Conducting Polymers in Amperometric Sensors: A State of the Art over the Last 15 Years with a Focus on Polypyrrole-, Polythiophene-, and Poly(3,4-ethylenedioxythiophene)-Based Materials
Abstract
:1. Introduction
2. Pyrrole
2.1. Unmodified Py, Ring Functionalization, and Copolymer Materials
2.2. Metal-Containing Polypyrrole
2.3. Polypyrrole–Carbonaceous-Materials Composites
Sensor Composition | Analyte Detected/ Application | Electrochemical Technique | Linear Range | LoD | Sensitivity | Ref. |
---|---|---|---|---|---|---|
OPPy/Pt | H2O2 | CA (RDE) | 700 nA μM−1 cm−2 | [41] | ||
OPPy(SDM-MIP)/Au | Sulfadimethoxine | CA | 0.15–3.7 mM | 70 μM | [45] | |
Hb/MS-PPy/GCE | H2O2 | CA | 0.01–1.2 mM | 0.01 mM | - | [46] |
ChOx/PEO-co-PPy/Pt ChOx/CP-co-PPy/Pt | cholesterol | CA | 13.32 μA mM−1 cm−2 11.87 μA mM−1 cm−2 | [47] | ||
GOx-biotinylated/PPy-NTA-Cu2+/Pt | glucose catechol | CA | 0.6 mA mol−1 L cm−2 656 mA mol−1 L cm−2 | [48] | ||
GOx/Py/Py-CO2H/Py-Fc/GCE | glucose | CA | 1.0–4.0 mM | 6.9 μM | 1.796 μA mM−1 cm−2 | [49] |
GOx/P(Py-FcPy)/ITO | glucose | CA | up to 16.8 mM | 0.17 mM | 19.21 μA mM−1 | [50] |
GOx/GCE/PPy | glucose | CA | [51] | |||
Asp. Niger/PPy/GCE | glucose | CA | 0.01–0.05 mM | 0.005 mM | 27.25±1.84 μA mM−1 cm−2 | [52] |
GOx/Py-PAMAM/MPA-Au | glucose | CA | 0.5–5.5 mM | 3.4–9.6 μM | 10–16 μA mM−1 | [53] |
PPy-PNP-XOD-Fe(CN)64− | phosphate | CA | 0.1–1 mM | 10 μM | [54] | |
PPy/banana pulp/graphite disk | salicylic acid | DPV | 1 × 10−7–1 × 10−4 M | 8.9 × 10−8 M | [55] | |
PPy-SDS/Pt | urea | CA | 80–1440 µM | 40 µM | 1.11 µA µM−1 cm−2 | [56] |
AChE/PPy/Pt | Organophosphate and organocarbamate pesticides | CA | 1.1 ppb (organophosphate) 0.12 ppb (organocarbamate) | [57] | ||
AChE/AuNPs/PPy-rGO/GCE | organophosphorus pesticides | CA | 1.0 nM–5 μM | 0.5 nM | [58] | |
P(MB-co-Py)/Au | dissolved O2 | CA | 15–285 μA | 1.47 μM | 256.335 μA mM−1 cm−2 | [59] |
ADA-CMC-GLI/β-CD/P(Py-propanoic acid)/SPE | celiac disease | CA | 0–10 μg mL−1 | 33 ng mL−1 | 0.45 μA mL μg−1 | [60] |
His-tagged-aptamer/ANTA/Cu2+/PEG/PPy/Au | prostate cancer | SWV | 0.15 fM (phosphate buffer) 1.4 fM (human plasma) | [61] | ||
PA/PPy/MOF/GCE | Pb(II) Cu(II) | DPV | 0.02–600 μM 0.2–600 μM | 0.0029 μM 0.0148 μM | [62] | |
POMs-PPy/GCE (M = Cu2+, Fe3+) | H2O2 | CA | 0.1–2 mM | 0.3 μM (Cu2+), 0.06 μM (Fe3+) | [63] | |
Au-PPy/PB/GCE | H2O2 | DPV | 2.5 × 10−9–1.2 × 10−6 M | 8.3 × 10−10 M | [64] | |
PPyNPT-Ag/GCE PPyNPT-Au/GCE | H2O2 dopamine | CA | 0.01–3.01 mM 1 μM–5.201 mM | 1.8 μM 0.36 μM | [65] | |
GOx/Fe3O4/poly(pyrrole-N-propylsulfonic acid)/MGCE | glucose | CA | 0.0005–3.5 mM | 0.2 µM | [66] | |
GOx/Fe3O4/PPy/MOF/GCE | glucose | CA | 1 μM–2 mM | 0.333 μM | [67] | |
ZnFe2O4/PPy/GCE | glucose | CA | 0.1–0.8 mM | 0.1 mM | 145.36 μA mM−1 | [68] |
CuFe2O4/PPy/GCE | glucose | CA | 20 μM–5.6 mM | 0.1 μM | 637.76 μA mM−1 | [69] |
PPy(CGP)-MN/GCE | H2O2 | CA | 0.1–0.9 mmol L−1 | 0.072 mmol L−1 | 0.28 μmol L−1 | [70] |
NSE/GOx-PPy-Pthionine-AuNPs/GCE | tumor marker (neuron-specific enolase, NSE) | CA | 1 pg mL−1–100 ng mL−1 | 0.65 pg mL−1 | [71] | |
XOD/Ag-ZnO/PPy/PGE | xanthine | CA | 0.06–0.6 μM | 0.07 μM | 0.03 μA mM−1 | [72] |
Pd@PSi-PPy-C/GCE | hydroquinone | CA | 1–450 μM | 0.074 μM | 3.0156 μA μM−1 cm−2 | [73] |
GOx/AuNPs/OPPy/Au | glucose | CA | 0–2.6 mM | 40 μM | 8.09 μA/mM | [74] |
OPPy-MIP/PtNPs/Pt | Vardenafil | DPV | 1 × 10−12–5 × 10−8 M | 0.2 × 10−12 M | [75] | |
Fe(CN)63−/4−/polyA2-MWCNTs/Pt | heparin | DPV | 0.1–0.8 μM | 0.1 μM | - | [76] |
PPy/CNT (PPy: enzyme-mediated synthesis) | uric acid | CA | 5–97 μM | 47 μA mM−1 | [77] | |
PPy-NY/MWCNT/GCE | naltrexone | LSV | 4.0 × 10−8–1 × 10−5 mol L−1 | 12 nmol L−1 | [78] | |
MWCNTs/PPy | lactic acid | CA | 51 μM | 2.9 μAmM−1 cm−2 | [79] | |
PPy-MIP/NiNPs/rGO/GCE | myo-inositol | DPV | 1 × 10−10–1 × 10−8 mol L−1 | 7.6 × 10−11 mol L−1 | 4.5 μA cm−2 μmol−1 | [80] |
CuO/OPPy/MWCNTs/CCE | glucose | CA | 0.20 μM–2.0 mM | 50 nM | 3922.6 μA mM−1 cm−2 | [81] |
OPPy(SMX-MIP)/MWCNT/GCE | sulfamethoxazole | DPV | 1.99–10.88 μM | 413 nM | [82] | |
OPPy/ERGO/GCE | dopamine | CA DPV | 0.4–517 μM 2.0–160 μM | 0.2 μM 0.5 μM | [83] |
3. Thiophene
3.1. Unmodified Thiophene, Ring Functionalization, and Copolymer Materials
3.2. Metal-Containing-Polythiophene
3.3. Polythiophene-Carbonaceous Materials Composites
4. 3,4-Ethylene-Dioxythiophene (EDOT)
4.1. Unmodified EDOT, Ring Functionalization, and Copolymer Materials
4.2. Metal-Containing-PEDOT
4.3. PEDOT-Carbonaceous Materials Composites
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
List of Acronyms
BSA | bovine serum albumin |
CMC | 1-cyclohexyl-3-(2-morpholinoethyl)-carbodiimide metho-p-toluenesulfonate (see the details in the text for different meanings) |
CNT | carbon nanotubes |
CP | conducting polymer |
EDOT | 3,4-ethylenedioxythiophene |
GC/GCE | glassy carbon electrode |
GO/rGO | graphene oxide/reduced graphene oxide |
GOx | glucose oxidase |
Lox | lactate oxidase |
MIP | molecularly imprinted polymer |
MOF | metal-organic framework |
MWCNT | multiwalled carbon nanotubes |
NADH | reduced nicotinamide adenine dinucleotide |
NP | nanoparticle |
NPT | nanoplate |
NW | nanowire |
Py | pyrrole |
SDS | sodium dodecyl sulphate |
SPE | screen-printed electrode |
Th | thiophene |
XOD | xanthine oxidase |
References
- IUPAC Compendium of Chemical Terminology Gold Book; Version 2.3.3. 2014. Available online: https://old.goldbook.iupac.org/pdf/goldbook.pdf (accessed on 9 May 2024).
