 144, 1292–1302. [Google Scholar] [CrossRef]
- Khosrokhavar, R.; Motaharian, A.; Hosseini, M.R.M.; Mohammadsadegh, S. Screen-printed carbon electrode (SPCE) modified by molecularly imprinted polymer (MIP) nanoparticles and graphene nanosheets for determination of sertraline antidepressant drug. Microchem. J. 2020, 159, 105348. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Öpik, A.; Furchner, A.; Syritski, V. Hybrid molecularly imprinted polymer for amoxicillin detection. Biosens. Bioelectron. 2018, 118, 102–107. [Google Scholar] [CrossRef]
- Kalogiouri, N.P.; Tsalbouris, A.; Kabir, A.; Furton, K.G.; Samanidou, V.F. Synthesis and application of molecularly imprinted polymers using sol-gel matrix imprinting technology for the efficient solid-phase extraction of BPA from water. Microchem. J. 2020, 157, 104965. [Google Scholar] [CrossRef]
- Xu, X.Y.; Zhou, H.; Zhang, J.H.; Li, Y.P.; Yang, Y.J.; Fang, Y.S.; Wu, Z.Z.; Cui, B.; Hu, Q. One-Step Electropolymerization of Polythiophene Derivative Film for Photoelectrochemical Detection of Chlorpyrifos. J. Electrochem. Soc. 2022, 169, 106502. [Google Scholar] [CrossRef]
- Ye, Z.J.; Liu, Y.X.; Yang, J.L.; Long, J.; Zeng, H.W.; Li, H.L.; Liu, C.; Xu, B.J.; Ng, K.W.; Shi, G.; et al. Spirobifluorene-based electropolymerized films for highly sensitive and reversible detection of TNP in water. J. Photochem. Photobiol. A-Chem. 2024, 450, 115431. [Google Scholar] [CrossRef]
- Karimian, N.; Stortini, A.M.; Moretto, L.M.; Costantino, C.; Bogialli, S.; Ugo, P. Electrochemosensor for Trace Analysis of Perfluorooctanesulfonate in Water Based on a Molecularly Imprinted Poly(o-phenylenediamine) Polymer. ACS Sens. 2018, 3, 1291–1298. [Google Scholar] [CrossRef]
- Mostafiz, B.; Bigdeli, S.A.; Banan, K.; Afsharara, H.; Hatamabadi, D.; Mousavi, P.; Hussain, C.M.; Keçili, R.; Ghorbani-Bidkorbeh, F. Molecularly imprinted polymer-carbon paste electrode (MIP-CPE)-based sensors for the sensitive detection of organic and inorganic environmental pollutants: A review. Trends Environ. Anal. Chem. 2021, 32, e00144. [Google Scholar] [CrossRef]
- Idris, Z.M.; Hameed, B.H.; Ye, L.; Hajizadeh, S.; Mattiasson, B.; Din, A.T.M. Amino-functionalised silica-grafted molecularly imprinted polymers for chloramphenicol adsorption. J. Environ. Chem. Eng. 2020, 8, 103981. [Google Scholar] [CrossRef]
- Wang, T.; Li, P.F.; Sun, Y.; Song, X.M.; Li, H.; Qin, L.T.; Zhou, J.Y.; Huang, Q.; Lei, F.H. Camptothecin-imprinted polymer microspheres with rosin-based cross-linker for separation of camptothecin from Camptotheca acuminata fruit. Sep. Purif. Technol. 2020, 234, 116085. [Google Scholar] [CrossRef]
- Wang, K.P.; Tan, L.J.; Zhang, Y.W.; Zhang, D.M.; Wang, N.; Wang, J.T. A molecular imprinted fluorescence sensor based on carbon quantum dots for selective detection of 4-nitrophenol in aqueous environments. Mar. Pollut. Bull. 2023, 187, 114587. [Google Scholar] [CrossRef]
- Riskin, M.; Tel-Vered, R.; Lioubashevski, O.; Willner, I. Ultrasensitive Surface Plasmon Resonance Detection of Trinitrotoluene by a Bis-aniline-Cross-Linked Au Nanoparticles Composite. J. Am. Chem. Soc. 2009, 131, 7368–7378. [Google Scholar] [CrossRef]
- Liu, K.; Wei, W.Z.; Zeng, J.X.; Liu, X.Y.; Gao, Y.P. Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine. Anal. Bioanal. Chem. 2006, 385, 724–729. [Google Scholar] [CrossRef]
