An Optimization of the Extraction of Phenolic Compounds from Grape Marc: A Comparison between Conventional and Ultrasound-Assisted Methods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Grape Marc Preparation
2.3. Ethanol–Water Extraction
2.4. Ultra-Sonic Assisted Extraction (UAE)
2.5. Analytical Methods
2.5.1. Total Phenolics Content
2.5.2. Total Flavonoids Content
2.5.3. Total Tannins Content
2.5.4. Total Anthocyanins Content
2.5.5. 2,2′-Diphenyl-1-Picrylhydrazyl (DPPH) Assay
2.5.6. Characterization of Phenolic Compounds Using LC-ESI-QTOF-MS/MS Analysis
2.6. Experimental Design and Statistical Analysis
3. Results and Discussion
3.1. Modeling of the Extraction Process from Grape Marc
3.2. Effects of Extraction Variables on Total Phenolics Content and Total Flavonoids Content
3.3. Effects of Extraction Variables on Total Tannins Content
3.4. Effects of Extraction Variables on Total Anthocyanins Content
3.5. Effects of Extraction Variables on Radical Scavenging Capacity
3.6. Optimization of the Extraction Process
3.7. LC-ESI-QTOF-MS/MS Based Characterization of Phenolic Compounds
3.7.1. Phenolic Acids
3.7.2. Flavonoids
3.7.3. Lignans
3.7.4. Other Phenolic Compounds
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shahbandeh, M. Global Production of Fruit by Variety Selected 2021; Statista: Hamburg, Germany, 2023. [Google Scholar]
- World Wine Production Outlook; Organisation Internationale de la Vigne et du Vin: Paris, France, 2021.
- Devesa-Rey, R.; Vecino, X.; Varela-Alende, J.; Barral, M.; Cruz, J.; Moldes, A. Valorization of Winery Waste vs. the Costs of Not Recycling. Waste Manag. 2011, 31, 2327–2335. [Google Scholar] [CrossRef]
- Jiménez-Moreno, N.; Esparza, I.; Bimbela, F.; Gandía, L.M.; Ancín-Azpilicueta, C. Valorization of Selected Fruit and Vegetable Wastes as Bioactive Compounds: Opportunities and Challenges. Crit. Rev. Environ. Sci. Technol. 2020, 50, 2061–2108. [Google Scholar] [CrossRef]
- Muhlack, R.A.; Potumarthi, R.; Jeffery, D.W. Sustainable Wineries through Waste Valorisation: A Review of Grape Marc Utilisation for Value-Added Products. Waste Manag. 2018, 72, 99–118. [Google Scholar] [CrossRef]
- Liu, Z.; de Souza, T.S.; Wu, H.; Holland, B.; Dunshea, F.R.; Barrow, C.J.; Suleria, H.A. Development of Phenolic-Rich Functional Foods by Lactic Fermentation of Grape Marc: A Review. Food Rev. Int. 2023, 40, 1756–1775. [Google Scholar] [CrossRef]
- Fontana, A.R.; Antoniolli, A.; Bottini, R.N. Grape Pomace as a Sustainable Source of Bioactive Compounds: Extraction, Characterization, and Biotechnological Applications of Phenolics. J. Agric. Food Chem. 2013, 61, 8987–9003. [Google Scholar] [CrossRef]
- Bustamante, M.; Said-Pullicino, D.; Paredes, C.; Cecilia, J.; Moral, R. Influences of Winery–Distillery Waste Compost Stability and Soil Type on Soil Carbon Dynamics in Amended Soils. Waste Manag. 2010, 30, 1966–1975. [Google Scholar] [CrossRef] [PubMed]