- Hong, X.; Liu, Y.; Li, Y.; Wang, X.; Fu, J.; Wang, X. Application Progress of Polyaniline, Polypyrrole and Polythiophene in Lithium-Sulfur Batteries Xiaodong. Polymers 2020, 12, 331. [Google Scholar] [CrossRef]
- Kondratiev, V.V.; Holze, R. Intrinsically conducting polymers and their combinations with redox-active molecules for rechargeable battery electrodes: An update. Chem. Pap. 2021, 75, 4981–5007. [Google Scholar] [CrossRef]
- Bhosale, M.E.; Chae, S.; Kim, J.M.; Choi, J.Y. Organic small molecules and polymers as an electrode material for rechargeable lithium ion batteries. J. Mater. Chem. A 2018, 6, 19885–19911. [Google Scholar] [CrossRef]
- Jiang, Y.; Liu, T.; Zhou, Y. Recent Advances of Synthesis, Properties, Film Fabrication Methods, Modifications of Poly(3,4-ethylenedioxythiophene), and Applications in Solution-Processed Photovoltaics. Adv. Funct. Mater. 2020, 30, 2006213. [Google Scholar] [CrossRef]
- Saranya, K.; Rameez, M.; Subramania, A. Developments in conducting polymer based counter electrodes for dye-sensitized solar cells—An overview. Eur. Polym. J. 2015, 66, 207–227. [Google Scholar] [CrossRef]
- Manca, P.; Pilo, M.I.; Sanna, G.; Bergamini, G.; Ceroni, P.; Boaretto, R.; Caramori, S. Heteroleptic Ru (II)-terpyridine complex and its metal-containing conducting polymer: Synthesis and characterization. Synth. Met. 2015, 200, 109–116. [Google Scholar] [CrossRef]
- Bergamini, G.; Boselli, L.; Ceroni, P.; Manca, P.; Sanna, G.; Pilo, M. Terthiophene appended with terpyridine units as receptors for Protons and Zn2+ ions: Photoinduced energy and electron transfer processes. Eur. J. Inorg. Chem. 2011, 2011, 4590–4595. [Google Scholar] [CrossRef]
- Logothetidis, S. Flexible organic electronic devices: Materials, process and applications. Mater. Sci. Eng. B Solid-State Mater. Adv. Technol. 2008, 152, 96–104. [Google Scholar] [CrossRef]
- Roncali, J. Molecular engineering of the band gap of π-conjugated systems: Facing technological applications. Macromol. Rapid Commun. 2007, 28, 1761–1775. [Google Scholar] [CrossRef]
- Saito, Y.; Azechi, T.; Kitamura, T.; Hasegawa, Y.; Wada, Y.; Yanagida, S. Photo-sensitizing ruthenium complexes for solid state dye solar cells in combination with conducting polymers as hole conductors. Coord. Chem. Rev. 2004, 248, 1469–1478. [Google Scholar] [CrossRef]
- Ning, C.; Zhou, Z.; Tan, G.; Zhu, Y.; Mao, C. Electroactive polymers for tissue regeneration: Developments and perspectives. Prog. Polym. Sci. 2018, 81, 144–162. [Google Scholar] [CrossRef]
- Stejskal, J.; Sapurina, I.; Vilčáková, J.; Humpolíček, P.; Truong, T.H.; Shishov, M.A.; Trchová, M.; Kopecký, D.; Kolská, Z.; Prokeš, J.; et al. Conducting polypyrrole-coated macroporous melamine sponges: A simple toy or an advanced material? Chem. Pap. 2021, 75, 5035–5055. [Google Scholar] [CrossRef]
- Dzulkurnain, N.A.; Mokhtar, M.; Rashid, J.I.A.; Knight, V.F.; Wan Yunus, W.M.Z.; Ong, K.K.; Mohd Kasim, N.A.; Mohd Noor, S.A. A review on impedimetric and voltammetric analysis based on polypyrrole conducting polymers for electrochemical sensing applications. Polymers 2021, 13, 2728. [Google Scholar] [CrossRef]
- Lu, H.; Li, X.; Lei, Q. Conjugated Conductive Polymer Materials and its Applications: A Mini-Review. Front. Chem. 2021, 9, 6–11. [Google Scholar] [CrossRef]
- Meloni, F.; Pilo, M.I.; Sanna, G.; Spano, N.; Zucca, A. Ru(terpy)-Based Conducting Polymer in Electrochemical Biosensing of Epinephrine. Appl. Sci. 2021, 11, 2065. [Google Scholar] [CrossRef]
- Meloni, F.; Spychalska, K.; Zając, D.; Pilo, M.I.; Zucca, A.; Cabaj, J. Application of a Thiadiazole-derivative in a Tyrosinase-based Amperometric Biosensor for Epinephrine Detection. Electroanalysis 2021, 33, 1639–1645. [Google Scholar] [CrossRef]
- Pilo, M.; Farre, R.; Lachowicz, J.I.; Masolo, E.; Panzanelli, A.; Sanna, G.; Senes, N.; Sobral, A.; Spano, N. Design of Amperometric Biosensors for the Detection of Glucose Prepared by Immobilization of Glucose Oxidase on Conducting (Poly)Thiophene Films. J. Anal. Methods Chem. 2018, 2018, 1849439. [Google Scholar] [CrossRef]
- Ramanavicius, S.; Ramanavicius, A. Conducting polymers in the design of biosensors and biofuel cells. Polymers 2021, 13, 49. [Google Scholar] [CrossRef]
- Baluta, S.; Meloni, F.; Halicka, K.; Szyszka, A.; Zucca, A.; Pilo, M.I.; Cabaj, J. Differential pulse voltammetry and chronoamperometry as analytical tools for epinephrine detection using a tyrosinase-based electrochemical biosensor. RSC Adv. 2022, 12, 25342–25353. [Google Scholar] [CrossRef]
- Pilo, M.I.; Baluta, S.; Loria, A.C.; Sanna, G.; Spano, N. Poly(Thiophene)/Graphene Oxide-Modified Electrodes for Amperometric Glucose Biosensing. Nanomaterials 2022, 12, 2840. [Google Scholar] [CrossRef]
- Lange, U.; Roznyatovskaya, N.V.; Mirsky, V.M. Conducting polymers in chemical sensors and arrays. Anal. Chim. Acta 2008, 614, 1–26. [Google Scholar] [CrossRef]
- Cosnier, S.; Holzinger, M. Electrosynthesized polymers for biosensing. Chem. Soc. Rev. 2011, 40, 2146–2156. [Google Scholar] [CrossRef]
- Inzelt, G. Conducting Polymers A New Era in Electrochemistry, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2012; ISBN 978-3-642-27621-7. [Google Scholar]
- Alnuwaiser, M.A.; Rabia, M. Simple potentiometry and cyclic voltammetry techniques for sensing Hg2+ ions in water using a promising flower-shaped WS2-WO3/poly-2-aminobenzene-1-thiol nanocomposite thin film electrode. RSC Adv. 2024, 14, 3878–3887. [Google Scholar] [CrossRef] [PubMed]
- Yalcin, B.; Coldur, F.; Caglar, B.; Topcu, C. A PVC-Membrane Cationic Surfactant Sensitive Potentiometric Sensor: Potentiometric Determination of Dodecyltrimethyl Ammonium Ion. ChemistrySelect 2023, 8, e202302187. [Google Scholar] [CrossRef]
- Toniolo, R.; Dossi, N.; Giannilivigni, E.; Fattori, A.; Svigelj, R.; Bontempelli, G.; Giacomino, A.; Daniele, S. Modified Screen Printed Electrode Suitable for Electrochemical Measurements in Gas Phase. Anal. Chem. 2020, 92, 3689–3696. [Google Scholar] [CrossRef] [PubMed]