- Liu, Y.H.; Lian, Z.R.; Li, F.F.; Majid, A.; Wang, J.T. Review on molecular imprinting technology and its application in pre-treatment and detection of marine organic pollutants. Mar. Pollut. Bull. 2021, 169, 112541. [Google Scholar] [CrossRef]
- Jing, L.; Gu, L.; Shi, J.; Li, Z.; Yang, F.; Li, G. Application of tebuconazole-triadimefon bi-template molecularly imprinted polymer for detection of pesticide residues in tobacco leaves. Chem. Ind. Eng. Prog. 2022, 41, 6029–6037. [Google Scholar]
- Li, W.; Zhang, Z.M.; Zhang, R.R.; Jiao, H.F.; Ai-li, S.; Shi, X.Z.; Chen, J. Effective removal matrix interferences by a modified QuEChERS based on the molecularly imprinted polymers for determination of 84 polychlorinated biphenyls and organochlorine pesticides in shellfish samples. J. Hazard. Mater. 2020, 384, 121241. [Google Scholar] [CrossRef]
- Azizi, A.; Shahhoseini, F.; Bottaro, C.S. Magnetic molecularly imprinted polymers prepared by reversible addition fragmentation chain transfer polymerization for dispersive solid phase extraction of polycyclic aromatic hydrocarbons in water. J. Chromatogr. A 2020, 1610, 460534. [Google Scholar] [CrossRef]
- Firoozichahak, A.; Rahmani, A.; Mehregan, F.; Rahimpoor, R. Sensitive and selective magnetic dispersive microextraction of diazinon from urine samples by molecularly imprinted polymer based on core-shell metal-organic frameworks. J. Chromatogr. B-Anal. Technol. Biomed. Life Sci. 2022, 1207, 123364. [Google Scholar] [CrossRef]
- Boontongto, T.; Burakham, R. Eco-friendly fabrication of a magnetic dual-template molecularly imprinted polymer for the selective enrichment of organophosphorus pesticides for fruits and vegetables. Anal. Chim. Acta 2021, 1186, 339128. [Google Scholar] [CrossRef]
- Yin, R.; Gao, L.; Qin, D.L.; Chen, L.G.; Niu, N. Preparation of porous carbon-based molecularly imprinted polymers for separation of triazine herbicides in corn. Microchim. Acta 2022, 189, 23. [Google Scholar] [CrossRef]
- Huang, X.C.; Ma, J.K.; Wei, S.L. Preparation and application of a novel magnetic molecularly imprinted polymer for simultaneous and rapid determination of three trace endocrine disrupting chemicals in lake water and milk samples. Anal. Bioanal. Chem. 2020, 412, 1835–1846. [Google Scholar] [CrossRef]
- El Hani, O.; Karrat, A.; Digua, K.; Amine, A. Advanced molecularly imprinted polymer-based paper analytical device for selective and sensitive detection of Bisphenol-A in water samples. Microchem. J. 2023, 184, 108157. [Google Scholar] [CrossRef]
- Xue, W.L.; Li, N.; Zhang, Z.M.; Li, G.K. Dummy template based molecularly imprinted solid-phase microextraction coating for analysis of trace disinfection by-product of 2,6-dichloro-1,4--benzoquinone using high-performance liquid chromatography. Talanta 2022, 239, 123065. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Zhang, W.W.; Zhang, L.M.; Song, G.S.; Wang, N.W.; Xu, W.Z.; Huang, W.H. A molecularly imprinted electrochemical BPA sensor based on multi-walled carbon nanotubes modified by CdTe quantum dots for the detection of bisphenol A. Microchem. J. 2021, 170, 106737. [Google Scholar] [CrossRef]
- Maria, C.G.A.; Akshaya, K.B.; Rison, S.; Varghese, A.; George, L. Molecularly imprinted PEDOT on carbon fiber paper electrode for the electrochemical determination of 2,4-dichlorophenol. Synth. Met. 2020, 261, 116309. [Google Scholar] [CrossRef]