- Waterhouse, A.L.; Sacks, G.L.; Jeffery, D.W. Understanding Wine Chemistry; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Peixoto, C.M.; Dias, M.I.; Alves, M.J.; Calhelha, R.C.; Barros, L.; Pinho, S.P.; Ferreira, I.C. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef] [PubMed]
- Di Stefano, V.; Buzzanca, C.; Melilli, M.G.; Indelicato, S.; Mauro, M.; Vazzana, M.; Arizza, V.; Lucarini, M.; Durazzo, A.; Bongiorno, D. Polyphenol Characterization and Antioxidant Activity of Grape Seeds and Skins from Sicily: A Preliminary Study. Sustainability 2022, 14, 6702. [Google Scholar] [CrossRef]
- Da Porto, C.; Natolino, A. Optimization of the Extraction of Phenolic Compounds from Red Grape Marc (Vitis vinifera L.) Using Response Surface Methodology. J. Wine Res. 2018, 29, 26–36. [Google Scholar] [CrossRef]
- Teixeira, A.; Baenas, N.; Dominguez-Perles, R.; Barros, A.; Rosa, E.; Moreno, D.A.; Garcia-Viguera, C. Natural Bioactive Compounds from Winery by-Products as Health Promoters: A review. Int. J. Mol. Sci. 2014, 15, 15638–15678. [Google Scholar] [CrossRef]
- Pinelo, M.; Rubilar, M.; Jerez, M.; Sineiro, J.; Núñez, M.J. Effect of Solvent, Temperature, and Solvent-to-Solid Ratio on the Total Phenolic Content and Antiradical Activity of Extracts from Different Components of Grape pomace. J. Agric. Food Chem. 2005, 53, 2111–2117. [Google Scholar] [CrossRef] [PubMed]
- Caldas, T.W.; Mazza, K.E.; Teles, A.S.; Mattos, G.N.; Brígida, A.I.S.; Conte-Junior, C.A.; Borguini, R.G.; Godoy, R.L.; Cabral, L.M.; Tonon, R.V. Phenolic Compounds Recovery from Grape Skin Using Conventional and Non-Conventional Extraction Methods. Ind. Crops Prod. 2018, 111, 86–91. [Google Scholar] [CrossRef]
- Luque-García, J.L.; Luque De Castro, M.D. Ultrasound: A Powerful Tool for Leaching. TrAC-Trends Anal. Chem. 2003, 22, 41–47. [Google Scholar] [CrossRef]
- Tiwari, B.K. Ultrasound: A Clean, Green Extraction Technology. TrAC Trends Anal. Chem. 2015, 71, 100–109. [Google Scholar] [CrossRef]
- Rouxinol, M.I.; Martins, M.R.; Barroso, J.M.; Rato, A.E. Wine Grapes Ripening: A Review on Climate Effect and Analytical Approach to Increase Wine Quality. Appl. Biosci. 2023, 2, 347–372. [Google Scholar] [CrossRef]
- Myers, R.H.; Montgomery, D.C.; Anderson-Cook, C.M. Response Surface Methodology: Process and Product Optimization Using Designed Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Yang, Z.; Shi, L.; Qi, Y.; Xie, C.; Zhao, W.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Effect of Processing on Polyphenols in Butternut Pumpkin (Cucurbita moschata). Food Biosci. 2022, 49, 101925. [Google Scholar] [CrossRef]
- Singleton, V.L. Lamuela-Raventos: Analysis of Total Phenoles and Other Oxidation Substartes and Antioxidants by Means of Folin-Ciocalteu Reagent. Methods Enzymol. 1999, 299, 152. [Google Scholar]