- Svigelj, R.; Dossi, N.; Grazioli, C.; Toniolo, R. Paper-based aptamer-antibody biosensor for gluten detection in a deep eutectic solvent (DES). Anal. Bioanal. Chem. 2022, 414, 3341–3348. [Google Scholar] [CrossRef]
- Svigelj, R.; Zuliani, I.; Grazioli, C.; Dossi, N.; Toniolo, R. An Effective Label-Free Electrochemical Aptasensor Based on Gold Nanoparticles for Gluten Detection. Nanomaterials 2022, 12, 987. [Google Scholar] [CrossRef]
- Almehizia, A.A.; Naglah, A.M.; Alanazi, M.G.; El-Galil, E.; Amr, A.; Kamel, A.H. Potentiometric planar platforms modified with a multiwalled carbon nanotube/polyaniline nanocomposite and based on imprinted polymers for erythromycin assessment. RSC Adv. 2023, 13, 35926–35936. [Google Scholar] [CrossRef]
- Wang, K.; Liang, R.; Qin, W. Thin membrane-based potentiometric sensors for sensitive detection of polyions. Anal. Methods 2022, 14, 4008–4013. [Google Scholar] [CrossRef] [PubMed]
- Demkiv, O.; Nogala, W.; Stasyuk, N.; Klepach, H.; Danysh, T.; Gonchar, M. Highly sensitive amperometric sensors based on laccase-mimetic nanozymes for the detection of dopamine. RSC Adv. 2024, 14, 5472–5478. [Google Scholar] [CrossRef] [PubMed]
- Jayaraman, S.; Rajarathinam, T.; Jang, H.G.; Thirumalai, D.; Lee, J.; Paik, H.J.; Chang, S.C. Ruthenium-Anchored Carbon Sphere-Customized Sensor for the Selective Amperometric Detection of Melatonin. Biosensors 2023, 13, 936. [Google Scholar] [CrossRef]
- Marco, A.; Canals, A.; Morallón, E.; Aguirre, M.Á. Electrochemical Sensor for the Determination of Methylthiouracil in Meat Samples. Sensors 2022, 22, 8842. [Google Scholar] [CrossRef]
- Gričar, E.; Kalcher, K.; Genorio, B.; Kolar, M. Highly sensitive amperometric detection of hydrogen peroxide in saliva based on n-doped graphene nanoribbons and mno2 modified carbon paste electrodes. Sensors 2021, 21, 8301. [Google Scholar] [CrossRef]
- Caetano, K.d.S.; Lieberknecht, G.; Benvenutti, E.V.; Pereira, M.B.; Hinrichs, R.; Hertz, P.F.; Rodrigues, R.C.; de Menezes, E.W.; Arenas, L.T.; Costa, T.M.H. Sol-gel immobilization of lipase enzyme on FTO modified with silica-zirconia and gold nanoparticles films for design of triglyceride impedimetric biosensor. Electrochim. Acta 2024, 483, 143997. [Google Scholar] [CrossRef]
- Feroze, M.T.; Doonyapisut, D.; Gudal, C.C.; Kim, B.; Chung, C.H. Impedimetric sensing platform for sensitive carbendazim detection using MOCVD-synthesized copper graphene. Microchim. Acta 2023, 190, 489. [Google Scholar] [CrossRef]
- Magar, H.S.; Hassan, R.Y.A.; Mulchandani, A. Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications. Sensors 2021, 21, 6578. [Google Scholar] [CrossRef]
- Hulanicki, A.; Głab, S.; Ingman, F. Chemical Sensors. Definitions and Classification. Pure Appl. Chem. 1991, 63, 1247–1250. [Google Scholar]
- Clark, L.C.; Lyons, C. Electrode systems for continuous monitoring in cardiovascular surgery. Ann. N. Y. Acad. Sci. 1962, 102, 29–45. [Google Scholar] [CrossRef]
- Debiemme-Chouvy, C. A very thin overoxidized polypyrrole membrane as coating for fast time response and selective H2O2 amperometric sensor. Biosens. Bioelectron. 2010, 25, 2454–2457. [Google Scholar] [CrossRef]
- Kan, X.; Xing, Z.; Zhu, A.; Zhao, Z.; Xu, G.; Li, C.; Zhou, H. Molecularly imprinted polymers based electrochemical sensor for bovine hemoglobin recognition. Sens. Actuators B Chem. 2012, 168, 395–401. [Google Scholar] [CrossRef]
- Deore, B.; Chen, Z.; Nagaoka, T. Potential-induced enantioselective uptake of amino acid into molecularly imprinted overoxidized polypyrrole. Anal. Chem. 2000, 72, 3989–3994. [Google Scholar] [CrossRef]
- Ramanavičius, A.; Ramanavičiene, A.; Malinauskas, A. Electrochemical sensors based on conducting polymer-polypyrrole. Electrochim. Acta 2006, 51, 6025–6037. [Google Scholar] [CrossRef]
- Turco, A.; Corvaglia, S.; Mazzotta, E. Electrochemical sensor for sulfadimethoxine based on molecularly imprinted polypyrrole: Study of imprinting parameters. Biosens. Bioelectron. 2015, 63, 240–247. [Google Scholar] [CrossRef]
- Han, X.; Zhu, Y.; Yang, X.; Luan, S. In situ polymerization of pyrrole in mesoporous silica and application to electrode modification. Int. J. Polym. Anal. Charact. 2010, 15, 155–165. [Google Scholar] [CrossRef]
- Yildiz, H.B.; Demirkol, D.O.; Sayin, S.; Yilmaz, M.; Koysuren, O.; Kamaci, M. New amperometric cholesterol biosensors using poly(ethyleneoxide) conducting polymers. J. Macromol. Sci. Part A Pure Appl. Chem. 2013, 50, 1075–1084. [Google Scholar] [CrossRef]
- Baur, J.; Holzinger, M.; Gondran, C.; Cosnier, S. Immobilization of biotinylated biomolecules onto electropolymerized poly(pyrrole-nitrilotriacetic acid)-Cu2+ film. Electrochem. Commun. 2010, 12, 1287–1290. [Google Scholar] [CrossRef]
- Şenel, M. Construction of reagentless glucose biosensor based on ferrocene conjugated polypyrrole. Synth. Met. 2011, 161, 1861–1868. [Google Scholar] [CrossRef]
- Palomera, N.; Vera, J.L.; Meléndez, E.; Ramirez-Vick, J.E.; Tomar, M.S.; Arya, S.K.; Singh, S.P. Redox active poly(pyrrole-N-ferrocene-pyrrole) copolymer based mediator-less biosensors. J. Electroanal. Chem. 2011, 658, 33–37. [Google Scholar] [CrossRef]
- Kausaite-Minkstimiene, A.; Mazeiko, V.; Ramanaviciene, A.; Ramanavicius, A. Evaluation of amperometric glucose biosensors based on glucose oxidase encapsulated within enzymatically synthesized polyaniline and polypyrrole. Sens. Actuators B Chem. 2011, 158, 278–285. [Google Scholar] [CrossRef]
- Apetrei, R.M.; Cârâc, G.; Bahrim, G.; Camurlu, P. Sensitivity enhancement for microbial biosensors through cell Self-Coating with polypyrrole. Int. J. Polym. Mater. Polym. Biomater. 2019, 68, 1058–1067. [Google Scholar] [CrossRef]
- Şenel, M.; Nergiz, C. Development of a novel amperometric glucose biosensor based on copolymer of pyrrole-PAMAM dendrimers. Synth. Met. 2012, 162, 688–694. [Google Scholar] [CrossRef]