- Lu, D.N.; Zhu, D.Z.; Gan, H.H.; Yao, Z.Y.; Luo, J.Y.; Yu, S.R.; Kurup, P. An ultra-sensitive molecularly imprinted polymer (MIP) and gold nanostars (AuNS) modified voltammetric sensor for facile detection of perfluorooctance sulfonate (PFOS) in drinking water. Sens. Actuators B-Chem. 2022, 352, 131055. [Google Scholar] [CrossRef]
- Ayankojo, A.G.; Reut, J.; Ciocan, V.; Öpik, A.; Syritski, V. Molecularly imprinted polymer-based sensor for electrochemical detection of erythromycin. Talanta 2020, 209, 120502. [Google Scholar] [CrossRef]
- Dehghani, M.; Nasirizadeh, N.; Yazdanshenas, M.E. Determination of cefixime using a novel electrochemical sensor produced with gold nanowires/graphene oxide/electropolymerized molecular imprinted polymer. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 96, 654–660. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.Y.; Jiang, S.S.; Xu, Z.X.; Zhou, S.; Xu, L.H. A novel fluorescent sensor based on a magnetic covalent organic framework-supported, carbon dot-embedded molecularly imprinted composite for the specific optosensing of bisphenol A in foods. Sens. Actuators B-Chem. 2022, 361, 131729. [Google Scholar] [CrossRef]
- Gong, J.M.; Fang, T.; Peng, D.H.; Li, A.M.; Zhang, L.Z. A highly sensitive photoelectrochemical detection of perfluorooctanic acid with molecularly imprined polymer-functionalized nanoarchitectured hybrid of AgI-BiOI composite. Biosens. Bioelectron. 2015, 73, 256–263. [Google Scholar] [CrossRef] [PubMed]
- Arabi, M.; Ostovan, A.; Bagheri, A.R.; Guo, X.T.; Wang, L.Y.; Li, J.H.; Wang, X.Y.; Li, B.W.; Chen, L.X. Strategies of molecular imprinting-based solid-phase extraction prior to chromatographic analysis. Trac-Trends Anal. Chem. 2020, 128, 115923. [Google Scholar] [CrossRef]
- Azizi, A.; Bottaro, C.S. A critical review of molecularly imprinted polymers for the analysis of organic pollutants in environmental water samples. J. Chromatogr. A 2020, 1614, 460603. [Google Scholar] [CrossRef]
- Ansari, S. Application of magnetic molecularly imprinted polymer as a versatile and highly selective tool in food and environmental analysis: Recent developments and trends. Trac-Trends Anal. Chem. 2017, 90, 89–106. [Google Scholar] [CrossRef]
- Ma, W.; Dai, J.D.; Dai, X.H.; Da, Z.L.; Yan, Y.S. Core-shell molecularly imprinted polymers based on magnetic chitosan microspheres for chloramphenicol selective adsorption. Monatshefte Fur Chem. 2015, 146, 465–474. [Google Scholar] [CrossRef]
- Lin, Z.Z.; Wang, D.; Peng, A.H.; Huang, Z.Y. HPLC determination of domoic acid in shellfish based on magnetic molecularly imprinting polymers. Int. J. Polym. Anal. Charact. 2017, 22, 202–209. [Google Scholar] [CrossRef]
- Khan, S.; Wong, A.; Zanoni, M.V.B.; Sotomayor, M.D.T. Electrochemical sensors based on biomimetic magnetic molecularly imprinted polymer for selective quantification of methyl green in environmental samples. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019, 103, 109825. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.C.; Xiao, W.W.; Wang, J.Y.; Xiong, X.H. Rapid isolation and determination of bisphenol A in complicated matrices by magnetic molecularly imprinted electrochemical sensing. Anal. Bioanal. Chem. 2021, 413, 389–401. [Google Scholar] [CrossRef]
- Zhao, W.R.; Kang, T.F.; Lu, L.P.; Cheng, S.Y. Electrochemical magnetic imprinted sensor based on MWCNTs@CS/CTABr surfactant composites for sensitive sensing of diethylstilbestrol. J. Electroanal. Chem. 2018, 818, 181–190. [Google Scholar] [CrossRef]