- Palacios, C.E.; Nagai, A.; Torres, P.; Rodrigues, J.A.; Salatino, A. Contents of Tannins of Cultivars of Sorghum Cultivated in Brazil, as Determined by Four Quantification Methods. Food Chem. 2021, 337, 127970. [Google Scholar] [CrossRef]
- Lee, J.; Durst, R.W.; Wrolstad, R.E.; Collaborators: Eisele T Giusti MM Hach J Hofsommer H Koswig S Krueger DA Kupina, and S Martin SK Martinsen BK Miller TC Paquette F Ryabkova A Skrede G Trenn U Wightman JD. Determination of Total Monomeric Anthocyanin Pigment Content of Fruit Juices, Beverages, Natural Colorants, and Wines by the Ph Differential Method: Collaborative Study. J. AOAC Int. 2005, 88, 1269–1278. [Google Scholar] [CrossRef]
- Shi, L.; Liu, Z.; Viejo, C.G.; Ahmadi, F.; Dunshea, F.R.; Suleria, H.A. Comparison of Phenolic Composition in Australian-Grown Date Fruit (Phoenix dactylifera L.) Seeds from Different Varieties and Ripening Stages. Food Res. Int. 2024, 181, 114096. [Google Scholar] [CrossRef]
- Subbiah, V.; Ebrahimi, F.; Agar, O.T.; Dunshea, F.R.; Barrow, C.J.; Suleria, H.A. Comparative Study on the Effect of Phenolics and Their Antioxidant Potential of Freeze-Dried Australian Beach-Cast Seaweed Species upon Different Extraction Methodologies. Pharmaceuticals 2023, 16, 773. [Google Scholar] [CrossRef]
- Pop, A.; Fizeșan, I.; Vlase, L.; Rusu, M.E.; Cherfan, J.; Babota, M.; Gheldiu, A.-M.; Tomuta, I.; Popa, D.-S. Enhanced Recovery of Phenolic and Tocopherolic Compounds from Walnut (Juglans regia L.) Male Flowers Based on Process Optimization of Ultrasonic Assisted-Extraction: Phytochemical Profile and Biological Activities. Antioxidants 2021, 10, 607. [Google Scholar] [CrossRef]
- Librán Cuervas-Mons, C.M.; Mayor López, L.; García Castelló, E.M.; Vidal Brotons, D.J. Polyphenol Extraction from Grape Wastes: Solvent and pH Effect. Agric. Sci. 2013, 4, 56–62. [Google Scholar]
- Antony, A.; Farid, M. Effect of Temperatures on Polyphenols during Extraction. Appl. Sci. 2022, 12, 2107. [Google Scholar] [CrossRef]
- Liao, J.; Qu, B.; Liu, D.; Zheng, N. New Method to Enhance the Extraction Yield of Rutin from Sophora Japonica Using a Novel Ultrasonic Extraction System by Determining Optimum Ultrasonic Frequency. Ultrason. Sonochem. 2015, 27, 110–116. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Faruk, M.O.; Ashaduzzaman, M.; Dungani, R. Review on Tannins: Extraction Processes, Applications and Possibilities. S. Afr. J. Bot. 2020, 135, 58–70. [Google Scholar] [CrossRef]
- Türker, N.; Erdoğdu, F. Effects of pH and Temperature of Extraction Medium on Effective Diffusion Coefficient of Anthocynanin Pigments of Black Carrot (Daucus Carota Var. L.). J. Food Eng. 2006, 76, 579–583. [Google Scholar] [CrossRef]
- Amendola, D.; De Faveri, D.M.; Spigno, G. Grape Marc Phenolics: Extraction Kinetics, Quality and Stability Of Extracts. J. Food Eng. 2010, 97, 384–392. [Google Scholar] [CrossRef]
- Havlikova, L.; Mikova, K. Heat Stability of Anthocyanins. Z. Fuer Lebensm.-Unters. Und-Forsch. (Ger. FR) 1985, 181, 427–432. [Google Scholar]
