Synthesis of Bismuth Film Assembly on Flexible Carbon Cloth for the Electrochemical Detection of Heavy Metal Ions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation
2.3. Morphological Characteristics
2.4. Electrochemical Characteristics
3. Results and Discussion
3.1. Morphological and Structural Characteristics
3.2. Electrochemical Characteristics
3.3. Electrochemical Detection of Pb2+
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zamora-Ledezma, C.; Negrete-Bolagay, D.; Figueroa, F.; Zamora-Ledezma, E.; Ni, M.; Alexis, F.; Guerrero, V.H. Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods. Environ. Technol. Innov. 2021, 22, 101504. [Google Scholar] [CrossRef]
- Gonzalez, K.A.; Kazemeini, S.; Weber, D.C.; Cordero, P.A.; Garcia, E.M.; Rusinek, C.A. Electrochemical sensing of heavy metals in biological media: A review. Electroanalysis 2023, 35, e202300098. [Google Scholar] [CrossRef]
- Li, B.; Xie, X.; Meng, T.; Guo, X.; Li, Q.; Yang, Y.; Jin, H.; Jin, C.; Meng, X.; Pang, H. Recent advance of nanomaterials modified electrochemical sensors in the detection of heavy metal ions in food and water. Food Chem. 2024, 440, 138213. [Google Scholar] [CrossRef]
- Mohanadas, D.; Rohani, R.; Sulaiman, Y.; Bakar, S.A.; Mahmoudi, E.; Zhang, L.-C. Heavy metal detection in water using MXene and its composites: A review. Mater. Today Sustain. 2023, 22, 100411. [Google Scholar] [CrossRef]
- Li, H.; Zhao, J.; Zhao, S.; Cui, G. Simultaneous determination of trace Pb(II), Cd(II), and Zn(II) using an integrated three-electrode modified with bismuth film. Microchem. J. 2021, 168, 106390. [Google Scholar] [CrossRef]
- Gao, J.; He, D.; Zhang, J.; Sun, B.; Wang, G.; Suo, H.; Zhang, L.; Zhao, C. In-situ growth of porous rod-like tungsten oxide for electrochemical determination of cupric ion. Anal. Chim. Acta 2023, 1276, 341645. [Google Scholar] [CrossRef] [PubMed]
- Chu, J.; Chu, B.; Lu, C.; Gu, Q.; Li, W.; Lin, R.; Lu, J.; Chen, X. Highly sensitive detection of lead ions and cadmium ions based on UiO-66-NH2@carbon nanohorns composites enhanced by bismuth film in water environment. J. Environ. Chem. Eng. 2022, 10, 108753. [Google Scholar] [CrossRef]
- Ansari, A.A.; Khan, A.M.; Salem, M.A.S.; Bhat, A.S. Synthesis and characterization of Ni@UiO-66 Metal-Organic Framework for fluorescence detection of heavy metal ions in the aqueous phase. Mater. Chem. Phys. 2024, 318, 129245. [Google Scholar] [CrossRef]
- Tian, C.; Lee, Y.; Song, Y.; Elmasry, M.R.; Yoon, M.; Kim, D.-H.; Cho, S.-Y. Machine-learning enhanced fluorescent nanosensor based on carbon quantum dots for heavy metal detection. ACS Appl. Nano Mater. 2024, 7, 5576–5586. [Google Scholar]
- Chen, Z.; Zhang, Z.; Qi, J.; You, J.; Ma, J.; Chen, L. Colorimetric detection of heavy metal ions with various chromogenic materials: Strategies and applications. J. Hazard. Mater. 2023, 441, 129889. [Google Scholar] [CrossRef]
- Nataraj, N.; Dash, P.; Sakthivel, R.; Lin, Y.-C.; Fang, H.-W.; Chung, R.-J. Simultaneous electrochemical and colorimetric detection of tri-heavy metal ions in environmental water samples employing 3D-MOF/nickel selenide as a synergistic catalyst. Chem. Eng. J. 2024, 485, 149965. [Google Scholar] [CrossRef]
- Li, L.; Bi, X.; Zhen, M.; Ren, Y.; Zhang, L.; You, T. Recent advances in analytical sensing detection of heavy metal ions based on covalent organic frameworks nanocomposites. Trends Anal. Chem. 2024, 171, 117488. [Google Scholar] [CrossRef]