- Yuan, X.C.; Yuan, Y.X.; Gao, X.; Xiong, Z.L.; Zhao, L.S. Magnetic dummy-template molecularly imprinted polymers based on multi-walled carbon nanotubes for simultaneous selective extraction and analysis of phenoxy carboxylic acid herbicides in cereals. Food Chem. 2020, 333, 127540. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Cao, X.L.; Zhang, Z.P.; Yin, J.G.; Wang, D.N.; Xu, Y.N.; Zhang, W.; Li, X.Y.; Zhang, Q.S.; Liu, L.W. Synthesis of dummy-template molecularly imprinted polymer adsorbents for solid phase extraction of aminoglycosides antibiotics from environmental water samples. Talanta 2020, 208, 120385. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.M.; Feng, F.; Chen, G.L.; Liu, Z.M.; Xu, Z.G. Barbell-shaped stir bar sorptive extraction using dummy template molecularly imprinted polymer coatings for analysis of bisphenol A in water. Anal. Bioanal. Chem. 2016, 408, 5329–5335. [Google Scholar] [CrossRef] [PubMed]
- Kröger, S.; Turner, A.P.F.; Mosbach, K.; Haupt, K. Imprinted polymer based sensor system for herbicides using differential-pulse voltammetry on screen printed electrodes. Anal. Chem. 1999, 71, 3698–3702. [Google Scholar] [CrossRef]
- Kaya, S.I.; Corman, M.E.; Uzun, L.; Ozkan, S.A. A porous molecularly imprinted electrochemical sensor for specific determination of bisphenol S from human serum and bottled water samples in femtomolar level. Anal. Bioanal. Chem. 2022, 414, 2775–2785. [Google Scholar] [CrossRef]
- Sarpong, K.A.; Zhang, K.; Luan, Y.; Cao, Y.F.; Xu, W.Z. Development and application of a novel electrochemical sensor based on AuNPS and difunctional monomer-MIPs for the selective determination of Tetrabromobisphenol-S in water samples. Microchem. J. 2020, 154, 104526. [Google Scholar] [CrossRef]
- Xu, C.Y.; Ning, K.P.; Wang, Z.; Yao, Y.; Xu, Q.; Hu, X.Y. Flexible Electrochemical Platform Coupled with In Situ Prepared Synthetic Receptors for Sensitive Detection of Bisphenol A. Biosensensors 2022, 12, 1076. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.K.; Song, Y.H.; Song, D.A.; Liang, R.N. Plasticizer-free polymer membrane potentiometric sensors based on molecularly imprinted polymers for determination of neutral phenols. Anal. Chim. Acta 2020, 1121, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H.; Sun, D.N. Molecularly Imprinted Ratiometric Fluorescence Nanosensors. Langmuir 2022, 38, 13305–13312. [Google Scholar] [CrossRef] [PubMed]
- Fan, M.X.; Gan, T.T.; Yin, G.F.; Cheng, F.B.B.; Zhao, N.J. Molecularly imprinted polymer coated Mn-doped ZnS quantum dots embedded in a metal-organic framework as a probe for selective room temperature phosphorescence detection of chlorpyrifos. RSC Adv. 2021, 11, 27845–27854. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zhang, W.L.; Liu, X.R.; Zhang, H.Q. Preparation of complex biological sample-compatible”turn-on”-type ratiometric fluorescent molecularly imprinted polymer microspheres via one-pot surface-initiated ATRP. Microchim. Acta 2022, 189, 464. [Google Scholar] [CrossRef] [PubMed]
- Bhogal, S.; Mohiuddin, I.; Kumar, S.; Malik, A.K.; Kim, K.H.; Kaur, K. Self-polymerized polydopamine-imprinted layer-coated carbon dots as a fluorescent sensor for selective and sensitive detection of 17ß-oestradiol. Sci. Total Environ. 2022, 847, 157356. [Google Scholar] [CrossRef]
- Xiong, H.H.; Guo, L.; Mao, X.J.; Tan, T.; Wan, H.; Wan, Y.Q. A magnetic hydrophilic molecularly imprinted material with multiple stimuli-response properties for efficient recognition of bisphenol A in beverages. Food Chem. 2020, 331, 127311. [Google Scholar] [CrossRef]