- Sridhar, A.; Ponnuchamy, M.; Kumar, P.S.; Kapoor, A.; Vo, D.-V.N.; Prabhakar, S. Techniques and Modeling of Polyphenol Extraction from Food: A Review. Environ. Chem. Lett. 2021, 19, 3409–3443. [Google Scholar] [CrossRef]
- Shi, P.; Du, W.; Wang, Y.; Teng, X.; Chen, X.; Ye, L. Total Phenolic, Flavonoid Content, and Antioxidant Activity of Bulbs, Leaves, and Flowers Made from Eleutherine bulbosa (Mill.) Urb. Food Sci. Nutr. 2019, 7, 148–154. [Google Scholar] [CrossRef] [PubMed]
- Vo, G.T.; Liu, Z.; Chou, O.; Zhong, B.; Barrow, C.J.; Dunshea, F.R.; Suleria, H.A. Screening of Phenolic Compounds in Australian Grown Grapes and Their Potential Antioxidant Activities. Food Biosci. 2022, 47, 101644. [Google Scholar] [CrossRef]
- Suleria, H.A.; Barrow, C.J.; Dunshea, F.R. Screening and Characterization of Phenolic Compounds and Their Antioxidant Capacity in Different Fruit Peels. Foods 2020, 9, 1206. [Google Scholar] [CrossRef]
- Iftikhar, M.; Zhang, H.; Iftikhar, A.; Raza, A.; Begum, N.; Tahamina, A.; Syed, H.; Khan, M.; Wang, J. Study on Optimization of Ultrasonic Assisted Extraction of Phenolic Compounds from Rye Bran. LWT 2020, 134, 110243. [Google Scholar] [CrossRef]
- Escobar-Avello, D.; Lozano-Castellón, J.; Mardones, C.; Pérez, A.J.; Saéz, V.; Riquelme, S.; von Baer, D.; Vallverdú-Queralt, A. Phenolic Profile of Grape Canes: Novel Compounds Identified by Lc-Esi-Ltq-Orbitrap-Ms. Molecules 2019, 24, 3763. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Ramírez, I.F.; Reynoso-Camacho, R.; Saura-Calixto, F.; Pérez-Jiménez, J. Comprehensive Characterization of Extractable and Nonextractable Phenolic Compounds by High-Performance Liquid Chromatography–Electrospray Ionization–Quadrupole Time-of-Flight of a Grape/Pomegranate Pomace Dietary Supplement. J. Agric. Food Chem. 2018, 66, 661–673. [Google Scholar] [CrossRef]
- Marastoni, L.; Lucini, L.; Miras-Moreno, B.; Trevisan, M.; Sega, D.; Zamboni, A.; Varanini, Z. Changes in Physiological Activities and Root Exudation Profile of Two Grapevine Rootstocks Reveal Common and Specific Strategies for Fe Acquisition. Sci. Rep. 2020, 10, 18839. [Google Scholar] [CrossRef]
- Guilford, J.M.; Pezzuto, J.M. Wine and Health: A review. Am. J. Enol. Vitic. 2011, 62, 471–486. [Google Scholar] [CrossRef]
- Pezzuto, J.M. Grapes and Human Health: A Perspective. J. Agric. Food Chem. 2008, 56, 6777–6784. [Google Scholar] [CrossRef]
- Zhou, D.-D.; Li, J.; Xiong, R.-G.; Saimaiti, A.; Huang, S.-Y.; Wu, S.-X.; Yang, Z.-J.; Shang, A.; Zhao, C.-N.; Gan, R.-Y. Bioactive Compounds, Health Benefits and Food Applications of Grape. Foods 2022, 11, 2755. [Google Scholar] [CrossRef]
- Amaya-Chantaca, D.; Flores-Gallegos, A.C.; Iliná, A.; Aguilar, C.N.; Sepúlveda-Torre, L.; Ascacio-Vadlés, J.A.; Chávez-González, M.L. Comparative Extraction Study of Grape Pomace Bioactive Compounds by Submerged and Solid-State Fermentation. J. Chem. Technol. Biotechnol. 2022, 97, 1494–1505. [Google Scholar] [CrossRef]
