Portable and Visual Detection of Cytochrome c with Graphene Quantum Dots–Filter Paper Composite
Abstract
:1. Introduction
2. Materials and Methods
2.1. Detection of Cytochrome c in Solution
2.2. Portable and Visual Detection of Cytochrome c on Graphene Quantum Dots-Modified Filter Paper
2.3. Determination of Cytochrome c in Cell Lysate
2.4. Fluorescence Activation Imaging of Cytochrome c during Cell Apoptosis
3. Results and Discussion
3.1. The Features of Graphene Quantum Dots
3.2. Stability of Graphene Quantum Dots
3.3. Detection of Cytochrome c in Solution
3.3.1. The Working Conditions’ Optimization for Cytochrome c Detection
3.3.2. The Analytical Performance of the Proposed Method for Cytochrome c Sensing
3.4. The Portable Detection of Cytochrome c on Solid Filter Paper
3.5. Determination of Cytochrome c in Cell Lysate
3.6. Cellular Imaging during Apoptosis
3.7. The Fluorescence Quenching Mechanism Investigation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shamsipur, M.; Molaabasi, F.; Hosseinkhani, S.; Rahmati, F. Detection of early stage apoptotic cells based on label-free cytochrome c assay using bioconjugated metal nanoclusters as fluorescent probes. Anal. Chem. 2016, 88, 2188–2197. [Google Scholar] [CrossRef] [PubMed]
- Birk, A.V.; Chao, W.M.; Bracken, C.; Warren, J.D.; Szeto, H.H. Targeting mitochondrial cardiolipin and the cytochrome c/cardiolipin complex to promote electron transport and optimize mitochondrial ATP synthesis. Brit. J. Pharmacol. 2014, 171, 2017–2028. [Google Scholar] [CrossRef] [PubMed]
- Orrenius, S.; Zhivotovsky, B. Cardiolipin oxidation sets cytochrome c free. Nat. Chem. Biol. 2005, 1, 188–189. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Budihardjo, I.; Zou, H.; Slaughter, C.; Wang, X.D. Bid, a Bcl2 interacting protein, mediates cytochrome c release from mitochondria in response to activation of cell surface death receptors. Cell 1998, 94, 481–490. [Google Scholar] [CrossRef] [PubMed]
- Kesa, P.; Bhide, M.; Lysakova, V.; Musatov, A. Subunit analysis of mitochondrial cytochrome c oxidase and cytochrome bc(1) by reversed-phase high-performance liquid chromatography. Anal. Biochem. 2017, 516, 6–8. [Google Scholar] [CrossRef] [PubMed]
- Haymond, S.; Babcock, G.T.; Swain, G.M. Direct electrochemistry of cytochrome c at nanocrystalline boron-doped diamond. J. Am. Chem. Soc. 2002, 124, 10634–10635. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ren, L.; Li, X.; Fan, N.; Chen, J.; Zhang, D.; Yang, W.; Ding, S.; Xu, W.; Min, X. Self-electrochemiluminescence biosensor based on CRISPR/Cas12a and PdCuBP@luminol nanoemitter for highly sensitive detection of cytochrome c oxidase subunit III gene of acute kidney injury. Biosens. Bioelectron. 2022, 207, 114207. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.J.; Zhang, B.X.; Di, C.X.; Ali, M.C.; Chen, J.; Li, Z.; Si, J.; Zhang, H.; Qiu, H.D. Label-free fluorescence imaging of cytochrome c in living systems and anti-cancer drug screening with nitrogen doped carbon quantum dots. Nanoscale 2018, 10, 5342–5349. [Google Scholar] [CrossRef] [PubMed]
- Mesgari, F.; Beigi, S.M.; Fakhri, N.; Hosseini, M.; Aghazadeh, M.; Ganjali, M.R. Paper-based chemiluminescence and colorimetric detection of cytochrome c by cobalt hydroxide decorated mesoporous carbon. Microchem. J. 2020, 157, 104991. [Google Scholar] [CrossRef]
- Chen, H.; Zhuang, Z.; Guo, S.; Xie, S.; Xin, Y.; Chen, Y.; Ouyang, S.; Zhao, W.; Shen, K.; Tao, J.; et al. Artificial neural network processed linear-light tristimulus and hue parameters of fluorescence for smartphone assisted point-of-care testing device. Sens. Actuat. B Chem. 2023, 384, 133659. [Google Scholar] [CrossRef]