- Pan, Q.F.; Jiao, H.F.; Liu, H.; You, J.J.; Sun, A.L.; Zhang, Z.M.; Shi, X.Z. Highly selective molecularly imprinted-electrochemiluminescence sensor based on perovskite/Ru(bpy)32+ for simazine detection in aquatic products. Sci. Total Environ. 2022, 843, 156925. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H.; Shi, H.; Jin, B.D.; Qin, X.Y.; Wang, G.; Li, K.C.; Zhang, T.T.; Zhang, H.Z. In-site synthesis of an inorganic-framework molecular imprinted TiO2/CdS heterostructure for the photoelectrochemical sensing of bisphenol A. Anal. Methods 2021, 13, 2857–2864. [Google Scholar] [CrossRef]
- Xu, R.; Du, Y.; Liu, L.; Fan, D.W.; Yan, L.G.; Liu, X.J.; Wang, H.; Wei, Q.; Ju, H.X. Molecular imprinted photoelectrochemical sensor for bisphenol A supported by flower-like AgBiS2/In2S3 matrix. Sens. Actuators B-Chem. 2021, 330, 129387. [Google Scholar] [CrossRef]
- Ding, N.; Harlow, S.D.; Randolph, J.F.; Loch-Caruso, R.; Park, S.K. Perfluoroalkyl and polyfluoroalkyl substances (PFAS) and their effects on the ovary. Hum. Reprod. Update 2020, 26, 724–752. [Google Scholar] [CrossRef] [PubMed]
- Gagliano, E.; Sgroi, M.; Falciglia, P.P.; Vagliasindi, F.G.A.; Roccaro, P. Removal of poly- and perfluoroalkyl substances (PFAS) from water by adsorption: Role of PFAS chain length, effect of organic matter and challenges in adsorbent regeneration. Water Res. 2020, 171, 115381. [Google Scholar] [CrossRef] [PubMed]
- Tasfaout, A.; Ibrahim, F.; Morrin, A.; Brisset, H.; Sorrentino, I.; Nanteuil, C.; Laffite, G.; Nicholls, I.A.; Regan, F.; Branger, C. Molecularly imprinted polymers for per- and polyfluoroalkyl substances enrichment and detection. Talanta 2023, 258, 124434. [Google Scholar] [CrossRef]
- Chen, S.H.; Li, A.M.; Zhang, L.Z.; Gong, J.M. Molecularly imprinted ultrathin graphitic carbon nitride nanosheets-Based electrochemiluminescence sensing probe for sensitive detection of perfluorooctanoic acid. Anal. Chim. Acta 2015, 896, 68–77. [Google Scholar] [CrossRef]
- Risha, K.; Flaherty, J.; Wille, R.; Buck, W.; Morandi, F.; Isemura, T. Method for trace level analysis of C8, C9, C10, C11, and C13 perfluorocarbon carboxylic acids in water. Anal. Chem. 2005, 77, 1503–1508. [Google Scholar] [CrossRef]
Method | Principle | Advantages | Disadvantages | Reference |
---|---|---|---|---|
Bulk polymerization | The template, functional monomer, crosslinking agent, and initiator are uniformly mixed in a solvent and sealed in a vacuum environment for crosslinking polymerization. |
|
| [29,30] |
Suspension polymerization | The organic phase composed of the template, functional monomer, crosslinking agent, and pore-making agent is dissolved in a solvent. After adding a dispersant, the solvent is sealed and stirred at high speed. |
|
| [31] |
Precipitation polymerization | The template, monomer, crosslinker and initiator are dissolved in the reaction medium for polymerization, and an insoluble molecularly imprinted microsphere (MIM) is formed in the reaction medium. |
|
| [32,33] |
Sol-gel method | In the presence of the template molecule, the inorganic precursor is dissolved in a low-molecular-weight solvent medium and then formed into a gel by hydrolysis and polycondensation. |
|
| [34,35] |
Electrochemical polymerization | The polymerization of monomers on the electrode is due to oxidation or reduction or decomposition into free radicals or ions by electrochemical electrolysis in an appropriate electrolyte cell. |