- Marchev, A.S.; Vasileva, L.V.; Amirova, K.M.; Savova, M.S.; Koycheva, I.K.; Balcheva-Sivenova, Z.P.; Vasileva, S.M.; Georgiev, M.I. Rosmarinic Acid-from Bench to Valuable Applications in Food Industry. Trends Food Sci. Technol. 2021, 117, 182–193. [Google Scholar] [CrossRef]
- Okuda, T.; Ito, H. Tannins of Constant Structure in Medicinal and Food Plants—Hydrolyzable Tannins and Polyphenols Related to Tannins. Molecules 2011, 16, 2191–2217. [Google Scholar] [CrossRef]
- Feng, W.; Hao, Z.; Li, M. Isolation and Structure Identification of Flavonoids. Flavonoids Biosynth. Hum. Health/Ed. Justino GC Intech Open 2017, 17–43. [Google Scholar] [CrossRef]
- Souquet, J.-M.; Cheynier, V.; Brossaud, F.; Moutounet, M. Polymeric Proanthocyanidins from Grape Skins. Phytochemistry 1996, 43, 509–512. [Google Scholar] [CrossRef]
- Souquet, J.-M.; Labarbe, B.; Le Guernevé, C.; Cheynier, V.; Moutounet, M. Phenolic Composition of Grape Stems. J. Agric. Food Chem. 2000, 48, 1076–1080. [Google Scholar] [CrossRef]
- Brown, A.; Falshaw, C.; Haslam, E.; Holmes, A.; Ollis, W. The Constitution of Theaflavin. Tetrahedron Lett. 1966, 7, 1193–1204. [Google Scholar] [CrossRef]
- Subramanian, N.; Venkatesh, P.; Ganguli, S.; Sinkar, V.P. Role of Polyphenol Oxidase and Peroxidase in the Generation of Black Tea Theaflavins. J. Agric. Food Chem. 1999, 47, 2571–2578. [Google Scholar] [CrossRef]
- Xu, Q.; Fu, Q.; Li, Z.; Liu, H.; Wang, Y.; Lin, X.; He, R.; Zhang, X.; Ju, Z.; Campisi, J. The Flavonoid Procyanidin C1 Has Senotherapeutic Activity and Increases Lifespan in Mice. Nat. Metab. 2021, 3, 1706–1726. [Google Scholar] [CrossRef]
- Enomoto, H.; Takahashi, S.; Takeda, S.; Hatta, H. Distribution of Flavan-3-Ol Species in Ripe Strawberry Fruit Revealed by Matrix-Assisted Laser Desorption/Ionization-Mass Spectrometry Imaging. Molecules 2019, 25, 103. [Google Scholar] [CrossRef]
- Ferruzzi, M.G.; Lobo, J.K.; Janle, E.M.; Cooper, B.; Simon, J.E.; Wu, Q.-L.; Welch, C.; Ho, L.; Weaver, C.; Pasinetti, G.M. Bioavailability of Gallic Acid and Catechins from Grape Seed Polyphenol Extract Is Improved by Repeated Dosing in Rats: Implications for Treatment in Alzheimer’s Disease. J. Alzheimer’s Dis. 2009, 18, 113–124. [Google Scholar] [CrossRef]
- Willför, S.; Reunanen, M.; Eklund, P.; Sjöholm, R.; Kronberg, L.; Fardim, P.; Pietarinen, S.; Holmbom, B. Oligolignans in Norway Spruce and Scots Pine Knots and Norway Spruce Stemwood; Walter de Gruyter: Berlin, Germany, 2004. [Google Scholar]
- Romanini, E.; Colangelo, D.; Lucini, L.; Lambri, M. Identifying Chemical Parameters and Discriminant Phenolic Compounds from Metabolomics to Gain Insight into the Oxidation Status of Bottled White Wines. Food Chem. 2019, 288, 78–85. [Google Scholar] [CrossRef]