- Lawal, A.T.; Adeloju, S.B. Polypyrrole based amperometric and potentiometric phosphate biosensors: A comparative study B. Biosens. Bioelectron. 2013, 40, 377–384. [Google Scholar] [CrossRef]
- Zavar, M.H.A.; Heydari, S.; Rounaghi, G.H. Electrochemical Determination of Salicylic Acid at a New Biosensor Based on Polypyrrole-Banana Tissue Composite. Arab. J. Sci. Eng. 2013, 38, 29–36. [Google Scholar] [CrossRef]
- Mondal, S.; Sangaranarayanan, M.V. A novel non-enzymatic sensor for urea using a polypyrrole-coated platinum electrode. Sens. Actuators B Chem. 2013, 177, 478–486. [Google Scholar] [CrossRef]
- Dutta, R.; Puzari, P. Amperometric biosensing of organophosphate and organocarbamate pesticides utilizing polypyrrole entrapped acetylcholinesterase electrode. Biosens. Bioelectron. 2014, 52, 166–172. [Google Scholar] [CrossRef]
- Yang, Y.; Asiri, A.M.; Du, D.; Lin, Y. Acetylcholinesterase biosensor based on a gold nanoparticle-polypyrrole-reduced graphene oxide nanocomposite modified electrode for the amperometric detection of organophosphorus pesticides. Analyst 2014, 139, 3055–3060. [Google Scholar] [CrossRef]
- Ng, S.R.; Pang, H.; Chen, P.; Li, C.M.; O’Hare, D. A Novel Electroactive Polymer for pH-independent Oxygen Sensing. Electroanalysis 2015, 27, 2745–2752. [Google Scholar] [CrossRef]
- Wajs, E.; Fernández, N.; Fragoso, A. Supramolecular biosensors based on electropolymerised pyrrole-cyclodextrin modified surfaces for antibody detection. Analyst 2016, 141, 3274–3279. [Google Scholar] [CrossRef]
- Jolly, P.; Miodek, A.; Yang, D.K.; Chen, L.C.; Lloyd, M.D.; Estrela, P. Electro-Engineered Polymeric Films for the Development of Sensitive Aptasensors for Prostate Cancer Marker Detection. ACS Sens. 2016, 1, 1308–1314. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, S.; Li, X.; Liu, S.; Duan, D.; Leng, L.; Cui, C.; Zhang, Y.; Qu, L. Electrochemical determination of lead(II) and copper(II) by using phytic acid and polypyrrole functionalized metal-organic frameworks. Microchim. Acta 2020, 187, 69. [Google Scholar] [CrossRef]
- Anwar, N.; Vagin, M.; Laffir, F.; Armstrong, G.; Dickinson, C.; McCormac, T. Transition metal ion-substituted polyoxometalates entrapped in polypyrrole as an electrochemical sensor for hydrogen peroxide. Analyst 2012, 137, 624–630. [Google Scholar] [CrossRef]
- Lu, X.; Li, Y.; Zhang, X.; Du, J.; Zhou, X.; Xue, Z.; Liu, X. A simple and an efficient strategy to synthesize multi-component nanocomposites for biosensor applications. Anal. Chim. Acta 2012, 711, 40–45. [Google Scholar] [CrossRef]
- Ding, J.; Zhang, K.; Wei, G.; Su, Z. Fabrication of polypyrrole nanoplates decorated with silver and gold nanoparticles for sensor applications. RSC Adv. 2015, 5, 69745–69752. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, C.; Zhang, J.; Huang, L. Development of magnetic single-enzyme nanoparticles aselectrochemical sensor for glucose determination. Electrochim. Acta 2013, 111, 25–30. [Google Scholar] [CrossRef]
- Hou, C.; Zhao, D.; Wang, Y.; Zhang, S.; Li, S. Preparation of magnetic Fe3O4/PPy@ZIF-8 nanocomposite for glucose oxidase immobilization and used as glucose electrochemical biosensor. J. Electroanal. Chem. 2018, 822, 50–56. [Google Scholar] [CrossRef]
- Shahnavaz, Z.; Lorestani, F.; Alias, Y.; Woi, P.M. Polypyrrole-ZnFe 2 O 4 magnetic nano-composite with core-shell structure for glucose sensing. Appl. Surf. Sci. 2014, 317, 622–629. [Google Scholar] [CrossRef]
- Shahnavaz, Z.; Lorestani, F.; Meng, W.P.; Alias, Y. Core-shell–CuFe2O4/PPy nanocomposite enzyme-free sensor for detection of glucose. J. Solid State Electrochem. 2015, 19, 1223–1233. [Google Scholar] [CrossRef]
- Oliveira, M.R.F.; Herrasti, P.; Furtado, R.F.; Melo, A.M.A.; Alves, C.R. Polymeric Composite including Magnetite Nanoparticles for Hydrogen Peroxide Detection. Chemosensors 2023, 11, 323. [Google Scholar] [CrossRef]
- Wang, H.; Ma, Z. A cascade reaction signal-amplified amperometric immunosensor platform for ultrasensitive detection of tumour marker. Sens. Actuators B Chem. 2018, 254, 642–647. [Google Scholar] [CrossRef]
- Sahyar, B.Y.; Kaplan, M.; Ozsoz, M.; Celik, E.; Otles, S. Electrochemical xanthine detection by enzymatic method based on Ag doped ZnO nanoparticles by using polypyrrole. Bioelectrochemistry 2019, 130, 107327. [Google Scholar] [CrossRef]
- Alrashidi, A.; El-Sherif, A.M.; Ahmed, J.; Faisal, M.; Alsaiari, M.; Algethami, J.S.; Moustafa, M.I.; Abahussain, A.A.M.; Harraz, F.A. A Sensitive Hydroquinone Amperometric Sensor Based on a Novel Palladium Nanoparticle/Porous Silicon/Polypyrrole-Carbon Black Nanocomposite. Biosensors 2023, 13, 178. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.L.; Yang, Y.; Zhao, Z.Q.; Guo, X.D. A gold nanoparticles deposited polymer microneedle enzymatic biosensor for glucose sensing. Electrochim. Acta 2020, 358, 136917. [Google Scholar] [CrossRef]
- Kamal Ahmed, R.; Saad, E.M.; Fahmy, H.M.; El Nashar, R.M. Design and application of molecularly imprinted Polypyrrole/Platinum nanoparticles modified platinum sensor for the electrochemical detection of Vardenafil. Microchem. J. 2021, 171, 106771. [Google Scholar] [CrossRef]
- Ding, S.N.; Chen, J.F.; Xia, J.; Wang, Y.H.; Cosnier, S. Voltammetric detection of heparin based on anion exchange at electropolymeric film of pyrrole-alkylammonium cationic surfactant and MWCNTs composite. Electrochem. Commun. 2013, 34, 339–343. [Google Scholar] [CrossRef]
- Grijalva-Bustamante, G.A.; Evans-Villegas, A.G.; Del Castillo-Castro, T.; Castillo-Ortega, M.M.; Cruz-Silva, R.; Huerta, F.; Morallón, E. Enzyme mediated synthesis of polypyrrole in the presence of chondroitin sulfate and redox mediators of natural origin. Mater. Sci. Eng. C 2016, 63, 650–656. [Google Scholar] [CrossRef]