- Xie, R.; Song, X.; Chen, H.; Lin, P.; Guo, S.; Zhuang, Z.; Chen, Y.; Zhao, W.; Zhao, P.; Long, H.; et al. Intelligent clinical lab for the diagnosis of post-neurosurgical meningitis based on machine-learning-aided cerebrospinal fluid analysis. Anal. Chem. 2022, 94, 15720–15728. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Chen, J.; Hu, Z.; Chen, Y.; Tao, Y.; Wang, L.; Li, L.; Wang, P.; Li, H.-Y.; Zhang, J.; et al. All-solid-state SARS-CoV-2 protein biosensor employing colloidal quantum dots-modified electrode. Biosens. Bioelectron. 2022, 202, 113974. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.L.; Lei, T.T.; He, Y.; Song, G.W. Background-free room temperature phosphorescence and digital image colorimetry detection of melamine by carbon nitride quantum dots in cellulose matrix with smartphone-based portable device. Food Chem. 2022, 390, 133135. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Lv, C.C.; Guo, Y.L.; Ma, X.H.; Liu, W.; Jin, Y.; Li, B.X.; Yang, M.; Yao, S.Y. Recent advances and applications in paper-based devices for point-of-care testing. J. Anal. Test. 2022, 6, 247–273. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Ahn, Y.; Bae, Y.; Woo, S.; Park, J.; Han, I.K.; Kim, H.; Eom, S.; Kang, S.; Jung, W.; et al. Highly sensitive pregnancy test kit via oriented antibody conjugation on brush-type ligand-coated quantum beads. Biosens. Bioelectron. 2022, 213, 114441. [Google Scholar] [CrossRef] [PubMed]
- Park, J.; Han, H.Y.G.; Park, C.; Ahn, J.K. Washing-free and label-free onsite assay for inorganic pyrophosphatase activity using a personal glucose meter. Anal. Chem. 2022, 94, 11508–11513. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.T.; Chen, Z.H.; Shi, G.Y.; Zhang, M. Eu3+-doped bovine serum albumin-derived carbon dots for ratiometric fluorescent detection of tetracycline. J. Anal. Test. 2022, 6, 365–373. [Google Scholar] [CrossRef]
- Hussain, M.M.; Khan, W.U.; Ahmed, F.; Wei, Y.; Xiong, H. Recent developments of Red/NIR carbon dots in biosensing, bioimaging, and tumor theranostics. Chem. Eng. J. 2023, 465, 143010. [Google Scholar] [CrossRef]
- Rong, M.; Wang, D.; Li, Y.; Zhang, Y.; Huang, H.; Liu, R.; Deng, X. Green-emitting carbon dots as fluorescent probe for nitrite detection. J. Anal. Test. 2021, 5, 51–59. [Google Scholar] [CrossRef]
- Shi, J.Y.; Chan, C.Y.; Pang, Y.T.; Ye, W.W.; Tian, F.; Lyu, J.; Zhang, Y.; Yang, M. A fluorescence resonance energy transfer (FRET) biosensor based on graphene quantum dots (GQDs) and gold nanoparticles (AuNPs) for the detection of mecA gene sequence of Staphylococcus aureus. Biosens. Bioelectron. 2015, 67, 595–600. [Google Scholar] [CrossRef]
- Wang, J.; Li, R.S.; Zhang, H.Z.; Wang, N.; Zhang, Z.; Huang, C.Z. Highly fluorescent carbon dots as selective and visual probes for sensing copper ions in living cells via an electron transfer process. Biosens. Bioelectron. 2017, 97, 157–163. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Liu, H.; Huang, Y.; Li, L.; Liu, H.J.; Ding, Y.P. Carbon dots as “on-off-on” fluorescence sensors for selective and consecutive detection of 4-nitrophenol and cerium(IV) in water samples. J. Anal. Test. 2024, 8, 201–209. [Google Scholar] [CrossRef]
- Tian, Y.L.; Ji, Y.Y.; Zou, X.; Chen, Q.M.; Zhang, S.L.; Gong, Z.J. N, P co-doped carbon dots as multifunctional fluorescence nano-sensor for sensitive and selective detection of Cr(VI) and ascorbic acid. J. Anal. Test. 2022, 6, 335–345. [Google Scholar] [CrossRef]
- Vázquez-Nakagawa, M.; Rodríguez-Pérez, L.; Martín, N.; Herranz, M.A. Supramolecular assembly of edge functionalized top-down chiral graphene quantum dots. Angew. Chem. Int. Ed. 2022, 61, e202211365. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.K.; Singh, J.; Nguyen-Tri, P. Gold-deposited graphene nanosheets for self-cleaning graphene surface-enhanced raman spectroscopy with superior charge-transfer contribution. ACS Appl. Mater. Interfaces 2024, 16, 10969–10983. [Google Scholar] [CrossRef] [PubMed]
- Novoa-De León, I.C.; Johny, J.; Vázquez-Rodríguez, S.; García-Gómez, N.; Carranza-Bernal, S.; Mendivil, I.; Shaji, S.; Sepúlveda-Guzmán, S. Tuning the luminescence of nitrogen-doped graphene quantum dots synthesized by pulsed laser ablation in liquid and their use as a selective photoluminescence on-off-on probe for ascorbic acid detection. Carbon 2019, 150, 455–464. [Google Scholar] [CrossRef]
- Liu, M.L.; Chen, B.B.; Li, C.M.; Huang, C.Z. Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chem. 2019, 21, 449–471. [Google Scholar] [CrossRef]
- Wang, J.; Teng, X.M.; Wang, Y.S.; Si, S.X.; Ju, J.; Pan, W.; Wang, J.P.; Sun, X.B.; Wang, W.J. Carbon dots based fluorescence methods for the detections of pesticides and veterinary drugs: Response mechanism, selectivity improvement and application. TrAC Trends Anal. Chem. 2021, 144, 116430. [Google Scholar] [CrossRef]