- Ahmad, W.; Ali, A.; Mohsin, A.; Ji, X.; Aziz, M.; Wang, L.; Zhao, L. A comprehensive Characterization of Polyphenol Extracts from Wasted Sour Fruits by Lc–Ms/Ms and Evaluation of Their Antioxidant Potentials. J. Food Meas. Charact. 2024, 18, 1302–1317. [Google Scholar] [CrossRef]
- Durand-Hulak, M.; Dugrand, A.; Duval, T.; Bidel, L.P.; Jay-Allemand, C.; Froelicher, Y.; Bourgaud, F.; Fanciullino, A.-L. Mapping the Genetic and Tissular Diversity of 64 Phenolic Compounds in Citrus Species Using a Uplc–Ms Approach. Ann. Bot. 2015, 115, 861–877. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.; Hong, Y.; Yang, D.; He, Z.; Lin, X.; Wang, G.; Yu, W. Simultaneous Determination of Phenolic Metabolites in Chinese Citrus and Grape Cultivars. PeerJ 2020, 8, e9083. [Google Scholar] [CrossRef] [PubMed]
- Robinson, S.P.; Pezhmanmehr, M.; Speirs, J.; McDavid, D.; Hooper, L.; Rinaldo, A.; Bogs, J.; Ebadi, A.; Walker, A. Grape and Wine Flavonoid Composition in Transgenic Grapevines with Altered Expression of Flavonoid Hydroxylase Genes. Aust. J. Grape Wine Res. 2019, 25, 293–306. [Google Scholar] [CrossRef]
- Balík, J.; Híc, P.; Kulichová, J.; Novotná, P.; Tříska, J.; Vrchotová, N.; Strohalm, J.; Houška, M. Wines with Increased Lignan Content by the Addition of Lignan Extracts. Czech J. Food Sci. 2016, 34, 439–444. [Google Scholar] [CrossRef]
- Caboni, P.; Sarais, G.; Cabras, M.; Angioni, A. Determination of 4-Ethylphenol and 4-Ethylguaiacol in Wines by Lc-Ms-Ms and Hplc-Dad-Fluorescence. J. Agric. Food Chem. 2007, 55, 7288–7293. [Google Scholar] [CrossRef]
- Rayne, S.; Eggers, N.J. 4-Ethylphenol and 4-Ethylguaiacol in Wines: Estimating Non-Microbial Sourced Contributions and Toxicological Considerations. J. Environ. Sci. Health Part B 2007, 42, 887–897. [Google Scholar] [CrossRef]
Extraction Methods | Symbols | Independent Variables | Coded Levels | ||
---|---|---|---|---|---|
−1 | 0 | 1 | |||
CE | A | Temperature (°C) | 4 | 32 | 60 |
B | solvent pH | 2 | 4 | 6 | |
C | Liquid-to-solid ratio, L/S (mL/g DM) | 10:1 | 30:1 | 50:1 | |
UAE | A | Amplitude % | 10 | 55 | 100 |
B | Time (min) | 2 | 5 | 8 | |
C | Temperature (°C) | 4 | 32 | 60 |
Condition | Conventional Extraction | Ultrasonic-Assisted Extraction |
---|---|---|
Temperature (°C) | 49.2 | 60.0 |
pH | 2.0 | 2.0 |
Solid-to-Solvent Ratio | 1:50 | 1:50 |
Amplitude (%) | N/A | 100 |
Time (min) | 16 h | 5.05 min |
Response Variables | Predicted | Experimental | ||
---|---|---|---|---|
Conventional Extraction | Ultrasonic-Assisted Extraction | Conventional Extraction * | Ultrasonic-Assisted Extraction * | |
Total phenolics content (mg GAE/g) | 36.38 | 28.35 | 33.16 ± 0.49 | 28.29 ± 0.36 |
Total flavonoids content (mg QE/g) | 2.08 | 4.09 | 2.51 ± 0.20 | 4.01 ± 0.04 |
Total tannins content (mg GAE/g) | 24.78 | 20.13 | 25.75 ± 0.83 | 20.04 ± 0.31 |
Total anthocyanins content (mg/g) | 0.77 | 1.04 | 0.92 ± 0.14 | 1.14 ± 0.05 |
DPPH (mg TE/g) | 52.22 | 50.18 | 51.47 ± 0.87 | 54.14 ± 0.71 |