- Shahrokhian, S.; Kamalzadeh, Z.; Saberi, R.S. Application of glassy carbon electrode modified with a bilayer of multiwalled carbon nanotube and polypyrrole doped with Nitrazine Yellow for voltammetric determination of naltrexone. Electroanalysis 2011, 23, 2925–2934. [Google Scholar] [CrossRef]
- Choi, Y.M.; Lim, H.; Lee, H.N.; Park, Y.M.; Park, J.S.; Kim, H.J. Selective Nonenzymatic Amperometric Detection of Lactic Acid in Human Sweat Utilizing a Multi-Walled Carbon Nanotube (MWCNT)-Polypyrrole Core-Shell Nanowire. Biosensors 2020, 10, 111. [Google Scholar] [CrossRef]
- Beluomini, M.A.; da Silva, J.L.; Stradiotto, N.R. Amperometric determination of myo-inositol by using a glassy carbon electrode modified with molecularly imprinted polypyrrole, reduced graphene oxide and nickel nanoparticles. Microchim. Acta 2018, 185, 170. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Jian, X.; Jin, J.; Zheng, X.C.; Liu, R.T.; Qi, G.C. Nonenzymatic sensing of glucose using a carbon ceramic electrode modified with a composite film made from copper oxide, overoxidized polypyrrole and multi-walled carbon nanotubes. Microchim. Acta 2015, 182, 157–165. [Google Scholar] [CrossRef]
- Turco, A.; Corvaglia, S.; Pompa, P.P.; Malitesta, C. An innovative and simple all electrochemical approach to functionalize electrodes with a carbon nanotubes/polypyrrole molecularly imprinted nanocomposite and its application for sulfamethoxazole analysis. J. Colloid Interface Sci. 2021, 599, 676–685. [Google Scholar] [CrossRef]
- Chen, X.; Li, D.; Ma, W.; Yang, T.; Zhang, Y.; Zhang, D. Preparation of a glassy carbon electrode modified with reduced graphene oxide and overoxidized electropolymerized polypyrrole, and its application to the determination of dopamine in the presence of ascorbic acid and uric acid. Microchim. Acta 2019, 186, 407. [Google Scholar] [CrossRef] [PubMed]
- Şenel, M.; Dervisevic, M.; Çevik, E. A novel amperometric glucose biosensor based on reconstitution of glucose oxidase on thiophene-3-boronic acid polymer layer. Curr. Appl. Phys. 2013, 13, 1199–1204. [Google Scholar] [CrossRef]
- Ucan, D.; Kanik, F.E.; Karatas, Y.; Toppare, L. Synthesis and characterization of a novel polyphosphazene and its application to biosensor in combination with a conducting polymer. Sens. Actuators B Chem. 2014, 201, 545–554. [Google Scholar] [CrossRef]
- Ayranci, R.; Demirkol, D.O.; Ak, M.; Timur, S. Ferrocene-functionalized 4-(2,5-Di(thiophen-2-yl)-1H-pyrrol-1-yl)aniline: A novel design in conducting polymer-based electrochemical biosensors. Sensors 2015, 15, 1389–1403. [Google Scholar] [CrossRef] [PubMed]
- Sethuraman, V.; Muthuraja, P.; Sethupathy, M.; Manisankar, P. Development of biosensor for catechol using electrosynthesized poly(3-methylthiophene) and incorporation of LAC simultaneously. Electroanalysis 2014, 26, 1958–1965. [Google Scholar] [CrossRef]
- Gokoglan, T.C.; Soylemez, S.; Kesik, M.; Toksabay, S.; Toppare, L. Selenium containing conducting polymer based pyranose oxidase biosensor for glucose detection. Food Chem. 2015, 172, 219–224. [Google Scholar] [CrossRef]
- Soganci, T.; Soyleyici, H.C.; Demirkol, D.O.; Ak, M.; Timur, S. Use of Super-Structural Conducting Polymer as Functional Immobilization Matrix in Biosensor Design. J. Electrochem. Soc. 2018, 165, B22–B26. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, W.; Wang, S.; Chu, W.; Wei, T.; Tao, H.; Zhang, C.; Sun, Y. Enhanced photoelectrochemical detection of l-cysteine based on the ultrathin polythiophene layer sensitized anatase TiO2 on F-doped tin oxide substrates. Sens. Actuators B Chem. 2016, 232, 448–453. [Google Scholar] [CrossRef]
- Lee, W.C.; Kim, K.B.; Gurudatt, N.G.; Hussain, K.K.; Choi, C.S.; Park, D.S.; Shim, Y.B. Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with conductive polymer. Biosens. Bioelectron. 2019, 130, 48–54. [Google Scholar] [CrossRef]
- Soylemez, S.; Goker, S.; Toppare, L. A promising enzyme anchoring probe for selective ethanol sensing in beverages. Int. J. Biol. Macromol. 2019, 133, 1228–1235. [Google Scholar] [CrossRef]
- Hussain, K.K.; Gurudatt, N.G.; Akthar, M.H.; Seo, K.D.; Park, D.S.; Shim, Y.B. Nano-biosensor for the in vitro lactate detection using bi-functionalized conducting polymer/N, S-doped carbon; the effect of αCHC inhibitor on lactate level in cancer cell lines. Biosens. Bioelectron. 2020, 155, 112094. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.M.; Rahmanb, M.A.; Do, M.H.; Ban, C.; Shim, Y.B. An amperometric chloramphenicol immunosensor based on cadmium sulfide nanoparticles modified-dendrimer bonded conducting polymer. Biosens. Bioelectron. 2010, 25, 1781–1788. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Son, J.I.; Shim, Y.B. Amplification strategy based on gold nanoparticle-decorated carbon nanotubes for neomycin immunosensors. Biosens. Bioelectron. 2010, 26, 1002–1008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, O.; Yu, H.M.; Lu, L.M.; Wen, Y.P.; Duan, X.M.; Xu, J.K. Poly(thiophene-3-acetic acid)-palladium nanoparticle composite modified electrodes for supersensitive determination of hydrazine. Chin. J. Polym. Sci. 2013, 31, 419–426. [Google Scholar] [CrossRef]
- Kim, D.M.; Shim, Y.B. Disposable amperometric glycated hemoglobin sensor for the finger prick blood test. Anal. Chem. 2013, 85, 6536–6543. [Google Scholar] [CrossRef] [PubMed]
- Turan, J.; Kesik, M.; Soylemez, S.; Goker, S.; Coskun, S.; Unalan, H.E.; Toppare, L. An effective surface design based on a conjugated polymer and silver nanowires for the detection of paraoxon in tap water and milk. Sens. Actuators B Chem. 2016, 228, 278–286. [Google Scholar] [CrossRef]
- Pallela, R.; Chandra, P.; Noh, H.B.; Shim, Y.B. An amperometric nanobiosensor using a biocompatible conjugate for early detection of metastatic cancer cells in biological fluid. Biosens. Bioelectron. 2016, 85, 883–890. [Google Scholar] [CrossRef]
- Hussain, K.K.; Gurudatt, N.G.; Mir, T.A.; Shim, Y.B. Amperometric sensing of HIF1α expressed in cancer cells and the effect of hypoxic mimicking agents. Biosens. Bioelectron. 2016, 83, 312–318. [Google Scholar] [CrossRef] [PubMed]