- Manikandan, R.; Yoon, J.-H.; Chang, S.-C. Emerging Trends in nanostructured materials-coated screen printed electrodes for the electrochemical detection of hazardous heavy metals in environmental matrices. Chemosphere 2023, 344, 140231. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Zhang, Q.Q.; Chen, D.Y.; Deng, L.F.; He, Y.X.; Wang, J.X.; Pan, C.Y.; Tang, J.T.; Yu, G.P. Thiol-grafted covalent organic framework-based electrochemical platforms for sensitive detection of Hg(II) ions. Chem. Commun. 2023, 59, 8731–8734. [Google Scholar] [CrossRef] [PubMed]
- Winiarski, J.P.; Melo, D.J.D.; Santana, E.R.; Santos, C.S.; de Jesus, C.G.; Fujiwara, S.T.; Wohnrath, K.; Pessoa, C.A. Layer-by-layer films of silsesquioxane and nickel (II) tetrasulphophthalocyanine as glucose oxidase platform immobilization: Amperometric determination of glucose in kombucha beverages. Chemosensors 2023, 11, 346. [Google Scholar] [CrossRef]
- Zamarchi, F.; Silva, T.R.; Winiarski, J.P.; Santana, E.R.; Vieira, I.C. Polyethylenimine-based electrochemical sensor for the determination of caffeic acid in aromatic herbs. Chemosensors 2022, 10, 357. [Google Scholar] [CrossRef]
- Bressi, V.; Celesti, C.; Ferlazzo, A.; Len, T.; Moulaee, K.; Neri, G.; Luque, R.; Espro, C. Waste-derived carbon nanodots for fluorimetric and simultaneous electrochemical detection of heavy metals in water. Environ. Sci. Nano 2024, 11, 1245–1258. [Google Scholar] [CrossRef]
- Sun, Z.; Wang, Y.; Liu, T.; Kong, X.; Pan, T.; Zhang, F.; Lei, X.; Duan, X. Super-stable mineralization of Cu, Cd, Zn and Pb by CaAl-layered double hydroxide: Performance, mechanism, and large-scale application in agriculture soil remediation. J. Hazard. Mater. 2023, 447, 130723. [Google Scholar] [CrossRef]
- Shafqat, S.S.; Rizwan, M.; Batool, M.; Shafqat, S.R.; Mustafa, G.; Rasheed, T.; Zafar, M.N. Metal organic frameworks as promising sensing tools for electrochemical detection of persistent heavy metal ions from water matrices: A concise review. Chemosphere 2023, 318, 137920. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Yan, M.; Jiang, J.; Huang, A.; Cai, S.; Lan, L.; Ye, K.; Chen, D.; Tang, K.; Zuo, Q.; et al. A state-of-the-art review on biomass-derived carbon materials for supercapacitor applications: From precursor selection to design optimization. Sci. Total Environ. 2024, 912, 169141. [Google Scholar] [CrossRef]
- Wang, C.; Du, L.; Xing, X.; Feng, D.; Tian, Y.; Li, Z.; Yang, D. Flexible carbon cloth in-situ assembling WO3 microsheets bunches with Ni dopants for non-enzymatic glucose sensing. Appl. Surf. Sci. 2022, 586, 152822. [Google Scholar] [CrossRef]
- Shao, P.; Chang, Z.; Li, M.; Lu, X.; Jiang, W.; Zhang, K.; Luo, X.; Yang, L. Mixed-valence molybdenum oxide as a recyclable sorbent for silver removal and recovery from wastewater. Nat. Commun. 2023, 14, 1365. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Cui, S.; Xia, T.; Sun, T.; Tan, H.; Yu, F.; Su, Y.; Wu, S.; Wang, D.; Zhu, N. Real-time monitoring of heavy metals in healthcare via twistable and washable smartsensors. Anal. Chem. 2020, 92, 14536–14541. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Zhao, H.; Feng, T.; Liu, X.; Lan, M. Conductive nitrogen-doped carbon nanosheet-encapsulates bismuth nanoparticles for simultaneous high-performance detection of Cd(II) and Pb(II). Microchem. J. 2024, 197, 109881. [Google Scholar] [CrossRef]