No. | Molecular Formula | Proposed Compounds | RT (min) | Ionization (ESI+/ESI−) | Theoretical Mass (m/z) | Observed Mass (m/z) | Mass Error (ppm) | MS/MS Production | Phenolic Compounds | Extraction Methods |
---|---|---|---|---|---|---|---|---|---|---|
Phenolic acids | ||||||||||
1 | C26H26O12 | 1-Feruloyl-5-caffeoylquinic acid | 3.73 | [M − H]− | 529.1340 | 529.1349 | −1.7009 | 193.0506, 191.0561 179.0350, 135.0452 | Hydroxycinnamic acids | CE |
2 | C39H58O4 | Schottenol ferulate | 43.20 | [M − H]− | 589.4291 | 589.4272 | −3.2235 | 413.3789 | Hydroxycinnamic acids | CE |
3 | C18H22O10 | 3-Sinapoylquinic acid | 37.50 | [M − H]− | 397.1135 | 397.1120 | −3.7773 | 191.0561, 173.0455 | Hydroxycinnamic acids | CE |
4 | C9H8O4 | Caffeic acid | 45.80 | [M − H]− | 179.0360 | 179.0355 | −1.1171 | 135.0519 | Hydroxycinnamic acids | UAE |
5 | C16H20O9 | Ferulic acid 4-O-glucoside | 45.719 | [M − H]− | 355.1055 | 355.1049 | −1.6896 | 193.0506, 177.0193, 147.0452, 135.0452 | Hydroxycinnamic acids | UAE |
6 | C18H16O8 | Rosmarinic acid | 30.185 | [M − H]− | 359.0802 | 359.0804 | 0.5570 | 179.0355, 161.0225, 135.0519 | Hydroxycinnamic acids | UAE |
7 | C14H6O8 | Ellagic acid | 48.44 | [M − H]− | 301.0006 | 300.9993 | −4.3189 | 283.9956, 257.0079, 229.0126, 185.0229 | Hydroxybenzoic acids | CE |
Flavonoids | ||||||||||
1 | C22H24O13 | 4′-O-Methyl-(-)-epigallocatechin 7-O-glucuronide | 12.04 | [M − H]− | 495.1160 | 495.1161 | 0.2020 | 415.1035, 313.0565 | Flavanols | CE |
2 | C21H22O13 | (-)-Epigallocatechin 3′-O-glucuronide | 25.104 | [M − H]− | 481.0999 | 481.0983 | −3.3257 | 305.0667 | Flavanols | CE, UAE |
3 | C43H32O20 | Theaflavin 3,3′-O-digallate | 25.324 | [M − H]− | 867.1405 | 867.1387 | −2.0758 | 715.1305, 563.0826, 545.0725 | Flavanols | CE, UAE |
4 | C45H38O18 | Procyanidin trimer C1 | 45.787 | [M − H]− | 865.2015 | 865.2000 | −1.7337 | 739.1668, 713.1512, 577.1351, 289.0844 | Flavanols | CE, UAE |
5 | C16H16O6 | 3′-O-Methylcatechin | 53.772 | [M − H]− | 303.089 | 303.0879 | −2.6395 | 271.0612, 163.0401 | Flavanols | UAE |
6 | C21H20O10 | Apigenin 7-O- glucoside | 30.811 | [M − H]− | 431.0979 | 431.0958 | −4.87 | 431.0958, 268.0360 | Flavones | UAE |
7 | C30H34O17 | Naringin 6′-malonate | 25.104 | [M − H]− | 665.1710 | 665.1723 | 1.9544 | 665.1723, 545.1148 | Flavanones | UAE |
8 | C27H32O14 | Narirutin | 7.965 | [M − H]− | 579.1744 | 579.1759 | 2.5899 | 271.0591, 151.0038 | Flavanones | CE, UAE |
9 | C28H34O15 | Neohesperidin | 18.903 | [M − H]− | 609.1880 | 609.1865 | −2.4623 | 609.1865, 301.0710 | Flavanones | UAE |
10 | C26H28O16 | Quercetin 3-O-glucosyl-xyloside | 19.820 | [M − H]− | 595.1278 | 595.1294 | 2.6885 | 265.0264, 138.0156, 115.9991 | Flavonols | UAE |
11 | C33H40O21 | Quercetin 3-O-glucosyl-rhamnosyl-glucoside | 18.068 | [M − H]− | 771.1954 | 771.1946 | −1.0374 | 753.1878, 301.0348 | Flavonols | CE, UAE |