|
| [31,36] |
Pollution | Polymerization Method | Linear Range | LOD | Reference |
---|---|---|---|---|
Fluoroquinolones | bulk polymerization | 0.023–0.033 μg L−1 | - | [37] |
Norfloxacin | precipitation polymerization | 1–200 μg L−1 | 0.67 μg L−1 | [38] |
Sertraline antidepressant drug | suspension polymerization | 5.0 × 10−9–7.5 × 10−7 M | 1.99 × 10−9 M | [39] |
Amoxicillin | sol-gel method | - | 73 pM | [40] |
Bisphenol A | sol-gel method | - | 0.015 ng μL−1 | [41] |
Chlorpyrifos | electro-polymerization | 1–218.92 μg L−1 | 0.36 μg L−1 | [42] |
2,4,6-Trinitrophenol | electro-polymerization | - | 21.5 nM | [43] |
Perfluorooctanesulfonate | electro-polymerization | 0.1–4.9 nM | 9.5 nM | [44] |
Analytes | Used Technologies | Detection Techniques | Linear Range | LOD | Sample | Reference |
---|---|---|---|---|---|---|
Pentazolol, triazolone, triazolol | SPE | UPLC-MS/MS | 0.0005–0.1 mg/L | - | Tobacco leaf | [52] |
Polychlorinated biphenyls | SPE | GC-MS/MS | - | 0.003–2.705 μg/kg | - | [53] |
Polycyclic aromatic hydrocarbons | SPE | GC-MS/MS | - | 1–100 pg/mL | Tap water | [54] |
Diazinon | MMIPs | GC | 0.02–20,000 ng/mL | 0.005 ng/mL | Urine | [55] |
Organophosphate pesticide | MMIPs | HPLC | 0.5–2000 mg/L | 0.062–0.195 mg/L | Vegetables and fruits | [56] |
Triazine pesticides | MMIPs | UPLC-MS/MS | 0.05–50 ng/g | 0.005–0.02 ng/g | Corn | [57] |
Nonyl phenol | MMIPs | HPLC | 0.1–50 mg/L | 0.1–0.3 μg/L | Lake water, milk | [58] |
Bisphenol A | DMIP | - | 0.1–5 μg/mL | 0.03 μg/mL | Tap water | [59] |
Disinfection by-product | DMIP | HPLC | - | 2.3 ng/mL | Tap water | [60] |
Bisphenol A | MIP electrochemical sensor | CV | 0.05–50 nmol/L | 0.015 nmol/L | Tap water, lake water | [61] |
POPs | MIP electrochemical sensor | CV | 0.21–300 nmol/L | 0.07 nmol/L | lake water | [62] |
PFAS | MIP electrochemical sensor | CV | 0.025–2.5 μg/L | 0.0075 μg/L | Potable water | [63] |
Erythromycin | MIP electrochemical sensor | DPV | - | 0.1 nM | Tap water | [64] |
Cefixime | MIP electrochemical sensor | EIS | 20.0–950.0 nM | 7.1 nM | Urine, serum | [65] |
Bisphenol A | MIP optional sensor | Fluorescence | - | 12 μg/L | Beverage | [66] |
Simazine | MIP optional sensor | PEC | 0.1–500 μg/L | 0.06 μg/L | Lake water | [34] |
PFAS | MIP optional sensor | PEC | - | 0.01 μg/L | Potable water | [67] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, J.; Lin, X.; Ee, L.Y.; Li, S.F.Y. Research Progress on Molecularly Imprinted Materials for the Screening and Identification of Organic Pollutants. Chemosensors 2024, 12, 72. https://doi.org/10.3390/chemosensors12050072
Song J, Lin X, Ee LY, Li SFY. Research Progress on Molecularly Imprinted Materials for the Screening and Identification of Organic Pollutants. Chemosensors. 2024; 12(5):72. https://doi.org/10.3390/chemosensors12050072
Chicago/Turabian StyleSong, Jialing, Xuanhao Lin, Liang Ying Ee, and Sam F. Y. Li. 2024. "Research Progress on Molecularly Imprinted Materials for the Screening and Identification of Organic Pollutants" Chemosensors 12, no. 5: 72. https://doi.org/10.3390/chemosensors12050072
APA StyleSong, J., Lin, X., Ee, L. Y., & Li, S. F. Y. (2024). Research Progress on Molecularly Imprinted Materials for the Screening and Identification of Organic Pollutants. Chemosensors, 12(5), 72. https://doi.org/10.3390/chemosensors12050072