- Wang, C.; Niu, Q.; Liu, D.; Dong, X.; You, T. Electrochemical sensor based on Bi/Bi2O3 doped porous carbon composite derived from Bi-MOFs for Pb2+ sensitive detection. Talanta 2023, 258, 124281. [Google Scholar] [CrossRef] [PubMed]
- De Penning, R.; Padalkar, S. Detection of lead and cadmium with electrochemically reduced grapheme oxide-carbon cloth sensors. MRS Commun. 2023, 13, 1427–1432. [Google Scholar] [CrossRef]
- Huang, A.; Guo, Y.; Zhu, Y.; Chen, T.; Yang, Z.; Song, Y.; Wasnik, P.; Li, H.; Peng, S.; Guo, Z.; et al. Durable washable wearable antibacterial thermoplastic polyurethane/carbon nanotube@silver nanoparticles electrospun membrane strain sensors by multi-conductive network. Adv. Compos. Hybrid Mater. 2023, 6, 101. [Google Scholar] [CrossRef]
- Zhang, W.; Guo, T.; Liu, Y.; Zhang, X.; Zou, B.; Zhao, C.; Suo, H.; Wang, H.; Zhao, X. Electrocatalytic performance of carbon layer and spherical carbon/carbon cloth composites towards hydrogen evolution from the direct electrolysis of bunsen reaction product. Chem. Res. Chin. Univ. 2023, 40, 109–118. [Google Scholar] [CrossRef]
- Shi, H.; Zhang, C.; Zhan, J.; Chen, J.; Li, X.; Gao, Z.; Li, Z. Bi Nanosheets on porous carbon cloth composites for ultrastable flexible nickel–bismuth batteries. ACS Appl. Mater. Interfaces 2023, 15, 36190–36200. [Google Scholar] [CrossRef]
- Hu, M.; He, H.; Xiao, F.; Liu, C. Bi-MOF-derived carbon wrapped Bi nanoparticles assembly on flexible graphene paper electrode for electrochemical sensing of multiple heavy metal ions. Nanomater 2023, 13, 2069. [Google Scholar] [CrossRef]
- He, Y.; Wang, Z.; Ma, L.; Zhou, L.; Jiang, Y.; Gao, J. Synthesis of bismuth nanoparticle-loaded cobalt ferrite for electrochemical detection of heavy metal ions. RSC Adv. 2020, 10, 27697–27705. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Y.; Wang, M.; He, W.; Fang, P.; Wu, M.; Tong, Y.; Chen, M.; Lu, X. Engineering high reversibility and fast kinetics of Bi nanoflakes by surface modulation for ultrastable nickel–bismuth batteries. Chem. Sci. 2019, 10, 3602–3607. [Google Scholar] [CrossRef] [PubMed]
- Yin, H.; He, H.; Li, T.; Hu, M.; Huang, W.; Wang, Z.; Yang, X.; Yao, W.; Xiao, F.; Wu, Y.; et al. Ultra-sensitive detection of multiplexed heavy metal ions by MOF-derived carbon film encapsulating BiCu alloy nanoparticles in potable electrochemical sensing system. Anal. Chim. Acta 2023, 1239, 340730. [Google Scholar] [CrossRef] [PubMed]
- Gao, J.; Yin, J.; Wang, G.; Wang, X.; Zhang, J.; Sun, B.; He, D.; Suo, H.; Zhao, C. A novel electrode for simultaneous detection of multiple heavy metal ions without pre-enrichment in food samples. Food Chem. 2024, 448, 138994. [Google Scholar] [CrossRef] [PubMed]
- Wen, L.; Dong, J.; Yang, H.; Zhao, J.; Hu, Z.; Han, H.; Hou, C.; Luo, X.; Huo, D. A novel electrochemical sensor for simultaneous detection of Cd2+ and Pb2+ by MXene aerogel-CuO/carbon cloth flexible electrode based on oxygen vacancy and bismuth film. Sci. Total Environ. 2022, 851, 158325. [Google Scholar] [CrossRef]
- Jeong, S.; Yang, S.; Lee, Y.J.; Lee, S.H. Laser-induced graphene incorporated with silver nanoparticles applied for heavy metal multi-detection. J. Mater. Chem. A 2023, 11, 13409–13418. [Google Scholar] [CrossRef]