- Akhtar, M.H.; Hussain, K.K.; Gurudatt, N.G.; Shim, Y.B. Detection of Ca2+-induced acetylcholine released from leukemic T-cells using an amperometric microfluidic sensor. Biosens. Bioelectron. 2017, 98, 364–370. [Google Scholar] [CrossRef]
- Chung, S.; Hwang, B.Y.; Naveen, M.H.; Shim, Y.B. Detection of Rocuronium in Whole Blood Using a Lipid-bonded Conducting Polymer and Porous Carbon Composite Electrode. Electroanalysis 2018, 30, 1425–1431. [Google Scholar] [CrossRef]
- Rashed, M.A.; Ahmed, J.; Faisal, M.; Alsareii, S.A.; Jalalah, M.; Tirth, V.; Harraz, F.A. Surface modification of CuO nanoparticles with conducting polythiophene as a non-enzymatic amperometric sensor for sensitive and selective determination of hydrogen peroxide. Surf. Interfaces 2022, 31, 101998. [Google Scholar] [CrossRef]
- Pang, X.; Imin, P.; Zhitomirsky, I.; Adronov, A. Conjugated polyelectrolyte complexes with single-walled carbon nanotubes for amperometric detection of glucose with inherent anti-interference properties. J. Mater. Chem. 2012, 22, 9147–9154. [Google Scholar] [CrossRef]
- Demirci Uzun, S.; Kayaci, F.; Uyar, T.; Timur, S.; Toppare, L. Bioactive surface design based on functional composite electrospun nanofibers for biomolecule immobilization and biosensor applications. ACS Appl. Mater. Interfaces 2014, 6, 5235–5243. [Google Scholar] [CrossRef] [PubMed]
- Chandra, P.; Noh, H.B.; Pallela, R.; Shim, Y.B. Ultrasensitive detection of drug resistant cancer cells in biological matrixes using an amperometric nanobiosensor. Biosens. Bioelectron. 2015, 70, 418–425. [Google Scholar] [CrossRef]
- Baek, S.; Lee, Y.; Son, Y. Amperometric phenol sensors employing conducting polymer microtubule structure. Mol. Cryst. Liq. Cryst. 2010, 519, 69–76. [Google Scholar] [CrossRef]
- Qian, Y.; Ma, C.; Zhang, S.; Gao, J.; Liu, M.; Xie, K.; Wang, S.; Sun, K.; Song, H. High performance electrochemical electrode based on polymeric composite film for sensing of dopamine and catechol. Sens. Actuators B Chem. 2018, 255, 1655–1662. [Google Scholar] [CrossRef]
- Türkarslan, Ö.; Böyükbayram, A.E.; Toppare, L. Amperometric alcohol biosensors based on conducting polymers: Polypyrrole, poly(3,4-ethylenedioxythiophene) and poly(3,4-ethylenedioxypyrrole). Synth. Met. 2010, 160, 808–813. [Google Scholar] [CrossRef]
- Lee, K.N.; Lee, Y.; Son, Y. Enhanced sensitivity of a galactose biosensor fabricated with a bundle of conducting polymer microtubules. Electroanalysis 2011, 23, 2125–2130. [Google Scholar] [CrossRef]
- Jin, L.; Zhao, Y.; Liu, X.; Wang, Y.; Ye, B.; Xie, Z.; Gu, Z. Dual signal glucose reporter based on inverse opal conducting hydrogel films. Soft Matter 2012, 8, 4911–4917. [Google Scholar] [CrossRef]
- Invernale, M.A.; Tang, B.C.; York, R.L.; Le, L.; Hou, D.Y.; Anderson, D.G. Microneedle Electrodes Toward an Amperometric Glucose-Sensing Smart Patch. Adv. Healthc. Mater. 2014, 3, 338–342. [Google Scholar] [CrossRef]
- Tekbaşoğlu, T.Y.; Soganci, T.; Ak, M.; Koca, A.; Şener, M.K. Enhancing biosensor properties of conducting polymers via copolymerization: Synthesis of EDOT-substituted bis(2-pyridylimino)isoindolato-palladium complex and electrochemical sensing of glucose by its copolymerized film. Biosens. Bioelectron. 2017, 87, 81–88. [Google Scholar] [CrossRef] [PubMed]
- Kaya, H.Z.; Söylemez, S.; Udum, Y.A.; Toppare, L. Application of an Efficient Amperometric Glucose Sensing Electrode Based on a Bilayer Polymer Film Platform. J. Electrochem. Soc. 2018, 165, B939–B945. [Google Scholar] [CrossRef]
- Wang, G.; Han, R.; Feng, X.; Li, Y.; Lin, J.; Luo, X. A glassy carbon electrode modified with poly(3,4-ethylenedioxythiophene) doped with nano-sized hydroxyapatite for amperometric determination of nitrite. Microchim. Acta 2017, 184, 1721–1727. [Google Scholar] [CrossRef]
- Krampa, F.D.; Aniweh, Y.; Awandare, G.A.; Kanyong, P. A disposable amperometric sensor based on high-performance PEDOT:PSS/Ionic liquid nanocomposite thin film-modified screen-printed electrode for the analysis of catechol in natural water samples. Sensors 2017, 17, 1716. [Google Scholar] [CrossRef] [PubMed]
- Scavetta, E.; Mazzoni, R.; Mariani, F.; Margutta, R.G.; Bonfiglio, A.; Demelas, M.; Fiorilli, S.; Marzocchi, M.; Fraboni, B. Dopamine amperometric detection at a ferrocene clicked PEDOT:PSS coated electrode. J. Mater. Chem. B 2014, 2, 2861–2867. [Google Scholar] [CrossRef] [PubMed]
- Richard, W.; Evrard, D.; Gros, P. A Novel Electrochemical Sensor Based on a Mixed Diazonium/PEDOT Surface Functionalization for the Simultaneous Assay of Ascorbic and Uric Acids. Towards an Improvement in Amperometric Response Stability. Electroanalysis 2014, 26, 1390–1399. [Google Scholar] [CrossRef]
- Gonzalez-Vogel, A.; Fogde, A.; Crestini, C.; Sandberg, T.; Huynh, T.P.; Bobacka, J. Molecularly imprinted conducting polymer for determination of a condensed lignin marker. Sens. Actuators B Chem. 2019, 295, 186–193. [Google Scholar] [CrossRef]
- Liang, C.; Zhang, F.; Lin, H.; Jiang, C.; Guo, W.; Fan, S.; Qu, F. An innovative sensor for hydroxylamine determination: Using molybdenum hybrid zeolitic imidazolate framework–conducting polymer composite as electrocatalyst. Electrochim. Acta 2019, 327, 134945. [Google Scholar] [CrossRef]
- Słoniewska, A.; Kasztelan, M.; Berbeć, S.; Pałys, B. Influence of buffer solution on structure and electrochemical properties of poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) hydrogels. Synth. Met. 2020, 263, 116363. [Google Scholar] [CrossRef]
- Kurzhals, S.; Melnik, E.; Plata, P.; Cihan, E.; Herzog, P.; Felice, A.; Bocchino, A.; O’mahony, C.; Mutinati, G.C.; Hainberger, R. Detection of Lactate via Amperometric Sensors Modified With Direct Electron Transfer Enzyme Containing PEDOT:PSS and Hydrogel Inks. IEEE Sens. Lett. 2023, 7, 4503104. [Google Scholar] [CrossRef]