12 | C24H24O11 | 6″-O-Acetylglycitin | 43.656 | [M + H]+ | 489.1392 | 489.1413 | 4.2932 | 489.1391, 285.0758, 269.0808 | Isoflavonoids | CE, UAE |
13 | C17H16O6 | Violanone | 49.102 | [M + H]+ | 317.1020 | 317.1034 | 4.41 | 299.0914, 285.0758, 135.0441 | Isoflavonoids | CE |
14 | C28H33O15 | Peonidin 3-O-rutinoside | 43.104 | [M + H]+ | 610.1899 | 610.1877 | −3.6054 | 301.0707 | Anthocyanins | CE, UAE |
15 | C23H23O12 | Cyanidin 3-O-(6″-acetyl-glucoside) | 50.959 | [M + H]+ | 491.1160 | 491.1172 | 2.4434 | 287.0550 | Anthocyanins | CE, UAE |
Lignans | ||||||||||
1 | C20H20O7 | 7-Oxomatairesinol | 18.192 | [M + H]+ | 373.1282 | 373.1297 | 4.0200 | 357.0969, 343.1176, 327.1227 | Lignans | UAE |
2 | C20H20O6 | Conidendrin | 42.546 | [M − H]− | 355.1196 | 355.1215 | 5.3503 | 337.0718, 311.0925, 309.1132, 295.0976 | Lignans | CE |
3 | C20H26O6 | Secoisolariciresinol | 35.665 | [M + H]+ | 363.1823 | 363.1802 | −5.8145 | 327.1640, 163.0776, 137.0569, 133.0663 | Lignans | CE |
4 | C28H36O8 | Tigloylgomicin H | 48.253 | [M − H]− | 499.2375 | 499.2367 | −1.6024 | 499.2367, 401.1606, 385.1657 | Lignans | CE |
Other phenolic compounds | ||||||||||
1 | C9H12O2 | 4-Ethylguaiacol | 47.591 | [M − H]− | 151.0753 | 151.0753 | 0.0000 | 151.0753, 103.0189 | Alkylmethoxyphenols | CE |
2 | C24H30O13 | Demethyloleuropein | 16.74 | [M − H]− | 525.162 | 525.1634 | 3.2371 | 363.1085, 319.1187, 249.0769 | Tyrosols | UAE |
3 | C20H26O4 | Carnosol | 43.205 | [M − H]− | 329.1776 | 329.1779 | 0.9114 | 286.1847, 185.0586, 270.1605, 201.0885 | Phenolic terpenes | CE |
4 | C27H22O12 | Lithospermic acid | 5.446 | [M − H]− | 537.1080 | 537.1089 | 1.6756 | 537.1033, 493.1135, 357.0610, 295.0606 | Other phenolic compounds | UAE |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Z.; Wu, H.; Holland, B.; Barrow, C.J.; Suleria, H.A.R. An Optimization of the Extraction of Phenolic Compounds from Grape Marc: A Comparison between Conventional and Ultrasound-Assisted Methods. Chemosensors 2024, 12, 177. https://doi.org/10.3390/chemosensors12090177
Liu Z, Wu H, Holland B, Barrow CJ, Suleria HAR. An Optimization of the Extraction of Phenolic Compounds from Grape Marc: A Comparison between Conventional and Ultrasound-Assisted Methods. Chemosensors. 2024; 12(9):177. https://doi.org/10.3390/chemosensors12090177
Chicago/Turabian StyleLiu, Ziyao, Hanjing Wu, Brendan Holland, Colin J. Barrow, and Hafiz A. R. Suleria. 2024. "An Optimization of the Extraction of Phenolic Compounds from Grape Marc: A Comparison between Conventional and Ultrasound-Assisted Methods" Chemosensors 12, no. 9: 177. https://doi.org/10.3390/chemosensors12090177
APA StyleLiu, Z., Wu, H., Holland, B., Barrow, C. J., & Suleria, H. A. R. (2024). An Optimization of the Extraction of Phenolic Compounds from Grape Marc: A Comparison between Conventional and Ultrasound-Assisted Methods. Chemosensors, 12(9), 177. https://doi.org/10.3390/chemosensors12090177