Non-Invasive Detection of Interferon-Gamma in Sweat Using a Wearable DNA Hydrogel-Based Electrochemical Sensor
Abstract
:1. Introduction
2. Experimental
2.1. Materials and Reagents
2.2. Apparatus
2.3. Optimization of the Binding Bases Between Aptamer and Trigger
2.4. The Signal Cyclic Amplification Verification
2.5. Assembly of L1 on the Electrode
2.6. Electrochemical Characterization
2.7. Development of Sensor Based on DNA Hydrogel
3. Results and Discussion
3.1. Target Triggered Cyclic Reaction
3.2. Characterization and Optimization of Electrical Signal Response
3.3. Characterization of Hydrogel Sensing Signals
3.4. Architecture of Intelligent Biosensor
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Anastasova, S.; Crewther, B.; Bembnowicz, P.; Curto, V.; Ip, H.M.; Rosa, B.; Yang, G.-Z. A wearable multisensing patch for continuous sweat monitoring. Biosens. Bioelectron. 2017, 93, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Vaghasiya, J.V.; Mayorga-Martinez, C.C.; Pumera, M. Wearable sensors for telehealth based on emerging materials and nanoarchitectonics. Npj Flex. Electron. 2023, 7, 26. [Google Scholar] [CrossRef] [PubMed]
- Brown, M.D.; Schoenfisch, M.H. Electrochemical Nitric Oxide Sensors: Principles of Design and Characterization. Chem. Rev. 2019, 119, 11551–11575. [Google Scholar] [CrossRef] [PubMed]
- Zhou, K.; Kammarchedu, V.; Butler, D.; Soltan Khamsi, P.; Ebrahimi, A. Electrochemical Sensors Based on MoSx -Functionalized Laser-Induced Graphene for Real-Time Monitoring of Phenazines Produced by Pseudomonas aeruginosa. Adv. Healthc. Mater. 2022, 11, e2200773. [Google Scholar] [CrossRef]
- Vanderlaan, E.L.; Nolan, J.K.; Sexton, J.; Evans-Molina, C.; Lee, H.; Voytik-Harbin, S.L. Development of electrochemical Zn2+ sensors for rapid voltammetric detection of glucose-stimulated insulin release from pancreatic β-cells. Biosens. Bioelectron. 2023, 235, 115409. [Google Scholar] [CrossRef]
- Choi, D.Y.; Yang, J.C.; Hong, S.W.; Park, J. Molecularly imprinted polymer-based electrochemical impedimetric sensors on screen-printed carbon electrodes for the detection of trace cytokine IL-1β. Biosens. Bioelectron. 2022, 204, 114073. [Google Scholar] [CrossRef]
- Wood, L.D.; Canto, M.I.; Jaffee, E.M.; Simeone, D.M. Pancreatic Cancer: Pathogenesis, Screening, Diagnosis, and Treatment. Gastroenterology 2022, 163, 386–402. [Google Scholar] [CrossRef]
- Ma, Y.; Duan, X.; Huang, J. DNA Hydrogels as Functional Materials and Their Biomedical Applications. Adv. Funct. Mater. 2024, 34, 2309070. [Google Scholar] [CrossRef]
- Drobysh, M.; Liustrovaite, V.; Baradoke, A.; Viter, R.; Chen, C.-F. Determination of rSpike Protein by Specific Antibodies with Screen-Printed Carbon Electrode Modified by Electrodeposited Gold Nanostructures. Biosensors 2022, 12, 593. [Google Scholar] [CrossRef]
- Yaiwong, P.; Jakmunee, J.; Pimalai, D.; Ounnunkad, K.; Bamrungsap, S. An electrochemical/SERS dual-mode immunosensor using TMB/Au nanotag and Au@2D-MoS2 modified screen-printed electrode for sensitive detection of prostate cancer biomarker. Colloids Surf. B Biointerfaces 2024, 243, 114124. [Google Scholar] [CrossRef]
- Gevrek, T.N.; Kosif, I.; Sanyal, A. Surface-Anchored Thiol-Reactive Soft Interfaces: Engineering Effective Platforms for Biomolecular Immobilization and Sensing. ACS Appl. Mater. Interfaces 2017, 9, 27946–27954. [Google Scholar] [CrossRef]
- Wang, J.; Guo, S.; Park, E.; Lee, S.; Park, Y.; Han, X.X.; Zhao, B.; Jung, Y.M. SERS-Based Aptamer Sensing Strategy for Diabetes Biomarker Detection. Anal. Chem. 2024, 96, 20082–20089. [Google Scholar] [CrossRef] [PubMed]
- Suni, I.I. Substrate Materials for Biomolecular Immobilization within Electrochemical Biosensors. Biosensors 2021, 11, 239. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wei, H.; Guo, L.; Gao, W.; Cheng, D.; Liu, Y. A novel label-free impedance biosensor for KRAS G12C mutations detection based on PET-RAFT and ROP synergistic signal amplification. Bioelectrochemistry 2025, 161, 108844. [Google Scholar] [CrossRef] [PubMed]