- Balamurugan, A.; Ho, K.C.; Chen, S.M.; Huang, T.Y. Electrochemical sensing of NADH based on Meldola Blue immobilized silver nanoparticle-conducting polymer electrode. Colloids Surfaces A Physicochem. Eng. Asp. 2010, 362, 1–7. [Google Scholar] [CrossRef]
- Fan, X.; Lin, P.; Liang, S.; Hui, N.; Zhang, R.; Feng, J.; Xu, G. Gold nanoclusters doped poly(3,4-ethylenedioxythiophene) for highly sensitive electrochemical sensing of nitrite. Ionics 2017, 23, 997–1003. [Google Scholar] [CrossRef]
- Pang, D.; Ma, C.; Chen, D.; Shen, Y.; Zhu, W.; Gao, J.; Song, H.; Zhang, X.; Zhang, S. Silver nanoparticle-functionalized poly (3, 4-ethylenedioxythiophene): Polystyrene film on glass substrate for electrochemical determination of nitrite. Org. Electron. 2019, 75, 105374. [Google Scholar] [CrossRef]
- Xu, Z.; Teng, H.; Song, J.; Gao, F.; Ma, L.; Xu, G.; Luo, X. A nanocomposite consisting of MnO2 nanoflowers and the conducting polymer PEDOT for highly sensitive amperometric detection of paracetamol. Microchim. Acta 2019, 186, 499. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Wang, H.; Lü, H.; Hui, N. Phytic acid doped poly(3,4-ethylenedioxythiophene) modified with copper nanoparticles for enzymeless amperometric sensing of glucose. Microchim. Acta 2020, 187, 49. [Google Scholar] [CrossRef] [PubMed]
- Zahed, M.A.; Barman, S.C.; Das, P.S.; Sharifuzzaman, M.; Yoon, H.S.; Yoon, S.H.; Park, J.Y. Highly flexible and conductive poly (3, 4-ethylene dioxythiophene)-poly (styrene sulfonate) anchored 3-dimensional porous graphene network-based electrochemical biosensor for glucose and pH detection in human perspiration. Biosens. Bioelectron. 2020, 160, 112220. [Google Scholar] [CrossRef] [PubMed]
- Gualandi, I.; Tessarolo, M.; Mariani, F.; Arcangeli, D.; Possanzini, L.; Tonelli, D.; Fraboni, B.; Scavetta, E. Layered double hydroxide-modified organic electrochemical transistor for glucose and lactate biosensing. Sensors 2020, 20, 3453. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.-W.; Tsai, T.-H.; Chen, S.-M. Metal Hexacyanoferrate with Conducting Polymer Composite Film Modification Electrodes for Selectively Determination of AA, DA and UA. ECS Trans. 2010, 33, 141–146. [Google Scholar] [CrossRef]
- Beduk, T.; Bihar, E.; Surya, S.G.; Castillo, A.N.; Inal, S.; Salama, K.N. A paper-based inkjet-printed PEDOT:PSS/ZnO sol-gel hydrazine sensor. Sens. Actuators B Chem. 2020, 306, 127539. [Google Scholar] [CrossRef]
- Si, W.; Lei, W.; Zhang, Y.; Xia, M.; Wang, F.; Hao, Q. Electrodeposition of graphene oxide doped poly(3,4-ethylenedioxythiophene) film and its electrochemical sensing of catechol and hydroquinone. Electrochim. Acta 2012, 85, 295–301. [Google Scholar] [CrossRef]
- Li, D.; Liu, M.; Zhan, Y.; Su, Q.; Zhang, Y.; Zhang, D. Electrodeposited poly(3,4-ethylenedioxythiophene) doped with graphene oxide for the simultaneous voltammetric determination of ascorbic acid, dopamine and uric acid. Microchim. Acta 2020, 187, 94. [Google Scholar] [CrossRef]
- Mercante, L.A.; Facure, M.H.M.; Sanfelice, R.C.; Migliorini, F.L.; Mattoso, L.H.C.; Correa, D.S. One-pot preparation of PEDOT:PSS-reduced graphene decorated with Au nanoparticles for enzymatic electrochemical sensing of H2O2. Appl. Surf. Sci. 2017, 407, 162–170. [Google Scholar] [CrossRef]
- Wisitsoraat, A.; Pakapongpan, S.; Sriprachuabwong, C.; Phokharatkul, D.; Sritongkham, P.; Lomas, T.; Tuantranont, A. Graphene-PEDOT:PSS on screen printed carbon electrode for enzymatic biosensing. J. Electroanal. Chem. 2013, 704, 208–213. [Google Scholar] [CrossRef]
- Xu, G.; Li, B.; Luo, X. Carbon nanotube doped poly(3,4-ethylenedioxythiophene) for the electrocatalytic oxidation and detection of hydroquinone. Sens. Actuators B Chem. 2013, 176, 69–74. [Google Scholar] [CrossRef]
- Kumar, S.; Willander, M.; Sharma, J.G.; Malhotra, B.D. A solution processed carbon nanotube modified conducting paper sensor for cancer detection. J. Mater. Chem. B 2015, 3, 9305–9314. [Google Scholar] [CrossRef]
- Fan, J.; Shao, W.; Xu, G.; Cui, X.T.; Luo, X. Preparation and electrochemical catalytic application of nanocrystalline cellulose doped poly(3,4-ethylenedioxythiophene) conducting polymer nanocomposites. RSC Adv. 2014, 4, 24328–24333. [Google Scholar] [CrossRef]
- Jiao, M.; Li, Z.; Li, Y.; Cui, M.; Luo, X. Poly(3,4-ethylenedioxythiophene) doped with engineered carbon quantum dots for enhanced amperometric detection of nitrite. Microchim. Acta 2018, 185, 249. [Google Scholar] [CrossRef]
Sensor Composition | Analyte Detected/ Application | Electrochemical Technique | Linear Range | LoD | Sensitivity | Ref. |
---|---|---|---|---|---|---|
Apo-GOx/FAD/PTBA/GCE | glucose | CA | 0.5–18 mM | 2.14 μA mM−1 | [84] | |
GOx/2,2′-BT/Pt GOx/4,4′-bBT/Pt | glucose | CA | 0.09–5.20 mM 0.15–5.20 mM | 30 μM 50 μM | [18] | |
Tyr/poly-4,4’-bBT/GCE | epinephrine | DPV | 1–20 μM; 30–200 μM | 0.18 nM | 0.0011 μA mM−1 cm−2 | [20] |
PPA/p(SNS-NH2)/GOx/graphite disk | glucose | CA | 0.01–0.9 mM | 1.3 μM | 237.1 μA mM−1 cm−2 | [85] |
GOx/p(SNS-NH2-co-SNS-NH-Fc) | glucose | CA | 0.5–5.0 mM | 0.18 mM | 0.908 nA mM−1 | [86] |
LAC/p-3MeTh/GCE | catechol | DPV | 8 × 10−8–1.4 × 10−5 M | 1 × 10−8 M | [87] | |
PyOx/poly(BSeTT)/Au | glucose | CA | 0.02–0.5 mM | 3.3 × 10−4 nM | 6.4 nA mM−1 cm−2 | [88] |
GOx/poly(BTP)/graphite rod | glucose | CA | 0.034–1.0 mM | 0.034 mM | 9.43 μA mM−1 cm−2 | [89] |
PTh/TiO2/FTO | L-cysteine | CA | 0.06–0.5 mM | 12.6 μM | [90] | |
GOx/pTBA/AuNi/SPCE | glucose | CA | 1.0 μM–30.0 mM | 0.29 μM | 1.3023 μA mM−1 | [91] |
AOx/p(TBeSe-co-P3CA)/graphite | ethanol | CA | 0.085–1.7 mM | 0.052 mM | 16.44 μA/mM cm2 | [92] |
(LDH/NAD+)-pTTABA/DPC/GCE | lactate | CA | 0.5 μM–4.0 mM | 112 nM | 0.02 μA mL/μM | [93] |
Anti-CAT/CdS/Den/PTTCA-AuNPs/GCE | chloramphenicol | CA | 50–950 pg mL−1 | 45 pg mL−1 | [94] | |
Hyd-MWCNT(AuNP)-Ab2/Anti-Neo/pDPB/AuNPs/GCE | neomycin | CA | 10–250 ng mL−1 | 6.76 ng mL−1 | [95] | |