- Li, K.H.; Zhao, X.N.; Wei, G.; Su, Z.Q. Recent advances in the cancer bioimaging with graphene quantum dots. Curr. Med. Chem. 2018, 25, 2876–2893. [Google Scholar] [CrossRef] [PubMed]
- Li, X.Y.; Zhang, Q.; Wang, N.; Liu, J.J.; Wang, J. Cu2+-mediated fluorescence switching of graphene quantum dots for highly selective detection of glutathione. Chin. J. Anal. Chem. 2020, 48, 339–346. [Google Scholar] [CrossRef]
- Borghei, Y.-S.; Hosseinkhani, S. Aptamer-based colorimetric determination of early-stage apoptotic cells via the release of cytochrome c from mitochondria and by exploiting silver/platinum alloy nanoclusters as a peroxidase mimic. Microchim. Acta 2019, 186, 845. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Wang, J.; Liu, T.; Sun, Z.; Gao, M.; Huang, K.; Wang, X. Loquat fruit-based carbonquantumdots as an “ON-OFF” probe for fluorescent assay of MnO4− in waters based on the joint action of inner filter effect and static quenching. Microchem. J. 2022, 178, 107374. [Google Scholar] [CrossRef]
- Amin, R.M.; Elfeky, S.A.; Verwanger, T.; Krammer, B. Fluorescence-based CdTe nanosensor for sensitive detection of cytochrome C. Biosens. Bioelectron. 2017, 98, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Zhu, J.T.; Chu, H.Y.; Shen, J.W.; Wang, C.Z.; Wei, Y.M. Nitrogen and fluorine co-doped green fluorescence carbon dots as a label-free probe for determination of cytochrome c in serum and temperature sensing. J. Colloid Interface Sci. 2021, 586, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Gao, P.; Qiu, X.; Xu, Q.; Gan, S.; Yang, H.; Huang, S. Aptasensor based on triplex switch for SERS detection of cytochrome c. Analyst 2012, 137, 5705–5709. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.N.; Ma, X.Y.; Wang, Z.P. Surface-Enhanced Raman Scattering-Fluorescence Dual-Mode Nanosensors for Quantitative Detection of Cytochrome c in Living Cells. Anal. Chem. 2019, 91, 6600–6607. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.X.; Wel, W.Z. Detection of Cytochrome c at Biocompatible Nanostructured Au-lipid Bilayer-modified Electrode. Analytical Sci. 2008, 24, 1431–1436. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Zhu, X.L.; Li, T.; Li, G.X. Self-assembled multilayer of gold nanoparticles for amplified electrochemical detection of cytochrome c. Analyst 2008, 133, 1242–1245. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.L.; Tang, Z.R.; Dong, Y.P.; Wang, C.M. Electrogenerated chemiluminescence of ZnO nanorods and its sensitive detection of cytochrome C. Talanta 2018, 179, 139–144. [Google Scholar] [CrossRef]
- Sha, H.F.; Zhang, Y.; Wang, Y.F.; Ke, H.; Xiong, X.; Xue, H.G.; Jia, N.Q. Electroluminescent aptasensor based on RuSiO2 nanoparticles for detection cytochrome c using ferrocene as quenching probe. Biosens. Bioelectron. 2019, 132, 203–209. [Google Scholar] [CrossRef] [PubMed]
Samples | Detected (μg/mL) | Spiked (μg/mL) | Average Found (μg/mL) | Average Recovery (%, n = 3) | RSD (%, n = 3) |
---|---|---|---|---|---|
1 | None | 10.00 | 9.20 | 92.0 | 4.33 |
2 | None | 50.00 | 47.40 | 94.8 | 3.28 |
3 | None | 100.0 | 98.50 | 98.5 | 4.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Jiang, Y.; Wang, N.; Feng, Y.; Chen, B.; Wang, J. Portable and Visual Detection of Cytochrome c with Graphene Quantum Dots–Filter Paper Composite. Chemosensors 2024, 12, 167. https://doi.org/10.3390/chemosensors12080167
Li L, Jiang Y, Wang N, Feng Y, Chen B, Wang J. Portable and Visual Detection of Cytochrome c with Graphene Quantum Dots–Filter Paper Composite. Chemosensors. 2024; 12(8):167. https://doi.org/10.3390/chemosensors12080167
Chicago/Turabian StyleLi, Liangtong, Yongjian Jiang, Ni Wang, Yusheng Feng, Binbin Chen, and Jian Wang. 2024. "Portable and Visual Detection of Cytochrome c with Graphene Quantum Dots–Filter Paper Composite" Chemosensors 12, no. 8: 167. https://doi.org/10.3390/chemosensors12080167
APA StyleLi, L., Jiang, Y., Wang, N., Feng, Y., Chen, B., & Wang, J. (2024). Portable and Visual Detection of Cytochrome c with Graphene Quantum Dots–Filter Paper Composite. Chemosensors, 12(8), 167. https://doi.org/10.3390/chemosensors12080167