- Kim, M.; Park, J.; Park, H.; Jo, W.; Lee, W.; Park, J. Detection of heavy metals in water environment using nafion-blanketed bismuth nanoplates. ACS Sustain. Chem. Eng. 2023, 11, 6844–6855. [Google Scholar] [CrossRef]
- Bayram, L.; Guler, M. An ultra-sensitive non-enzymatic hydrogen peroxide sensor based on SiO2-APTES supported Au nanoparticles modified glassy carbon electrode. Prog. Nat. Sci. Mater. Int. 2019, 29, 390–396. [Google Scholar] [CrossRef]
- Finšgar, M.; Kovačec, L. Copper-bismuth-film in situ electrodes for heavy metal detection. Microchem. J. 2020, 154, 104635. [Google Scholar] [CrossRef]
- de Borba, W.G.; Guedes, K.C.F.; da Silva, J.G. Construction of a carbon paste electrode modified with multi-walled carbon nanotubes and bismuth for voltammetric simultaneous determination of Cd2+ and Pb2+. Rev. Virtual Quím. 2021, 13, 1042–1050. [Google Scholar] [CrossRef]
- Ninwong, B.; Ratnarathorn, N.; Henry, C.S.; Mace, C.R.; Dungchai, W. Dual Sample preconcentration for simultaneous quantification of metal ions using electrochemical and colorimetric assays. ACS Sens. 2020, 5, 3999–4008. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Zhang, J.; Dai, W.; Lin, X.; Ye, J.; Ye, J. A screen-printed carbon electrode modified with a bismuth film and gold nanoparticles for simultaneous stripping voltammetric determination of Zn(II), Pb(II) and Cu(II). Microchim. Acta 2017, 184, 4731–4740. [Google Scholar] [CrossRef]
Electrode Materials | Technique | Linear Range (ppb) | LOD (ppb) | Ref. |
---|---|---|---|---|
BiCuFE | SWASV | 47.5–632.4 | 1.2 | [39] |
BiCu0.5-ANPs@CF/SPCE | SWASV | 5–150 | 0.95 | [27] |
Bi-MWCNTs-CPE | DPASV | 41.4–414.4 | 8.97 | [40] |
Bi/SPCE | ASV | 5–100 | 0.97 | [41] |
MXA-CuO/CC | DPASV | 4–1200 | 0.2 | [34] |
Bi/UiO-66-NH2@CNHs | DPV | 200–800 | 10.56 | [7] |
Bi/AuNP-SPCE | DPV | 1–150 | 0.03 | [42] |
Bi/Ag@CC | DPV | 20–300 | 0.15 | This work |
Sample | Spiked (μM) | Found (μM) | Recovery (%) | RSD (% n = 3) |
---|---|---|---|---|
Tap water | 80 | 76.93 | 96.20 | 1.81 |
100 | 90.88 | 90.88 | 8.7 | |
Lake water | 70 | 68.31 | 97.60 | 1.46 |
90 | 79.44 | 88.26 | 8.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, Y.; Zhou, X.; Wang, Z.; Li, Y.; Yan, M.; Zeng, Y.; Xiao, J.; Zhao, Y.; Fu, J.-H. Synthesis of Bismuth Film Assembly on Flexible Carbon Cloth for the Electrochemical Detection of Heavy Metal Ions. Chemosensors 2024, 12, 103. https://doi.org/10.3390/chemosensors12060103
Cao Y, Zhou X, Wang Z, Li Y, Yan M, Zeng Y, Xiao J, Zhao Y, Fu J-H. Synthesis of Bismuth Film Assembly on Flexible Carbon Cloth for the Electrochemical Detection of Heavy Metal Ions. Chemosensors. 2024; 12(6):103. https://doi.org/10.3390/chemosensors12060103
Chicago/Turabian StyleCao, Yujie, Xiangyu Zhou, Ziling Wang, Yi Li, Minglei Yan, Yun Zeng, Jie Xiao, Yang Zhao, and Jun-Heng Fu. 2024. "Synthesis of Bismuth Film Assembly on Flexible Carbon Cloth for the Electrochemical Detection of Heavy Metal Ions" Chemosensors 12, no. 6: 103. https://doi.org/10.3390/chemosensors12060103
APA StyleCao, Y., Zhou, X., Wang, Z., Li, Y., Yan, M., Zeng, Y., Xiao, J., Zhao, Y., & Fu, J. -H. (2024). Synthesis of Bismuth Film Assembly on Flexible Carbon Cloth for the Electrochemical Detection of Heavy Metal Ions. Chemosensors, 12(6), 103. https://doi.org/10.3390/chemosensors12060103