PdNPs/PTAA/GCE | hydrazine | CA | 8.0 × 10−9–1.0 × 10−5 mol/L | 2.67 × 10−9 mol/L | [96] | |
APBA/pTTBA/AuNPs/SPCE | glycated hemoglobin | CA | 0.1–1.5% | 0.052% | [97] | |
BChE-AgNWs/pTTBO/graphite | butyryl thiocholine iodide/paraoxon | CA | 0.5–8 μM; 10–120 μM | 0.212 μM | 8.076 μA μM−1 cm−2 | [98] |
CapAnti/AuNPs-pTTBA/GCE | Epithelial metastatic cancer cells (Ep-MCCs) | 45–100,000 Ep-MCCs/mL | 28 Ep-MCCs/mL | [99] | ||
Anti-HIF1α/AuNPs-pTTBA/GCE | Cancer cells | CA | 25–350 pM/mL | 5.35 pM/mL | 0.014 ± 0.004 μA mL pM−1 | [100] |
AChE/AuNPs-pTTBA/SPCE | Leukemic T-cells | CA | 0.7 nM–1500 μM | 0.6 nM | [101] | |
PI/pAPT/AuNPs/SPE | Neuromuscolar agent | CA | 0.025–10 μg/mL | 3.83 ng/mL | [102] | |
PTh-CuO/GCE | H2O2 | CA | 0.02–3.3 mM | 3.86 μM | 442.25 μA mM−1 cm−2 | [103] |
Tyr/pRuTt/Au Tyr/pRuTt/GCE | epinephrine | DPV/CA DPV | 1–100 × 10−6/1–100 × 10−6 mol dm−3 3.7–250 × 10−6 mol dm−3 | 0.67/0.47 μmol dm−3 2.45 μmol dm−3 | 3.70 × 10−8 A μmol−1 dm3 cm−2 1.93 × 10−7 A μmol−1 dm3 cm−2 | [16] |
GOx/PThs-MWCNT/GCE | glucose | CA | 0.5–5.0 mM | 5.0 μM | 11.1 μA μΜ−1 | [104] |
GOx/PBIBA/MWCNT/graphite rod | glucose | CA | 0.01–2.0 mM | 9.0 μM | [105] | |
APBA-MWCNT-Hyd/anti-P-gp/pTTBA/AuNPs/GCE | Permeability glycoprotein (P-gp) | CA | 50–100,000 cells mL−1 | 23 cells mL−1 | [106] | |
GOx/GrO/poly(dTT-bT) | glucose | CA | 0.2–10 mM | 0.036 mM | 9.4 μA mM−1 cm−2 | [21] |
Sensor Composition | Analyte Detected/ Application | Electrochemical Technique | Linear Range | LoD | Sensitivity | Ref. |
---|---|---|---|---|---|---|
Tyr/PEDOT-PC/Au/ITO | catechol | amperometry | up to 6 μM | 3.1 μA μM−1 cm−2 | [107] | |
CD-f-PEDOT:PSS/glass | dopamine catechol | CA | 0.05–200 μM 0.05–200 μM | 9.596 nM 0.0275 μM | [108] | |
AlcOx/PEDOT/Pt | alcohol | amperometry | 0.17 M | 22.2 μA cm−2 M−1 | [109] | |
GAO/PEDOT/ITO | galactose | amperometry | 0.1–1 mM | 0.01 mM | 6.37 μA/mM cm2 | [110] |
GOx/PEDOT/hydrogel | glucose | amperometry | 1–12 mM | [111] | ||
GOx/PEDOT/Pt-steel microneedle | glucose | amperometry | 2–24 × 10−3 M | [112] | ||
GOx/P(EDOT-PdBPI-co-HKCN)/graphite | glucose | CA | 0.25–2.5 mM | 0.176 mM | [113] | |
GOx/PFcPyBz/PEDOT/graphite | glucose | amperometry | 0.01–0.5 mM | 54 μM | 112.2 μA/mM cm2 | [114] |
nHAp/PEDOT/GCE | nitrite | amperometry | 0.25 μM–1.05 mM | 83 nM | [115] | |
IL-PEDOT:PSS/SPCE | catechol | amperometry | 0.1 μM–330.0 μM | 23.7 μM | 18.2 mA mM cm−2 | [116] |
PEDOT-Fc:PSS/ITO | dopamine | amperometry | 0.01–0.9 mM | 1 μM | 196 mA M−1 cm−2 | [117] |
TBD/PEDOT/GCE | ascorbic acid uric acid | CV | 12–1400 μM 10–1000 μM | 6 μM 1.5 μM | 0.345 μA cm−2 μM−1 0.665 μA cm−2 μM−1 | [118] |
PEDOT-PAAT/GCE | lignin | CV | 1 × 10−6–1 × 10−2 M | [119] | ||
HZIF-Mo/PEDOT/CCE | hydroxylamine | amperometry | 0.1–692.2 μM | 0.04 μM | [120] | |
HRP/ph-PEDOT:PSS/GCE | H2O2 | amperometry | 0.4–10 mM | 4.5 × 10−5 M | 3.5 μA mM−1 | [121] |
Lactazyme/PEDOT:PSS/SPCE | L-lactate | CA | 0.3–5 mM/10–50 mM | 0.12 mM | 319/9.6 nA/(mm2 mM) | [122] |
MDB/nanoAg/PEDOTSDS/GCE | NADH | CA | 10–560 μM | 0.1 μM | 2 nA/μM | [123] |
AuNCs/PEDOT/GCE | nitrite | CA | 0.05–2600 μM | 17 nM | [124] | |
Ag-CSA-PEDOT:PSS/glass | nitrite | amperometry | 0.5–3400 μM | 0.34 μM | [125] | |
PEDOT-MnO2/GCE | paracetamol | amperometry | 0.06–435 μM | 31 nM | [126] | |
CuNPs/PEDOT/PA/GCE | glucose | amperometry | 5 μM–0.403 mM | 0.278 μM | 79.27 μA μM−1 cm−1 | [127] |
GOx/Pt@Pd/PEDOT:PSS/LIG/PI | glucose | amperometry | 10 mM–9.2 mM | 3 μM | 247.3 μA mM−1 cm−2 | [128] |
GOx/Ni-Al(LDH)/PEDOT:PSS/gate LOx/Ni-Al(LDH)/PEDOT:PSS/gate | glucose lactate | amperometry | 0.1–8.0 mM 0.05–8.0 mM | 0.02 mM 0.04 mM | 0.048 A M−1 2.23 × 10−2 A M−1 | [129] |
PEDOT-Ni(hexacyanoferrate)/GCE PEDOT-Cu(hexacyanoferrate)GCE | ascorbic acid | amperometry | 5 × 10−6–3 × 10−4 M 1.8 × 10−3–1.8 × 10−2 M | 1 × 10−6 M 7 × 10−4 M | [130] | |
ZnO/PEDOT:PSS/paper | hydrazine | amperometry | 10–500 μM | 0.14 μA μM−1 cm−2 | [131] | |
PEDOT/GO/GCE | catechol hydroquinone | DPV | 2–400 μM 2.5–200 μM | 1. 6 μM | [132] | |
PEDOT-GO/GCE | ascorbic acid dopamine uric acid | DPV | 100–1000 μM 6.0–200 μM 40–240 μM | 20 μM 2.0 μM 10 μM | [133] | |
PEDOT/rGO/AuNPs/HRP/SPGE | H2O2 | amperometry | 5–400 μM | 0.08 μM | 677 μA mM−1 cm−2 | [134] |
GOx/graphene-PEDOT:PSS/SPE | glucose | amperometry | 20–900 μM | 0.3 μM | 7.23 μA/mM | [135] |
PEDOT/CNT/CPE | hydroquinone | DPV | 1.1–125 μM | 0.3 μM | [136] | |
Anti-CEA/CNT/PEDOT:PSS-CP | carcinoembryonic antigen | amperometry | 2–15 ng mL−1 | 7.8 μA ng−1 mL cm−2 | [137] | |
PEDOT/NCC/CPE | dopamine | amperometry | 0.2–62.0 μM | 69 nM | [138] | |
CQDs-PEDOT/GCE | nitrite | amperometry | 0.5–1110 μM | 88 nM | [139] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pilo, M.I.; Sanna, G.; Spano, N. Conducting Polymers in Amperometric Sensors: A State of the Art over the Last 15 Years with a Focus on Polypyrrole-, Polythiophene-, and Poly(3,4-ethylenedioxythiophene)-Based Materials. Chemosensors 2024, 12, 81. https://doi.org/10.3390/chemosensors12050081
Pilo MI, Sanna G, Spano N. Conducting Polymers in Amperometric Sensors: A State of the Art over the Last 15 Years with a Focus on Polypyrrole-, Polythiophene-, and Poly(3,4-ethylenedioxythiophene)-Based Materials. Chemosensors. 2024; 12(5):81. https://doi.org/10.3390/chemosensors12050081
Chicago/Turabian StylePilo, Maria I., Gavino Sanna, and Nadia Spano. 2024. "Conducting Polymers in Amperometric Sensors: A State of the Art over the Last 15 Years with a Focus on Polypyrrole-, Polythiophene-, and Poly(3,4-ethylenedioxythiophene)-Based Materials" Chemosensors 12, no. 5: 81. https://doi.org/10.3390/chemosensors12050081
APA StylePilo, M. I., Sanna, G., & Spano, N. (2024). Conducting Polymers in Amperometric Sensors: A State of the Art over the Last 15 Years with a Focus on Polypyrrole-, Polythiophene-, and Poly(3,4-ethylenedioxythiophene)-Based Materials. Chemosensors, 12(5), 81. https://doi.org/10.3390/chemosensors12050081