- Cao, H.; Duan, L.; Zhang, Y.; Cao, J.; Zhang, K. Current hydrogel advances in physicochemical and biological response-driven biomedical application diversity. Signal Transduct. Target. Ther. 2021, 6, 426. [Google Scholar] [CrossRef]
- Ying, B.; Liu, X. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond. iScience 2021, 24, 103174. [Google Scholar] [CrossRef]
- Lin, P.-H.; Sheu, S.-C.; Chen, C.-W.; Huang, S.-C.; Li, B.-R. Wearable hydrogel patch with noninvasive, electrochemical glucose sensor for natural sweat detection. Talanta 2022, 241, 123187. [Google Scholar] [CrossRef]
- Yang, Z.; Qin, Z.; Wu, M.; Hu, H.; Nie, P.; Wang, Y.; Li, Q.; Wu, D.; He, Y.; Chen, K. A wearable conductive hydrogel with triple network reinforcement inspired by bio-fibrous scaffolds for real-time quantitatively sensing compression force exerted on fruit surface. J. Adv. Res. 2024. [Google Scholar] [CrossRef]
- Tabasum, H.; Gill, N.; Mishra, R.; Lone, S. Wearable microfluidic-based e-skin sweat sensors. RSC Adv. 2022, 12, 8691–8707. [Google Scholar] [CrossRef]
- Crulhas, B.P.; Hadley, D.; Liu, Y.; Shin, D.-S.; Stybayeva, G.; Imanbekova, M.; Hill, A.E.; Pedrosa, V.; Revzin, A. An electrochemical aptasensor for detection of bovine interferon gamma. Anal. Methods 2017, 9, 4527–4532. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, M.; Guo, J.; Kuang, X.; Chen, Z.; Wang, F. Electrochemical detection of FTO with N3-kethoxal labeling and MazF cleavage. RSC Adv. 2024, 14, 25561–25570. [Google Scholar] [CrossRef] [PubMed]
- Liu, D.; Liu, Z.; Feng, S.; Gao, Z.; Chen, R.; Cai, G.; Bian, S. Wearable Microfluidic Sweat Chip for Detection of Sweat Glucose and pH in Long-Distance Running Exercise. Biosensors 2023, 13, 157. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, B.; Liao, Y.-C. Microfluidic wearable electrochemical sweat sensors for health monitoring. Biomicrofluidics 2022, 16, 051501. [Google Scholar] [CrossRef] [PubMed]
- Zhong, G.; Liu, Q.; Wang, Q.; Qiu, H.; Li, H.; Xu, T. Fully integrated microneedle biosensor array for wearable multiplexed fitness biomarkers monitoring. Biosens. Bioelectron. 2024, 265, 116697. [Google Scholar] [CrossRef]
- Currano, L.J.; Sage, F.C.; Hagedon, M.; Hamilton, L.; Patrone, J.; Gerasopoulos, K. Wearable Sensor System for Detection of Lactate in Sweat. Sci. Rep. 2018, 8, 15890. [Google Scholar] [CrossRef]
- Thirumalai, D.; Santhamoorthy, M.; Kim, S.-C.; Lim, H.-R. Conductive Polymer-Based Hydrogels for Wearable Electrochemical Biosensors. Gels 2024, 10, 459. [Google Scholar] [CrossRef]
- Bhuyan, M.; Jeong, J.-H. Gels/Hydrogels in Different Devices/Instruments—A Review. Gels 2024, 10, 548. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, Y.; Mao, X.; Abulaiti, M.A.; Wang, Q.; Bai, Z.; Ding, Y.; Zhai, S.; Pan, Y.; Zhang, Y. Non-Invasive Detection of Interferon-Gamma in Sweat Using a Wearable DNA Hydrogel-Based Electrochemical Sensor. Chemosensors 2025, 13, 32. https://doi.org/10.3390/chemosensors13020032
Dai Y, Mao X, Abulaiti MA, Wang Q, Bai Z, Ding Y, Zhai S, Pan Y, Zhang Y. Non-Invasive Detection of Interferon-Gamma in Sweat Using a Wearable DNA Hydrogel-Based Electrochemical Sensor. Chemosensors. 2025; 13(2):32. https://doi.org/10.3390/chemosensors13020032
Chicago/Turabian StyleDai, Yang, Xiuran Mao, Maimaiti A. Abulaiti, Qianyu Wang, Zhihao Bai, Yifeng Ding, Shuangcan Zhai, Yang Pan, and Yue Zhang. 2025. "Non-Invasive Detection of Interferon-Gamma in Sweat Using a Wearable DNA Hydrogel-Based Electrochemical Sensor" Chemosensors 13, no. 2: 32. https://doi.org/10.3390/chemosensors13020032
APA StyleDai, Y., Mao, X., Abulaiti, M. A., Wang, Q., Bai, Z., Ding, Y., Zhai, S., Pan, Y., & Zhang, Y. (2025). Non-Invasive Detection of Interferon-Gamma in Sweat Using a Wearable DNA Hydrogel-Based Electrochemical Sensor. Chemosensors, 13(2), 32. https://doi.org/10.3390/chemosensors13020032